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Four-wave-mixing processes in translational optomechanical media
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We study the mechanical, dielectric, and nonlinear-optical response of translational optomechanical
media to incident electromagnetic radiation. These media consist of three-dimensional arrays of electri-
cally small, isotropic particles that are mechanically supported but free to roll on stacks of very thin
transparent planes. Electrostrictive forces tend to move the spheres in such a way as to form spatial
variations in the particle density that correspond to electromagnetically induced spatial modulations in

the array's dielectric constant. These modulations constitute translational optical index gratings that
can be used to control the propagation characteristics of electromagnetic radiation. We study optical
phase conjugation, pump-beam modulation, and harmonic phase conjugation at submillimeter, millime-

ter, and microwave wavelengths in this class of nonlinear media. We also examine the dynamics of these
media from the perspective of the Langevin equations and determine the influence of thermal fluctua-
tions on the properties of such an array.

PACS number(s): 42.65.Hw

I. INTRODUCTION

In an extensive series of experimental studies Ashkin
et al. [l —4] examined the nonlinear-optical properties of
liquid suspensions of submicrometer-sized polystyrene
spheres. The basic mechanism for nonlinear-optical be-
havior in these liquid suspensions is based on electrostric-
tive forces that give rise to static density variations in the
particle density that set up spatial modulations in the
suspension's optical index of refraction. These spatial
modulations constitute translational index gratings that
can be used to control the propagation characteristics of
incident electromagnetic radiation. In particular, self-
focusing [2], optical bistability [4] and optical phase con-
jugation [l] were successfully demonstrated in this in-
teresting class of nonlinear media. These studies were
conducted at visible wavelengths and it is of interest to
examine the possibility of extending such research to
longer wavelengths.

The observed nonlinear-optical characteristics of liquid
suspensions of microspheres are characterized by their
very large third-order susceptibilities. Typically these are
on the order of 10 cm /W for 1000-A spheres and scale
with the particle volume for a constant volume fraction
of microparticles. Accordingly, for active millimeter
wave optics it should be possible to scale the particle size
up to tens of micrometers without suffering significant
scattering losses. For these size particles we anticipate
that the third-order optical susceptibility should scale to
10 cm /W or more.

We can most readily appreciate the need for novel ma-
terials in this spectral region by contrasting phase conju-
gation at 0.5 pm and 1 mrn wavelengths for standard
Kerr media. Specifically, Table I contrasts the efficiency,
g (/=tan ttL, with tt=4my' 'I „„/A,, with L the optical
pathlength and Ip p

the pump intensity) for generating
phase conjugate radiation at these two wavelengths. An
examination of Table I reveals that it is extremely

TABLE I. Difficulties at long wavelengths.

Physical
parameter

Wavelength
Pump intensity
Typical values of g"'
Optical pathlength
vL
Efficiency

Visible
wavelengths

0.5 pm
108 W/cm2
10 ' esu

2 mm
1.2

gain

Millimeter
wavelengths

1 mrn

25 W/cm2
10 ' esu

30 cm
10-'

negligible

difficult to extend four-wave-mixing processes to such
long wavelengths due to the problems associated with
beam intensities and the scaling properties of the non-
linear susceptibilities. For example, due to diffraction, in-
cident radiation cannot be focused down to distances less
than the wavelength A, . Since laboratory cw power
sources at millimeter wave and visible wavelengths are of
the same order of magnitude, it follows that the four-
wave-mixing coefficient ~, which is proportional to the
I

„

/k, will scale as k . Thus ~L declines by some
nine orders of magnitude if one attempts to scale from
visible to millimeter wavelengths, unless materials with
unusually large nonlinear-optical susceptibilities are
available.

The discussion above clearly indicates that artificial
Kerr media would be very interesting candidates for
nonlinear-optical processes at long wavelengths due to
their large nonlinear susceptibilities. However, the dy-
namics of liquid suspension of microspheres are dorninat-
ed by diffusion in a viscous fluid [5] and the dielectric
response times of these media are quite slow. Typical
response times for 1000-A particles irradiated by argon-
ion light are on the order of a second and these times
scale with the square of the radiation wavelength A, . For
millimeter wavelengths the medium response time scales
to more than 10 sec, which is too long for feasible labo-
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ratory experiments. Thus, use of particle translation as a
means to achieve nonlinear-optical processes from sub-
millimeter wave to microwave wavelengths requires
significant improvement of the medium response time to
be of any interest [6].

In suspensions, the fluid supports the spheres and acts
as a source of dissipation so that the medium can achieve
steady state. However, it does this at the expense of
mechanical stability (in the sense that the microparticles
are subject to coagulation or sedimentation) and long op-
tical response times. Furthermore, only fluids that are
nonabsorbent at the wavelengths of interest can be used
as the host. This raises additional constraints for using
suspensions as active media in nonlinear electromagnetic
processes for device applications at long wavelengths.

It is tempting to consider the possibility of nonlinear
media that are based on the same physical principles as
suspensions, but are not subject to the limitations that are
imposed on the medium by the presence of a viscous
fluid. For example, Palmer [7—8] has conjectured that
aerosols might be useful active media for nonlinear pro-
cesses. However, aerosols are volume fraction limited
and are often difficult to maintain over extended periods
of time.

In this paper we examine the optical properties of a
new class of artificial dielectric media consisting of
three-dimensional arrays of electrically small, isotropic
spheres that are mechanically supported but free to roll
[9]. The spheres are supported on stacks of flat, very thin
(much less than the radiation wavelength) transparent
planes. The array is maintained in air, whose viscosity
enables the system to achieve a steady state. We shall
refer to such arrays as translational optomechanical
media and demonstrate that they have unique nonlinear-
optical and dynamical properties. In addition, such ar-
rays enjoy a number of practical advantages over suspen-
sions for device applications: specifically, stability
against coagulation or precipitation, fast optical response
times, as well as overall thermal, optical, and mechanical
stability and control.

The dynamical characteristics of such an array are
different from those of liquid suspensions. For example,
the much smaller viscosity coefficient of air, relative to
common liquids such as water, implies that the medium
response time for corresponding wavelengths will be
much shorter than that of a suspension. Furthermore,
the greater size of the particles implies larger particle po-
larizabilities and much stronger electrostrictive forces.
This ensures that the array will operate in the driven and
not the diffusive regime, even at low beam intensities, and
further reduces the medium's dielectric response time.

In the overdamped state an array can be described by
the Planck-Nernst equation, which also dictates suspen-
sion [5] dynamics. However, we find that, unlike a sus-
pension whose dynamics are always governed by
diffusion, it is possible for a translational optomechanical
medium to achieve underdamped states where its dielec-
tric response to incident radiation displays oscillations as
it evolves towards steady state.

Scattering losses require that the sphere radius ro &&k,
and since the unsaturated nonlinear optical susceptibili-

ties scale as ra (for a fixed particle volume fraction), it is
natural to consider active optical processes at long wave-
lengths. In particular, the fabrication of small metallic,
metal coated, or dielectric spheres, on a size scale of
1 —100 pm or more is quite feasible. This implies that op-
tomechanical media are most applicable to active optical
processes for electromagnetic wavelengths on the order
of several hundred JMm to several cm. Thus, our interest
focuses on the spectral range spanning the submillimeter
to the microwave region of the electromagnetic spectrum.
Longer wavelengths are possible; however, they require
construction of very large three-dimensional arrays of
particles, on the order of tens of m. Although it is quite
possible to fabricate such devices, they are too large for
convenient laboratory studies and will not be discussed
here.

This paper, which deals with the mechanical, dielec-
tric, and nonlinear-optical response of these three-
dimensional arrays to electromagnetic radiation, is divid-
ed into six sections. In Sec. II we discuss the interaction
of electromagnetic radiation with translational, op-
tomechanical media. We determine the equilibrium par-
ticle density and nonlinear-optical susceptibilities versus
radiation power and array parameters for a translational
optomechanical medium irradiated by two degenerate,
plane-eave cw beams that form a coherent, static elec-
tromagnetic grating. Section III deals with the transient
dynamics of rolling spheres. We investigate the dynamics
of small spheres that are free to roll on flat, transparent,
very thin planes from the perspective of the Langevin
equations. We examine the response of a sphere to a stat-
ic index grating created by two coherently interfering de-
generate, cw plane-wave beams. We also study the role
of Brownian fluctuations, arising from collisions of these
spheres with air molecules, in grating dynamics. In Sec.
IV, we utilize a Monte Carlo calculation to investigate
the transient dynamics of an ensemble of spherical parti-
cles subject to a static electromagnetic grating in the
presence of thermal noise. We also examine array dy-
namics from the perspective of the Planck-Nernst equa-
tion and obtain the same transient dynamics for the over-
damped case as the Monte Carlo calculation. In Sec. V,
we study optical phase conjugation, pump grating modu-
lation [10], and harmonic phase conjugation [11]at long
wavelengths. We summarize this work in Sec. VI. In fol-
lowing studies we will examine other optomechanical
media, such as arrays of anisotropic particles which form
orientational gratings [12].

II. INTERACTION OF ELECTROMAGNETIC
RADIATION KITH TRANSLATIONAL

OPTOMECHANICAL MEDIA

In Sec. II A we develop a theory that describes the in-
teraction of electromagnetic radiation with three-
dimensional arrays of translational optomechanical
media. In Sec. II B the effective third-order susceptibility
is calculated for the case of a single beam, and in Sec. II C
we examine the response of this optomechanical medium
to two degenerate, plane-wave cw beams.
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A. Steady-state density and nonlinear polarization

Our interest focuses on small dielectric, metallic, or
metal-coated spheres that are supported on stacks of Oat,
very thin, transparent planes, oriented perpendicular to
gravity. There are three forces: (i) the electrostrictive
force that tends to move the spheres, (ii) friction which
tends to retard all motion, and (iii) the reaction forces as-
sociated with the constraints imposed on particle dynam-
1cs.

The motion induced by the electrostrictive force [5]
will change the sphere density. The altered particle den-
sity implies a spatially varying dielectric constant whose
characteristics depend upon the field intensities and wave
vectors. The presence of friction insures energy dissipa-
tion and the eventual attainment of statistical equilibri-
um. Finally, the reaction forces associated with the con-
straints alter the friction coefficients between the spheres
and their support structures.

In the presence of a radiation field E(r, t ), each sphere
acquires an induced electric dipole moment p(r, t) given
by

p(r, t ) =aE(r, t ), (2.1)

where o. is the polarizability of a given sphere. If the
sphere is composed of a dielectric material, its radius
rp ((k and the host air, then e is given by

e —1B
7"0 )B+2

(2.2)

where eB is the sphere's dielectric constant. For a metal-
lic or metal-coated sphere (the coating thickness is
greater than the penetration depth) and wavelengths
greater than several hundred pm, eB ~—~ and +~I 0.
The induced dipole moment couples back to E(r, t) to
generate an electrostrictive potential U(r ):

U(r)= —
—,'p(r, t) E(r, t)= —

—,'aE (r, t) . (2.3)

Here the overbar implies an average over a time long
compared to an optical period, but short compared to the
medium response time. Associated with U(r) is an elec-
trostrictive force F(r) = —VU(r) that is largest for metal-
lic or metal-coated spheres.

The spheres are confined to the surface of the planes
z =z, so that they cannot move freely in the z direction,
which notably complicates analysis. To simplify matters,
we will assume that the incident beams are all polarized
paralle1 to these planes. It is worth noting that the pres-
ence of these planes induces an anisotropy in the op-
tomechanical medium s response to radiation. In partic-
ular, the spheres will not respond if the incident beam is
polarized perpendicular to the support planes.

The presence of dissipation through friction with air
and contact with the mechanical support structures en-
sures that we may use statistical mechanics to determine
the sphere density, provided the particles do not get
stuck due to static friction. If this does not occur, the
equilibrium sphere density is specified by the Maxwell-
Boltzmann distribution

U(r)
exp kT

n(r)=no
I

T exp
V

U(r)
kT

(2.4)

g 5(z —z )exp
U(r)

m=1

f dxf dyf dz+5(z —z )exp
0 0 0

I

(2.5)

Here Nz is the number of spheres on a given plane, each
plane being identical and having dimensions L XL, and
the polarization of the array is P~ L(r, t)= an(r)E(r, t).
The spacing between each plane being L /X, .

B. Third-order susceptibility for translational
optomechanical arrays

For a single beam of frequency ai, phase P( r ), prop-
agation vector K, polarization vector e, and ampli-
tude Eoa (r), the electric-field component E(r, t )
=eEoa ( r }cos[K r cot +P(r ) ].—We have

1 e~ —1 roa (r)
E2 —:—ga (r),

kT 4 mB+2 kT
(2.6)

where the dimensionless parameter g =fr+~20/4kT
governs the strength of the particle-field coupling and
g=(Es 1)/(eii+ 2). The spatial distribution of particles
is n (r) with r in the plane of the spheres, since the beam
is confined to lie in the plane of the particles (xy plane)

exp[ga (r)]n(r)=no
d @exp gg

V

(2.7)

and the spheres will congregate where the beam is most
(least) intense if a)0 (a(0, i.e., —2(es(1}. If the
beams are uniform and extend over the entire array,
n (r) =no, i.e., the particle density is spatially homogene-
ous in the plane of the particles.

The polarization of the array is

3f e'a 1 exp[ga (r)] E( ) (2 g)—f d r exp[ga (r)]
V

where f =4nrono/3 is the volume fraction of spheres.
Note that if the beam is spatially uniform, then there is
no electrostrictive force and P(r, t ) is linear:

3 &a
—1

P(r, t)= E(r, t) .
4~ mB+2

(2.9)

where np is the unperturbed sphere density, V is the in-
teraction volume, and Eq. (2.4) assumes that r in the
plane of the spheres. If r is off the planes,

n(r)
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For an array composed of 10@m (100 pm} -sized metallic
or metal-coated spheres and a volume fraction of 10
y' '=0. 149 esu (149.2 esu) at T=300 K.

C. Response to a static electromagnetic grating

We examine the case of two degenerate, cw mono-
chromatic, plane-wave beams of frequency co, polarized
in the xy plane and coherently interfering inside a
translational optomechanical array:

2

E(r t)=Ep g e b exp[i(K r p)t+y ))—+c c. ,
m =1

(2.12)

where e, Eob, y, and K are, respectively, the unit
polarization vector, amplitude, phase, and propagation
vector of the mth beam. The interaction of these two
beams with a given sphere located at the point r in the ar-
ray is

U(R} g= ——[b)+b2+b)bze) e2exp[i(Q r+P)]
kT 4

+c.c. ] (2.13)

where P=P, —
Pz and Q=K) —Kz. For plane-wave

beams that extend well beyond the dimensions of the ar-
ray, the self-interaction terms give rise to only a phase
shift and can be ignored. This leaves the grating term
which orders the spheres in accordance to

exp[gb, b2cos(Q r+P)]
Io(gb) b2 }

(2.14)

where Ik(z) is modified Bessel function of order k, argu-
ment z and r is located on one of the planes. The sphere
density n(r) can be decomposed into various grating or-
ders, and denoting the component of order k by nk(r), we
have

n(r)= g nk(r)—:g mkcos[k(Q r+P)](2—5ko) .
k =0 k=0

(2.15)

Here mk ——2npIk(gb)b2)/Ip(gb)b2) is the amplitude of

For a spatially varying beam in the weak-field limit, we
can expand Eq. (2.8) in powers of g and extract the vari-
ous nonlinear-optical susceptibilities. An examination of
Eq. (2.8) reveals that these expansions involve spatial in-

tegrals of different powers of the shape factor a (r). For
example, if g (& 1, the third-order polarization is

' 2 3
3 e~ —1 ro

PNL(r, t)= (5a (r))a(r)Ep, (2.10)
~, +2 kv.

where (5a (r)) is the mean-square spatial deviation of
the beam, i.e., (5a (r))—:a (r) —(a (r)). If the third-
order optical susceptibility is to be local, it can be
defined in the following manner: PN„'(r,t )

=y' )(5E (r, t))E(r, t), where
2 3

+(3) 3p e~ —1 ro
(2.11)

16m e~ +2 kT

the kth-order index grating. For small g, mk ~ g . For
g ~+~, mk ~2n 0 and the particle density approaches

n (r ) =Ng g +5(x —x )5(y —y, )5(z —
z~ ),

J

(2.16)

where N is the total number of spheres and (xj,y, ) are
points where U(r) is a minimum and zz is a plane coordi-
nate. This is the expected density for a purely mechani-
cal system in which the spheres reside at the points where
the electrostrictive force is zero. For 10-pm-sized metal-
lic or metal-coated spheres, g =104.7 (I)Iz)', where I)
and I2 are the beam intensities in W/cm . For 100-p,m

spheres g = l.047 X 10 (I,I2 )
' ~ . Unless the power densi-

ties are very low, g will be quite large and numerous
higher-order index gratings will be generated.

Next, we evaluate the nonlinear susceptibilities of an
array that has been irradiated by two degenerate plane-
wave electromagnetic beams. Specifically, we determine
the polarization sensed by a probe (or read) beam,
E (r, t) =e6' c—os[k(K r cot }] t—hat is diffracted by the
kth-order optical index grating created within the array
by the write beams. More precisely, we evaluate
PN„'(r,t ) = ank (r )—Ek (r, t ):—yNLE(r, t ) which using Eq.
(2.15) is given by

(„) 3f e~ —1 I„(gb)bz }

4m. e~ +2 Ip(gb ) bz )
(2.17}

If E (r, t ) is the kth harmonic of the two write beams, I)
and I2, the saturated nonlinear-optical susceptibility as-
sociated with the kth-order index grating yNL' is, with

bi =b2= 1,

3f eg —1 Ik(g)
+NL 4ne~+2 I'p(g)

(2.18)

In the limit g ~0, the nonlinear-optical susceptibility as-
sociated with the kth-order index grating, approaches g
and gNL ~y' '. Note that for g && 1,
yN„~noa=3f/4m =nprp for a metal-coated particle.(k) 3

Thus, for 10-pm-sized metal spheres, such as aluminum
or copper, a~ 10 cm, whereas for 100-pm-sized
spheres, a —+ 10 crn . If the volume fraction is 10
then yNL~2. 4X 10 esu. Note that for beam intensities
of 1 W/cm, g ranges from 1.047 X 10 —1.047 X 10 as ro
varies from 10 to 100 pm. Thus the medium will clearly
generate many higher-order index gratings. Further-
more, such large values of g at low beam powers imply
that the medium is relatively easy to saturate. In particu-
lar, for 100-pm-sized metallic spheres and write beam in-
tensities on the order of mW/cm, g = 104.7, and the first
50 or so index grating orders achieve their saturated
values.

Figure 1 depicts the nonlinear-optical susceptibilities
associated with the first five index gratings versus write
beam intensities, i.e., Ib„=(I„I„)' with I„.
(I„)the signal (pump or reference beam) intensity.
The calculation for Fig. 1 assumed that the medium is
composed of 10-pm-sized metallic spheres, with f= 10
Here the numbers specify the grating order and the di-
mensionless saturation parameter g = 104.7 1b„,where
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FIG. 1. yNL' for the first five index grating vs Ib„ intensity
for 10-pm metallic spheres with f= 10

I is measured in W/cm . Thus, g=10 for Ib„~=0.1beam

W/cm and an examination of this figure reveals that
~N" =~~' ' saturates at these write beam intensities. Also,XNL X

saturates at beam intensities on the order of 0.2
3W/cm and gNL saturates at beam intensities on the or-

der of 0.3 W/cm . Hence, the nonlinear-optical suscepti-
bilities associated with the higher-order index gratings
are smaller than the lower-order ones and require higher
beam intensities to saturate. However, it is clear that all
of the lower-order gratings saturate at intensities on the
order of 1 W/cm and approach a limiting value set by
the volume fraction of spheres; specifically, 3f/4'. If
the medium is composed of 100-pm-sized metallic or
metal-coated spheres, the dimensionless saturation pa-
rameter g =104.71b„,where Ib„ is now measured in

mW/cm Thus, g =10 for Ib„=0.1 mW/cm and the
first-order index grating saturates at intensity levels on
the order of 100 pW/cm . A similar statement is true for
the other index gratings, and the nonlinear susceptibili-
ties of the lower-order index gratings will all saturate at
microwave beam intensities on the order of several hun-

dred pW/cm .
Finally, the scattering attenuation length (Ls) is also an

important parameter for optical phase conjugation, since
the propagation length L must be much smaller than Lz,
if scattering losses are to be avoided. The scattering at-
tenuation length in the Rayleigh regime is given by

Now I„„scalesas A, , thus y' 'L& scales as A, , and it
follows that translational Kerr media are most suitable
for long-wavelength applications.

III. TRANSIENT DYNAMICS
OF A ROLLING SPHERE

A. Equations of motion

We now turn to the transient dynamics of a rolling
sphere and first explicitly construct its Langevin equation
of motion. We assume that the support structure is
sufficiently aligned that gravitational forces can be
neglected. The sphere is subject to an electrostrictive
force, F= —V'U, reaction forces R arising from surfaces
in contact with the sphere and friction forces Ff from
both air and the mechanical support structure. Figure 2
depicts the situation of interest.

Let V be the translational velocity of the sphere and 0
its angular velocity. Then the velocity v at the point of
contact of the sphere with the plane is

v=V —roQ, Xz . (3.1)

In this section we investigate the transient dynamics of
a sphere that is free to roll on a flat, transparent plane.
Before proceeding further, we first determine what re-
strictions are placed on plane alignment to ensure that
gravity is negligible. Gravity is insignificant if the
electrostrictive force is much greater than the com-
ponent of the gravitational force that retards the
rearrangement of the sphere. Thus, we require
4na(t)/tlz )Ib„ /c )my sin8, where a is the polarizabili-
ty of the sphere, 0 is the angle of the support structure
with respect to the vertical, Ibea is the beam intensity, g
is the gravitational acceleration, and m is the particle's
mass. If the length scale over which the I varies is 8,
then 0 « sin '[4rraIb„ /c Pm p j. For metal-coated
Particles, this reduces to 0«4~Ibea /c/Py, where P is
the mass density of the sphere. For E= 1 mm, Ib„m= 10
W/cm and p=1 g/cm. , Q«1.2X10 '; i.e., the sup-
port structure must be normal with the vertical direction
to within a few tenths of a milliradian. Note that vibra-
tion isolators will be required to ensure that the gratings
are not destroyed by vibrations.

256vr noa m«» 326m fro0
(2.19) Flat Plane

For 10-pm (100-pm) -sized metal spheres irradiated by 1-
mm (3-mm) radiation, Ls ) 3.2 X 10 cm (Lz ) 2 X 10 cm)
for f=10 and scattering is negligible. Note that in the

(3)unsaturated regime, where g «1, the parameter y L,~
depends only on wavelength and temperature:

~( )L 3

256m.

4
beam

ckT
(2.20) FIG. 2. A sphere rolling on a perfectly rough, flat plane and

subject to electrostrictive and frictional forces and torques.
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V=r0QXz . (3.2)

The equations of motion for an individual sphere rolling
on a perfectly rough plane are specified by O'Alernbert's
principle:

m =F'+R,dV
(3.3a)

dQI — =Kf r0zXR,
dt

(3.3b)

where F' =F+Ff, Ff(Kf ) is the frictional force (torque)
exerted on the sphere by air, and I=2mro/5 is the
sphere's moment of inertia. To solve Eqs. (3.3) for the
motion of the sphere, we require an expression for the re-
action force R. Differentiating the constraint equation
and substituting into Eq. (3.3a) and using Eq. (3.3b) to
eliminate 0, we get

rm
(F'+R)=KXz —r R+r z(z R) .

0
(3.4)

Next we require the frictional forces and torques that the
sphere encounters as it rolls on the plane. These are drag
and rolling friction of the sphere with the plane. For a
sphere moving slowly through a viscous fluid (e.g., air),

We assume that the plane is perfectly rough, i.e., the
sphere does not slide, so that v=0. Thus we have the fol-
lowing constraint:

where r=(7pro/39nrt). For 100-p,m-sized spheres, with

p = 1 g/cm and the array sited in air at STP, ~=99.7 ms.
Note that the decay time scales directly with particle sur-
face area and mass density and inversely with medium
viscosity; i.e., a typical diffusive response.

C. Particle dynamics in a static
electromagnetic grating

SaE1.Ez

dt 7m 14m
(3.10)

The acceleration that a copper sphere experiences is in-
dependent of its size, and for 10-W/cm counterpro-
pagating beams is 0.024 cm/s, i.e., =239@ gravities.
The total force on a 100-pm-sized copper (p=8. 96
g/cm ) sphere is on the order of 0.13 pdyn. The equation
of motion for an individual particle rolling on a perfectly
flat plane with pz =0, under the action of the forces dis-
cussed above can be written in the form

Next we examine the motion of an individual sphere
subject to electrostrictive forces generated by a static
electromagnetic index grating created by two coherently
interfering degenerate, cw plane-wave beams. The elec-
trostrictive potential is given by Eq. (2.13) and the associ-
ated force is F= —QgkT sin[Q r]. The equation of
motion for an individual sphere is

Ff = —6ngr0U, (3.5) g+2Pg+coosing=N(t) . (3.11)

where rl is the dynamic viscosity of air (1.8X10 p at
STP). Also, a sphere rotating in an incompressible fluid
or gas with a uniform angular velocity 0 experiences a
frictional torque

Kf = —S~gr00 .

The rolling friction from the plane is

(3.6)

K„=—p„r0mgz Xr, (3.7)

where p, is the coeScient of rolling friction. The sphere
is also subject to a fluctuating Langevin force I (t) that is
associated with the dissipation due to friction. The
Langevin equation of motion for a given sphere is

dv 5
V U(r, t )+ptt mg — —rtroV+I (t) .V 52m

dt 7m
' " V 7m

B. Decay of particle velocity

We first examine the response of the system in the ab-
sence of external fields. Setting U=O, ignoring thermal
fluctuations and rolling friction, we find that if the sphere
is initially moving at a velocity V, its subsequent motion
1S

V( t ) =Voexp( —t /r ), (3.9)

(3.8)

Typically, pz is negligible, i.e., pz =0.1% and can be ig-
nored.

In this regime the inertia term is negligible and Eq.
(3.11) can be solved analytically in the absence of the
Langevin noise term

sin[/(t) ]= sin[/(0) ]e

[1—sin [g(0)](1—e
(3.12)

Here, Q defines the x direction, p = 39rt/1—4pr 0,
g(t) = Qx (t), N ( t)—:Q I'( t). The grating spacing
A=2m/Q, coo—:(2m/A)(15Ib„~/7pc)'~ and

Ib„=(I~I& )' . —In particular, (N(t) ) =0 and
(N(t)N(t') ) =2kTQ p5(t t')Im. Fo—r situations of in-
terest to us, the particle's motion is dominated by the
electrostrictive force and dissipation arising from air fric-
tion.

Examination of the equation of motion reveals three
regimes of interest: (i) an oscillatory underdamped re-
gime, (ii) an overdamped regime, and (iii) a diffusive re-
gime. In the oscillatory regime, where coo »p, the time it
takes for the medium to achieve steady state (rz) is p
while co0 is the resonant frequency. In the overdamped
regime, coo«p, the medium response time rtt =2p/F00
and for metallic spheres r„'—=Q (15roIb„~/39rtc). Fi-
nally, the particle is in the diffusive regime if the
Langevin force exceeds the electrostrictive force, i.e.,
UlkT «1. This occurs if n.roIb„ /30«1, where ro is
in pm and Ib„ in W/cm . For this situation analysis of
Eq. (3.11) shows that 1/rz =21kT(2m. /A) /156nqro.

l. Overdamped regime urithout noise
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transient behavior of sin[/(t) ] for a 100-ILcm metal-coated
sphere with p=0. 2 g/cm . For this case coo/2P=14. 1-s
for a beam intensity of 0.5 W/cm . The particle is initial-
ly placed at g(0) =1.0 and the radiation beams are such
that the grating spacing A=1 mm. The calculation ex-
amines the transient motion of a rolling sphere until it
achieves steady state. An examination of the figure re-
veals that the particle overshoots the equilibrium point
(g,q=0) and oscillates about it a number of times before
coming to rest. The time scale for this motion is on the
order of 10 s, in good agreement with the value of
2P=1.01 s '. Furthermore, coo=3.75 s ', implying an
oscillation period of 0.26 s.

3. Manifestation of noise in the ouerdamped regime

Next we examine how noise manifests itself in the
sphere's motion. The Langevin equation of motion for a
given particle is

g+2Pg+coosin(=N(t} . (3.13)

The deviations that the particle undergoes from thermal
fluctuations arising from collisions with air molecules is
small. Thus we decompose the particle position into a
deterministic piece, gD(t) plus a random Iluctuating term
5((t), i.e., g(t) =(D(t)+5((t} Thes. e satisfy

gD+2P(D+coosin(D =0,
g+2P5$+(coocosgD )5(=N(t) .

(3.14a)

(3.14b)

In steady state, gn(t)=2nm, and solving Eq. (3.14b)
yields the stochastic motion of the particle under equilib-
rium conditions

5$(t) = —f dco e'"'
co 2i Pco —(coocos—gD )

(3.1 5)

The magnitude of the noise varies inversely with the par-
ticle mass and increases with temperature. In particular,
in the overdamped regime the rms position fluctuation of
a particle, ((5x} )'~ =(kTlmcoo)'~ and scales as the

2. Underdamped regime without noise

Next we examine the underdamped region, again in the
absence of thermal fluctuations. Figure 3 depicts the

2 ~
0—

too i2p =40
T = 500 K, r0 ——14m

0.8-':

0.6 — '; I = 5 W/cm, r0 =100&m
T1 = 1 8x10 P, ~ = 1 mm 0

E0.4—

0.5—
~ ~
C 0.0-

0.2—
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~ \P

~ \.v' '
~0
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~ ~

I

0 4— -1.0—
I

0.25
I I

0.500.450.35 0.40
Time (sec)
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3
pt FIG 4. Transient motion of a 1-pm-sized sphere undergoing

Brownian motion in a static index grating.FIG. 3. Motion of a sphere in the underdamped case.

An examination of Eq. (3.12) shows that the particle rolls
from its initial position g(0) into its equilibrium position
on a time scale set by vz. Note that the inverse response
time in Eq. (3.12) can be cast in the following form:
1/wz =D'(2m/A) (UlkT), with D'=15kT/156vrqro the
translational diffusion coefficient for a sphere moving in a
medium with a viscosity g. This should be contrasted
with a suspension in the strong-field regime, where the
medium response time [5] ra ' =DK ( U lk T ), with
D =6~k T Irog being the translational diffusion
coefficient for a sphere in a viscous fluid. We will return
to this point in the next section, where we study the tran-
sient dynamics of an array of spheres.

The particle response time rD=3. 56X10 [ro/
A,sin(8/2) ] Ib„,where Ib„ is in W/cm and the sphere
is sited in air at STP. If the radiation wavelength is 3 cm,
the particles are 100-pm copper spheres and the angle be-
tween the beams is 90', then ~D =6.41 s for beam intensi-
ties of 100 W/cm . For 18-6Hz radiation and the same
beam powers and propagation directions, the medium
response time will be on the order of 174 s. The optical
response time for the formation of a translational grating
in a carbon fiber microparticle suspension at these wave-
lengths and particle sizes is on the order of several h to a
few d [6]. Finally, although the medium response time
scales inversely with the dynamic viscosity of the air, de-
creasing the air pressure will not necessarily reduce the
medium response time. In particular, the dynamical
viscosity [13]of a gas is given by ri =

—,'nv, „mP. Here n is
the density of gas molecules, u, h is their thermal velocity,
and 8 is the molecular mean-free path. Now, since
8=1/nero, where oo is the cross section for elastic col-
lisions, the gas viscosity is independent of gas pressure.
This remains valid so long as 8 & L, the dimensions of the
container. Since O.O=10 ' cm, this statement is true so
long as n & 10' Icm, i.e., for gas pressures greater than 1

mtorr.
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thermal velocity of a sphere [(kT/m)'/ j divided by the
oscillation frequency. Typical thermal velocities at room
temperatures for a 100-pm-sized metallic sphere are 10
cm/s and for a beam intensity of 1 W/cm, co0=0.7 s.
Thus ((5x) )' =1 pm.

Figure 4 depicts the case of a 1-pm metal-coated parti-
cle maintained in 760-Torr pressure and irradiated with
equal beam intensities of 1 MW/cm . The particle is tak-
en have a mass density p=1 g/cm, a grating spacing
A= 1 mm, T=500 K, too= 1680 s ', P=2.8 X 10, and
too/2P=40. In Fig. 4, the solid line tracks the position of
the sphere in the absence of noise and the dots represent
the sphere's position with noise present. An examination
of the particle's motion indeed reveals that Brownian
fluctuations cause the particle to move randomly over
distances on the order of half of a )ttm, i.e., ((5x ) ) ' = 1

pm.

IV. TRANSIENT DYNAMICS OF THE ARRAY

Next we examine the transient dynamics of an entire
array of rolling spheres. In Sec. IV A we study the time
evolution of the sphere density by adding up the contri-
bution to n (r, t) of the motion of each individual sphere.
We refer to this as the Monte Carlo approach. In Sec.
IV B, we examine the time evolution of the translational
optical index grating created by the spheres as they are
driven to their equilibrium positions by electro-
strictive forces. We investigate the effect of the initial
particle distribution on transient index grating dynamics
and the impact of thermal fluctuations. Finally, in Sec.
IVC we inspect grating dynamics for the overdamped
case from the perspective of the Planck-Nernst equation.
This is the standard approach used for describing micro-
particle suspension dynamics. We find by direct compar-
ison that the Monte Carlo and Planck-Nernst approaches
give essentially the same description of optomechanical
grating dynamics in this regime.

A. Time evolution of the particle density
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ample, consider 1000, 15-pm-sized metal-coated spheres
with p=2 g/cm, irradiated by two degenerate write
beams with Ib„=1 W/cm and a grating period of 1

mm. For these system parameters, ~D =632 s. If the par-
ticle size is increased to 150 pm, then write beam intensi-
ties of 0.1 W/cm will give the same value of g and grat-
ing formation will occur on a time scale of 6.3 s. Our re-
sults for the sphere density are presented in Figs. 5,
which depicts n (g, t ) versus t /rD. Here g= Qx,
rD '= 15(Era) Ib„ /39ric and the density was calculated
by dividing the region of space (equal to two complete
grating periods) into 50 subunits and counting the num-
ber of particles in each subunit. Figure 5(a) depicts the
transient evolution of n ( g, t ) over the spatial region
0~ / ~4Ir at the times t/rD =0, 0.5, 1.0, and 1.5. Initial-
ly the spheres are randomly distributed and this is
reflected by the essentially flat nature of the density at the
time t=0. The small irregularities arise from the fact
that the sample involves a finite number of particles and
this gives rise to a local fluctuations due to the discrete
nature of the system. After the beams are turned on, the
particles are attracted to the regions where the radiation
intensity is greatest, i.e., (=2nlr, with n =0,+1,+2, etc. ,

At the time t =0, the radiation beams are switched on
and the ensemble is allowed to progress towards steady
state. The dynamics of each particle, which is governed
by Eq. (3.11), is determined and the transient behavior of
n(r, t) is obtained by a Monte Carlo approach in which
we sum over the entire set of spheres. To simplify
matters, we restrict the calculation to a single plane and
evaluate the evolution of the sphere density along the Q
direction. Note that in the absence of dissipation the
spheres never achieve steady state, and if they were ini-
tially randomly positioned, a coherent density grating
will never form.

1. Evolution of the density in the ouerdamped ease

We examined the transient dynamics of a system of
1000 identical metallic spherical particles that are irradi-
ated by two cw, plane-wave degenerate beams. The
sphere size, air density, and beam intensity are such that
the system is in the overdamped regime for the case
g=4mrofb„ /ekT=122. 5m. . As a specific numerical ex-
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FIG. 5. (a) Transient motion of n(g, t ) vs t/rD in a static in-
dex grating after the fields are turned on. (b) Transient motion
of n ( g', t ) vs t /ru in a static index grating approaching the
steady-state distribution.
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on a time scale set by ~D. Thus, by t/~D =1.0, there is a
definite clumping of the spheres in the vicinity of where
the electrostrictive force is zero. By t/v. D=1.5, this
clumping is very noticeable and the particle spatial distri-
bution is rapidly depleted from the regions where the

electr ostrictive force is strongly repulsive, i.e.,
g=(2n +1)Ir/2 .Figure 5(b) continues this description of
n(g, t) for the times 1/rD =2.0, 3.0, and 4.0. An exam-
ination of the particle density during these times reveals
that the density is rapidly achieving equilibrium with the
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FIG. 6. (Continued).

particles strongly bunched in the regions (=2nm. Note,
too, that the spatial distribution is not even about these
points. This feature of particle dynamics arises from the
fact that there were more particles closer to /=0 and 2~
than to g =4nat t =0. .

2. Evolution of the density in the underdamped case

Next we examine the transient dynamics of the sphere
density in the underdamped case, where the individual
particle motion exhibits oscillations about the equilibri-
um position. On physical grounds we anticipate that the
particle density will re6ect these oscillations.

We investigate the specific case in which 1000, 100
pm-sized metal-coated spheres with p=0. 1 g/cm are ir-
radiated by two degenerate radiation beams with
Ib„=0.5 W/cm . The grating spacing is 1 mm and the
spheres are initially placed randomly on the plane, with
zero velocity. The array decay time @=0.5 s '. The
medium should form the translational index gratings on a
time scale set by 2 s and coo=3.75 s ', so that the oscilla-
tions period is 0.26 s. Figures 6(a)-6(g) depict the tran-
sient evolution of the particle density for the time interval
of 0 ~ Pt ~ 2.5, after which we find that there are no
detectable changes in n(g, t) and the system has achieved
steady state. The spatial range of the calculation covers
two complete grating spacings.

Figure 6(a) depicts the earlier dynamics of the system
with the sphere density initially random. An examina-
tion of this figure reveals that the spheres immediately
start to congregate about their equilibrium positions
(=0, 2n., and 4m.. By Pt =0.3, the spheres are well local-
ized about these points. Note that even during early
times the distribution exhibits some oscillations. For ex-
ample, the density appears to become more localized for
0 ~Pt ~0.3; however, the peaks around /=0, 2m. , and 4n
decrease and the distribution spreads in space afterwards.
For example, by Pt =0.5, the density falls to about one-
half of its value at Pt=0. 3 and is spread over a much
broader region.

Figure 6(b) depicts the time interval 0.6~Pt ~0.9,
where the same behavior is repeated, only the distribu-
tion is somewhat closer to steady state and the particle

density is more localized about the equilibrium points.
Note that at the time Pt =0.7, the sphere density
achieves a value around the equilibrium points that is
more than 50% of its final value.

Figure 6(c) depicts the evolution of the sphere density
for the times I3t =1.1 and 1.2. By this time there are very
few spheres left in the regions between the equilibrium
points. Note that the density is still oscillating, with
n (g, t ) achieving values that are on the order of one-half
of the steady state value at the equilibrium points. Fig-
ures 6(d) —6(f) exhibit the same general behavior with the
density oscillating in magnitude about the equilibrium
points and the region between these points being essen-
tially devoid of spheres. Finally, Fig. 6(g) depicts the as-
sumption of steady state in a time interval of t =2.0/P
and 2.5/P.

B. Index grating formation: Monte Carlo approach

N

g n(g„,t}cosg k

y(t)—: (4.1)

where N is the total number of particles. In steady state,
the grating is saturated if g &&1 and y ~1, since all of the
particles are located at points where the grating function,
cosg(t), is unity.

l. Evolution of the grating in the overdamped case

Figure 7 depicts the time evolution of the grating func-
tion y (t) for the specific overdamped case used in Fig. 5.
For the situation examined here, the particles were ini-

Now, as discussed in the previous section, under the
action of a periodic potential, cos(Q r), the particle den-
sity will evolve into various grating components, i.e.,
cos(nQ r), with n an integer. Further, the effective non-
linear polarization responsible for optical phase conjuga-
tion is determined by the ensemble average of the first-
order grating function over the particle distribution.
Thus it is of interest to study the time evolution of the
grating function
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FIG. 9. Formation of a translational index grating out of

noise arising from thermal fluctuations.

tially at rest and placed randomly on the plane. Thus
n ((,0) is a random function of g, so that the grating func-
tion is initially zero. An examination of this figure re-
veals that y (t) evolves smoothly, on a time scale set by rD
and saturates to its peak value of unity corresponding to
the spheres all occupying the positions where the electro-
strictive potential is a minimum.
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derdamped case for two situations: (i) the spheres randomly

placed initially, and (iij the spheres are all placed at points

where the electrostrictive force is a maximum.

2. Evolution of the grating in the underdamped case

Next we examine the underdamped case, which is de-
picted in Fig. 8 for 1000 spherical, 100-pm-sized metal
particles, irradiated by 0.5-W/cm microwave beams.
The grating spacing is taken to be 1 mm and the mass
density of the spheres p=0. 1 g/cm . For these condi-
tions any individual particle will undergo several oscilla-
tions about the equilibrium position, as depicted in Fig. 3.
However, a collection of particles placed at different
points will make contributions to the grating function
y(t) that are somewhat out of phase with one another,

and this will tend to reduce these oscillations. Two
different physical situations are considered: (i) the parti-
cles are initially randomly distributed at rest (solid line),
and (ii) all of the particles are placed at the points where

the electrostrictive force is most repulsive, i.e.,
g=(2n +1)m./2 (dotted line). An examination of Fig. 9
reveals that the first case has only weak oscillations,
rejecting the fact that the motions of the particles are
not in phase with one another. Note that in both cases
the grating function achieves a value of nearly unity by a
time of ~D.

3. Evolution of the grating due to noise

In this section we examine the role of thermal Auctua-

tions in grating formation. Thermodynamic fluctuations
are important in the transient evolution of the translation

optical index grating for the situation in which the

spheres are all initially at rest and positioned at points of
unstable .equilibrium, i.e., if the particles are all posi-
tioned at the points g(0) =(2n +1)m, where the electros-
trictive force is zero. In the absence of Langevin forces,
the spheres are not subject to any forces at all, and they

wi11 remain at the points of unstable equilibrium and

y(t) = —1, for all time.
Now the points g(0) =(2n + 1)m. are points of unstable

equilibrium, and if the particles are just slightly displaced

away from them, the electrostrictive force will tend to
push them further away and the sphere density will begin

to evolve towards a true Maxwell-Boltzmann distribu-

tion. Once this has occurred, a translational index grat-

ing will begin to form with y (t)~+ 1.
The dotted curve in Fig. 9 depicts the transient behav-

ior of the translational index grating as it evolves from

this unstable equilibrium value under the infiuence of first

Langevin and then electrostrictive forces. An examina-

tion of the figure reveals that it takes a time on the order
of 2~D for thermodynamic Auctuations to push the

spheres far enough away from their initial points for elec-
trostrictive forces to dominate their motion and reorder
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them into their steady-state positions of true equilibrium,
where y(t) is nearly unity. The figure depicts the under-
damped case with the same system parameters used in
Fig. 8.

C. Index grating formation: Planck-Nernst approach

Next we compare the Monte Carlo calculations dis-
cussed above with the solutions one obtains from the
Planck-Nernst equation. More precisely, we solve the
Planck-Nernst equation for the evolution of the particle
density irradiated by two degenerate, plane-wave cw
beams. We find that the predictions of these two ap-
proaches are the same, provided they have the same
physical parameters.

The Planck-Nernst equation for the transient dynamics
of a collection of spherical particles in a viscous Quid ir-
radiated by a static electromagnetic interference pattern
is [5]

Bn =DV Vn+n VU
at

(4.2)

0.8—

0.6—

0.4-

where U is the electrostrictive potential given in Eq.
(2.13). Figure 10 compares the time evolution of the grat-
ing function generated by the Monte Carlo approach
[yMc(t)] and the Planck-Nernst equation [ypN(t)]. The
specific situation modeled is one in which the array is in
the overdamped regime with the same system parameters
as were used in Figs. 5 and 6. An examination of this
figure reveals that yMC(t) and ypN(t) are virtually the
same, as one would expect on physical grounds. The
small differences between yMc(t) and ypN(t) that do ap-
pear arise from the fact that the Monte Carlo treatment
involved only 1000 particles, whereas the Planck-Nernst
equation assumes a continuous distribution of spheres.

V. FOUR-WAVE MIXING IN TRANSLATIONAL
OPTOMECHANICAL MEDIA

In this section we examine optical phase conjugation,
pump grating modulation, and harmonic phase conjuga-
tion with a three-dimensional array of electrically isotro-
pic spheres as the active medium. We will once again
confine ourselves to situations in which the polarization
of the incident radiation beams are confined to lie in the
plane of the particles. Since the particles cannot respond
to radiation polarized perpendicular to their support
planes, the optical response of the array is isotropic only
within the plane of the particles. Overall, the nonlinear-
optical response is quite anisotropic.

Let E(r, t ) be the total electric field of the incident ra-
diation fields:

E(r t)=ED g e b exp[i(K r co t—)]+c c. ,
m =1,2,p, p

(5.1)

with e, E =Eob, K, and co are the unit polariza-
tion vector, complex amplitude, propagation vector, and
frequency of the mth beam, respectively. Here m =1 (2)
corresponds to the pump beam propagating to the right
(left), m =p refers to the probe wave, and m =p, corre-
sponds to the wave that is phase conjugate to the probe.
For standard phase conjugation, K, = —K2 =K;
Kz = —Kz, =Q, and all of the frequencies are degen-
erate, i.e., co

—=co. In this paper we shall work within the
nondepleted pump regime and assume equal pumps.
Thus, we take b, =b2=1.

In harmonic phase conjugation [11], one pump wave
(e.g., m =1) and the signal beam are degenerate and act
as write beams to form the static optical index gratings.
If the medium is sufficiently nonlinear, notable higher-
order index gratings will form whose spatial wave vectors
are integral multiples of the fundamental, first-order grat-
ing. If the frequency of the counterpropagating (m =2)
pump beam is a harmonic of the signal wave (we are as-
suming that the medium is nondispersive, an excellent
approximation since it is mostly air), then it will act as a
read beam and be Bragg diffracted by the appropriate
higher-order index grating to form a beam whose phase is
conjugate to the initial probe wave. Note that the fre-
quency of this wave is the same as that of the read beam,
although its direction of propagation is opposite to that
of the signal wave. As a specific example, suppose that
the frequency of the read beam is equal to the third har-
monic of the write beams, e.g., co&=co =co and co2=3~.
Then a phase conjugate wave that is the third harmonic
of the signal wave will be generated.

0.2—

0.0-
I

0 2
t / tD

FICx. 10. Time evolution of the grating function for the array
y (t) vs time from the Monte Carlo simulations and solutions of
the Planck-Nernst equation.

A. Phase conjugation in translational
optomechanical media

The phase conjugate characteristics of an isotropic op-
tomechanical medium are set by the nonlinear polariza-
tion vector. PNL(r, t), which gives rise to the conjugate
beam. PNt(r, t) arises from optical index gratings created
by the signal with either pump beam. In addition, a grat-
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ing is created by the two pump waves, and this grating
can give rise indirectly to additional contributions to the
phase conjugation process.

To see why these three index gratings are important,
we note that in the absence of a phase conjugate beam the
electrostrictive potential can be written as

U(r) = —g[bse, .e cos[(K—Q) r]

M// (r) =cos[k(K —Q) r]cos[l(K+Q) r]

X cos[2m K.r],

~/, / —= (2 —
5/, p)(2 —

5/, o)(2 —5,o)

I/, (ges e,bs)I/(ges e2bs)I (ge2 e, )
nkl~ =nO

Io(ges e, bs. )Io(ges e2bs)Io(ge2 e])

(5.4b)

(5.4c)

(5.4d)

+bse, eicos[(K+Q) r]

+e, e2cos(2K r) j, (5.2)

U(r)
noexp kT

n(r)=
Io(ges e,bs )Io(g es 'e2bs )Io(g e2'e] )

Expanding n (r) into grating orders, we have

(5.3)

n(r)= y y y b, /, / n/, / M/, / (r),
k=0 l=O m =0

(5.4a)

where g—:aEpl4kT. Examination of Eq. (5.2) reveals
the desired density gratings. Since all of the beams are
degenerate the equilibrium sphere density is given by the
Maxwell-Boltzmann distribution. If the phase conjugate
beam is sufficiently weak, we can to a first approximation
neglect any grating formed by the conjugate beam in con-
cert with either pump wave. Then the density of parti-
cles n(r) is given by

An examination for Eq. (5.4d) reveals that three different
types of optical index gratings can be created by the sig-
nal beam and the two counterpropagating pump waves.
These are the signal with either pump, which create index
grating with wave vectors of the form k(K+Q) and
l(K —Q). The two pump beams form grating with wave
vectors 2m K.

Note that if the conjugate beam attains any intensity,
then it is necessary to include effects arising from the for-
mation of optical index gratings between the phase conju-
gate wave and either pump beam as well as the gratings
formed by the conjugate beam and the probe wave. Gen-
erally speaking, the latter are usually much weaker than
the other beams and will be neglected. To further simpli-
fy matters we will also always work within the nondeplet-
ed pump approximation (which is consistent with drop-
ping the gratings formed by the signal and conjugate
waves). Writing the conjugate wave amplitude and polar-
ization as e, and b „wehave

U(r) = —g[b, e, escos[(K —Q) r]+bse, escos[(K+Q) r]j

—g[b~, e] e~,cos[(K+Q) r]+b,e, e~,cos[(K—Q) r]j —ge, e2cos{2K r),
and the particle density is

U(r)
noexp

n(r)=
Ip[g(es e,bs+e„,e2b~, )]Io[g(es ezbs+e~, e]b~, )]Io(ge2 e, )

Expanding n (r) into grating orders, we have

(5.5)

(5.6)

n(r)= y y y 5/, / n/, / Jtl//, (r),
k=O 1=0 m=O

(r)=cos[k(K —Q) r]cos[l(K+Q) r]cos(2mK r),
b/, /

=(2—
5k, p)(2 5] p)(2 5 p)

n//, I [/g(e se ]bs+ep, .e~bp, )]I []g(es.e2b, +ep, e]bp, )]I (ge2 e, )

np Io[g[es'e]bs+e& 'e2b& )]Ip[g(es'epbs+e& 'e]b& )]Io(ge2'e])

(5.7a)

(5.7b)

(5.7c)

The simplest case occurs when the counterpropagating
pump beams are orthogonally polarized and g is either
very large or very small. We shall treat this case first.

1. Phase conjugation:
Orthogonality polarized pump beams

For this case only the first-order gratings with spatial
periods of K+Q will diffract either pump beam into the

I

appropriate direction and form a beam that is phase con-
jugate to the signal. Examination of Eqs. (5.4) reveals
that the grating components n& and no, o contribute
directly. In particular, the portion of the particle density
of interest can be written as

6n(r)= n]pcpso[(K —Q) r]+np, pcos[(K+Q). r] . (5.8)
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Il(g'es. elbs }
II(r, t ) =aEO e2

Io ges'elbs
(5.9a)

To simplify matters, we shall assume that the signal beam
is polarized parallel to the first pump beam. Then the
phase conjugate wave will be polarized parallel to the
second pump beam and the nonlinear polarization that
generates th'e phase conjugate beam is
P(r, t) =II exp[i(Q. r —cot)]+c.c., where

beam is P(r, t ) = IIexp[i(Q r —pit ) ]+c.c.,
II=II, +H2, where

Il(ges elbs }
II1(r, t }=npaEO

Io ges'elbs

1(g S 2bs }Il(ge2 el )

+ e,
Io(ges. e2bs )Io(ge2 el )

and

with

(5.13a)

The nonlinear polarization that amplifies the signal beam
is equal to P(r, t }=IIexp[i(Q r+cot)]+c.c. :

I,(ge, e2b, )
II(r, t ) =aEO e,

Io ge, e2b,

Inserting Eqs. (5.9} into the Maxwell equations and mak-
ing the slowly varying envelope approximation, we obtain
the following coupled wave equations for the conjugate
and signal waves:

db, I,(gbs)
(5.10a)

Bbs . I (gb, )
(5.10b)

In the limit that g «1, we can expand the Bessel func-
tions in powers of g and solve for the emitted conjugate
and amplified probe waves. In particular, we find that
the four-wave-mixing coefficient for in this limit is
~= lrQan o( aEO/kT}. For metal Particles, this can be
written as tt=3mQf(aI

„

/ckT). If aL «1,
I~, o-I~„~Is(0).For large g the grating should saturate
and

I,(g)~2.2 5(f QL ) I
„

which is a saturated intensity.

(5.11)

2. Phase conjugation: parallel polarized
pump beams, pump grating modulation

If the pump beams are polarized parallel to one anoth-
er, then index gratings with grating vectors 2m K will be
induced in the medium. Furthermore, the first-order
pump grating wave vector 2K, can modulate the K+Q
gratings to produce additional index gratings. This pro-
cess is referred to as pump beam modulation [11]and it
can act to either enhance or reduce the phase conjugate
reflectivity. Specifically, the pump grating couples with
the first-order K+Q grating to produce a K—Q grating.
It also couples with the first-order K—Q grating to pro-
duce a contribution to the K+Q grating. Thus the grat-
ing components n, o, and no» will also contribute. The
portion of the sphere density of interest to phase conju-
gate, 5n(r), is

fin(r) =(n, oon+o» )cos[(K—Q) r]

X exp[i(K~, r —tot )]+c.c. , (5.14)

and the conjugate intensity I~,(0}in the small signal is

I,(g)=2.25(fQL }

I1(gbs) 11(gbs»1(g)

Io{gbs } Io(gbs )Ip(g )
(5.15)

where f is the volume fraction of spheres and I
„

is the
pump intensity. Examination of Eq. (5.15) reveals that in
the limit that g~0, I,~I

„

Is(0) as expected. How-
ever, for ~g ))1 and g positive, the phase conjugate beam
is independent of the probe power, directly proportional
to the pump intensity, and is volume fraction limited.
This is a saturated regime and is valid as long as ghee &&1,
which can involve very low probe wave intensities if the
particles are large enough. For example, for 100-pm-
sized metal spheres with I „=1W/cm, g=(m/3)10
(Ib„)' . If probe intensity is on the order of 1

JMW/cm, the system will operate in the saturated regime.
If g is negative, then we can rewrite Eq. (5.16) as

Ip, (g) =2.25(fQL )
2 Il(gbs }

Iv-pIp(gbs ) Ip(g)

I 1(ges e2bs'}
112(r, t ) =npaEO

oges 2 s

I,(ges e,bs }Il(ge2 e, )
+ e2 . (5.13b)

Io(ges elbs }Io(ge2 el )

The first and third terms in Eqs. (5.14) are the standard
saturated forms for an artificial Kerr medium. The
second and fourth terms arise from pump grating modu-
lation and represent the effect of strong pump gratings.
To determine the phase conjugate reflectively, we insert
P(r, t ) into the Maxwell equations, make the slowly vary-
ing envelope approximation (SVEA) and solve for the
conjugate wave.

There are several cases that are worth considering. If
all of the beams are linearly polarized in the same direc-
tion, then

I1(gbs } Il(gbs }I1(g}

Ill(gbs ) Io(gbs )Ill(g)
+

+ (nool +n»o )cos[(K+ Q).r] . (5.12) (5.16)

The polarization of the medium P(r, t )
—=an(r)E(r, t ) and

the portion responsible for generating a phase conjugate
which in the limit of large ~g~, I~,
~(2.25/4)I~„(fQL/g ) . Thus the emitted conjugate
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enough energy is diffracted from the second pump beam,
then depletion will occur and it will be necessary to in-
clude this effect as well. Thus we require coupled equa-
tions for the second pump beam and the harmonic phase
conjugate wave and require the nonlinear polarization
P~2"'(r, t ) that diffracts the harmonic phase conjugate
beam into the second pump wave. Since this uses the
same index grating, it is

P2"'(r, t ) =noa[Ik(gbs )/Io(gbs )]e'",'E'",

Xexp[iK(Q r+cot)]+c.c. , (5.18)

0.0— where e', IE'",'exp[ik(Q. r+cot)] is the harmonic phase
conjugate electric field. The coupled wave equations for
the harmonic phase conjugate beam and the second
pump beam are

FIG. 11. I„,(g)/I~, (0) vs g for b&=0.2 and 0.3. Ik(gbs)
2ikQ VE",= —4n(kQ)2ano Ek,P~ 0 I ( b )

k (5.19a)

wave scales inversely with Ip p
and is independent of

probe intensity, i.e., I,~ 1 /I„.These features of op-
tomechanical electrodynamics are clearly seen in Fig. 11,
which depicts the phase conjugate intensity versus pump
intensity for two different probe intensities.

Finally, we comment on the onset of pump depletion.
Generally speaking, pump depletion is an issue whenever
the phase conjugate intensity grows to a finite fraction of
the pump power and in the saturated regime,
I p~2. 25(fQL ) I„,for gbs ))1. Thus pump de-
pletion is an issue for situations in which fQL 0.2.

B. Harmonic phase conjugation

We consider the situation in which the first pump
beam and the probe wave have the same frequency co and
the second pump is the kth harmonic of this, i.e.,
ken. Then the strength of the grating of interest is
n„(gbs) "oIk(gbs)/Io(gbs) where

gbs: a(e, es )Eobs /2k T

and b~ is the ratio of the probe electric-field amplitude to
that of the first pump. It follows that if the second pump
beam, which is oscillating at the frequency km, has an
electric-field vector of ekEkexp[ik(K r cot)], th—en the
nonlinear polarization responsible for generating the har-
monic phase conjugate radiation of order k is

Pp. (r t ) ="oa[I„(gbs)/Io(gbs )]el

Ik (gbs )
2ikK VEk = 4'(k—Q) ano E", .

Io(gbs )
(5.19b)

Thus the basic length scale for generating harmonic
phase conjugate waves of order k is
ak(kco) =2mkQanoIk(gbs)/Io(gbs). If the optical path-
length is L and the two beams are nearly collinear, the in-
tensity of the kth-harmonic phase conjugate wave is

I'",' =I2(0)sin tck(kco)L . (5.20)
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Figure 12 depicts the intensity of the second-harmonic
conjugate beam and the pump wave (normalized to the
second pump beam's initial intensity) as a function of g
for the case in which bs = 1, f=0.01, A, = 3 cm, and
L =50 cm. An examination of this figure reveals that
significant diffraction of the second pump or read beam
and creation of the second harmonic phase conjugate ra-
diation occurs by g =2. For 10-pm-sized metallic
spheres, this occurs when the rms product of the writing
beam intensities is 19 mW/cm . For large values of the
beam intensities, ~kL continues to increase and the pump

X Ekexp[ik(Q r+cot ) ]+c.c.. (5.17)

Note that the magnitude of this polarization is indepen-
dent of grating order in the limit that g && 1.

Next we examine the emitted harmonic phase conju-
gate beam. Since the index gratings set up by the signal
and first pump beam are static, no energy is transferred
from them to either the second pump beam or the conju-
gate wave, which are oscillating at the kth harmonic.
Furthermore, the signal and first pump beam will not ex-
change energy with each other. However, the harmonic
phase conjugate beam is formed by Bragg scattering of
the second pump beam by the kth index grating. If

E0 4
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FIG. 12. Intensity of the second-harmonic conjugate beam
and the pump wave as a function of g for the case in which
bs= 1,f=0.1, A, =3 cm, and L =50 cm.
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FIG. 13. Intensity of the third-harmonic conjugate beam and
the pump wave as a function of g for the case in which b& = 1,
f=0.1, A, =3 cm, and L =50 cm.

the tenth-harmonic conjugate beam and the pump wave
(normalized to the second pump beam s initial intensity)
as a function of g again for the case in which hz=1,
f=0.01, A, =3 cm, and L =50 cm. An examination of
this figure reveals that significant diffraction of the
second pump or read beam and creation of the third-
harmonic phase conjugate radiation occurs by g=10.
For 10-pm-sized metallic spheres, this occurs when the
rrns product of the writing beam intensities is 190
mW/cm . Note that the beam intensities undergo even

fewer oscillations than the third-harmonic case and the
general trends established for the lower-order gratings
continue.

For L /A, =50, f= 10 is required. For 10-pm
spheres, this implies nc = 10 particles/cm . For 94-GHz
radiation the required system size is on the order of 50
cm, implying N=1.2X10' .

VI. DISCUSSION AND CONCLUSIONS
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FIG. 14. Intensity of the tenth-harmonic conjugate beam and
the pump wave as a function of g for the case in which bz = 1,
f=0.1, A. =3 cm, and L =50 cm.

is significantly depleted. Thereafter, further increases in
writing beam intensities causes a periodic interchange of
energy between the read beam and the harmonic phase
conjugate wave. Eventually, further increases in writing
beam intensities saturates the mixing coefficient and there
are no further changes in the beam intensities.

Figure 13 depicts the intensity of the third-harmonic
conjugate beam and the pump wave (normalized to the
second pump beam's initial intensity) as a function of g
again for the case in which bs = 1,f=0.01, A. =3 cm, and
L=50 cm. An examination of this figure reveals that
significant diffraction of the second pump or read beam
and creation of the third-harmonic phase conjugate radi-
ation occurs by g =3. For 10-pm-sized metallic spheres,
this occurs when the rrns product of the writing beam in-
tensities is 28.5 W/cm . Note that the beam intensities
undergo fewer oscillations because generation of higher-
order index gratings tends to require more intense write
beams and this in turn translates into the requirement for
larger values of g. Finally, Fig. 14 depicts the intensity of

In this paper we have examined the mechanical, dielec-
tric, and nonlinear-optical response of a translational op-
tornechanical medium to electromagnetic radiation. The
specific medium considered consists of a three-
dirnensional array of dielectric or metal spheres that are
mechanically supported but free to roll on a set of trans-
parent, very thin planes. Such media are of interest for
active optical processes such as wave-mixing applications
in the submillimeter, millimeter, and microwave regions
of the electromagnetic spectrum.

The strong dielectric response of translational op-
tomechanical media to long-wavelength radiation makes
them an interesting class of candidates for active media at
these wavelengths. As discussed in this paper, it is very
difficult to extend four-wave-mixing processes to rni-
crowave or millimeter wavelengths due to the problems
associated with beam intensities and the scaling proper-
ties of the nonlinear susceptibilities. Specifically, the
four-wave-mixing coefficient for optical Kerr media
scales with wavelength as A, . Thus ~L declines by some
nine orders of magnitude if one attempts to scale from
visible to millimeter wavelengths, unless materials with
unusually large nonlinear susceptibilities are available.

In the unsaturated regime, y' ' for artificial Kerr media
scale as the particle volume for a fixed volume fraction of
spheres Thus this nine-orders-of-magnitude deficiency
can be overcome by scaling up the particle sizes from
tenths of a pm to tens of pm. For 10-pm-sized metal
spheres, such as aluminum or copper, the electrical polar-
izability a —+ 10 cm, whereas for 100-pan-sized
spheres, a~10 cm . If the pump power is 1 rnW/cm
and the signal power is 1 nW/cm, the medium will
operate in the unsaturated regime and
y' '~3mfrcl

„

IckT, which for f=10 can be on the
order of 7.85 X 10 esu. Thus these media exhibit a very
strong dielectric response even at low beam powers.

For these materials, saturation is governed by a dimen-
sionless parameter g, which is essentially the ratio of the
electrostrictive energy arising from the interaction of a
given sphere with both the pump and signal beams to the
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thermal energy per particle. For 100-pm-sized metallic
or metal-coated spheres at room temperatures,
g = (I I, )

' 10, so that the medium is saturated even
with mW/cm pump and signal beams. Once the medi-
um is saturated, the size of the nonlinear susceptibility
y' '~3f/4rr, i.e., it is volume fraction limited. If the
volume fraction is 10, then the third-order optical sus-
ceptibility approaches 2.39X 10 esu. This is very large
and ensures efficient phase conjugation even at these in-
credibility low beam powers.

Another feature of translational optomechanical media
that is of interest is the fact that due to the very deep in-
dex gratings that they form in response to moderate radi-
ation intensities, a variety of novel saturation effects are
expected to manifest themselves. For example, for the
saturation case mentioned above, very high-order index
gratings are readily formed. Specifically, index gratings
of order k =g should be excited in an optomechanical ar-
ray by incident radiation.

We investigated the dynamics of individual spheres rol-
ling on a plane from the perspective of the Langevin
equations. Examination of the equations of motion re-
vealed three different dynamic regimes for these particles.
Specifically, (i) a diffusive regime, (ii) an overdamped re-
gime, and (iii) and underdamped regime. Thermal fluc-
tuations will dominate the particle s motion if the elec-
trostrictive force is less than the Langevin force, i.e.,
U((kT. This regime is characteristic of suspension dy-
namics and only for the very smallest particles is stochas-
tic behavior of any consequence. For example, with 40-
pm-sized spheres, stochastic motion typically occurs on a
spatial scale set by several tens of A. For 1-pm-sized
spheres, the spatial scale is on the order of the particle
size. This behavior is to be expected since 1 (t) increases
rapidly with decreasing particle size.

The particle is in the overdamped regime if
r)( 1/Ib„p)' ))( r oK ) and the response time
rR =—Q (15roIbea /3971c ). This can be rewritten as
rtt

' =D'K ( U/kT ), with D' = 15kT/156rrrlro the
translational diffusion coefficient for a sphere moving in a
medium with a viscosity g. This should be contrasted
with suspensions in the driven regime, where the medium
response time ~„'=DK(U/ksT), with D=6rrkT/rori
being the diffusion coefficient for a sphere in a viscous
fluid. Finally, if ri(1/Ib„p)' «(roK), the particle
motion is underdamped. Here the particle motion is
characterized by oscillations, of frequency coo, about the
equilibrium points that decay in amplitude on a time
scale set by P

These results imply that the optical response time of
the medium in the overdamped regime scales as
ri(A/ro) (I,I )

'i . This should be contrasted with a
liquid suspension of microspheres in the diffusive regime
where the optical response time scales as gA ro/kT. Ac-
cordingly, by using 100-pm-sized spheres as opposed to

0
1000-A polystyrene spheres, the medium response is re-
duced by a factor of 10 . Furthermore, the viscosity of
air at normal atmospheric pressure and temperature is
two orders of magnitude smaller than water. Thus,
despite the fact that A for microwaves is four to five or-
ders of magnitude greater than in Askhin's experiments
at argon-ion wavelengths, we anticipate that the medium
response time will be shorter with optomechanical media
than for 1000-A polystyrene spheres. If the beam intensi-
ty is increased so that the system is in the underdamped
regime, it is possible to further reduce the medium
response time. In this regime, the optical response time
is set by 1/P=ro/rj. Thus, greater reductions can be
achieved with large particles.

Our dynamic calculations focused on solving the
differential equations for the motion of a single sphere
under the action of electrostrictive forces, friction, reac-
tion forces from contact with the surface, and Langevin
forces associated with thermal fluctuations. The tran-
sient behavior of the array was obtained by summing
over the motion of each individual sphere which was ini-
tially at rest and randomly placed. Calculations indicat-
ed that the array evolved to a steady-state distribution
that was dictated by Maxwell-Boltzmann statistics. Fur-
thermore, in the overdamped regime, direct comparison
with the Planck-Nernst equation showed that the array
behaved just as a suspension with the same system pa-
rameters of viscosity, laser intensity, dielectric properties,
and sphere size.

In the underdamped regime, the evolution of the array
density displayed transient oscillations, reflecting the
motion of individual spheres that oscillated about the
equilibrium point. In this regime the array achieved
steady state on a time scale set by p '. There does not
appear to be a direct analog to suspension dynamics in
this case, as there are no dynamical equations that are
generally applicable for underdamped motion.

One of our numerical simulations did find a significant
role for thermodynamic fluctuations, as manifested in the
Langevin noise term in the dynamical behavior of isotro-
pic optomechanical media. Specifically, if the array is in-
itially prepared in a state in which all of the particles are
initially at rest and positioned at points of unstable equi-
librium, then thermodynamic fluctuations will serve as a
mechanism for initial grating formation.

Our studies regarding the nonlinear-optical charac-
teristics of these systems for four-wave-mixing processes
indicate that translational optomechanical media are a
promising class of candidates for both phase conjugation
and harmonic phase conjugation at microwave, millime-
ter wave, and submillimeter wavelengths. The large
nonlinear-optical susceptibilities associated with these
translational gratings as well as the reasonable response
times of these media enhance their potential as active op-
tical media for long-wavelength applications.
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