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Quantum theory of optical multistability in a two-photon three-level A-configuration medium
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An effective Hamiltonian for the two-photon two-level model is derived form the microscopic Hamil-

tonian of a three-level atom in a A configuration, interacting through two-photon transitions with a light

field. The effective Hamiltonian includes a term describing the optical Stark shift. With this effective

Hamiltonian, we study the steady-state equation and the squeezing spectrum for a cavity-field mode in-

teracting with an ensemble of three-level "A-configuration" atoms by a two-photon transition. It is

shown that significant changes in the transmission characteristics and the squeezing spectrum for the

output field result from the inclusion of the Stark shift.

PACS number(s): 42.50.Dv, 42.65.Pc

I. INTRODUCTION

The three-level A medium displaying optical tristabili-
ty has been the subject of theoretical [1—4] and experi-
mental [5] studies for a decade and has attracted consid-
erable interest for its possible utility as a squeezed-state
generator [6,7] in recent years. Reid, Walls, and Dalton
[6] pointed out that the three-level A medium is particu-
larly promising for producing squeezed light. It has
many advantages, such as negligible atomic saturation,
substantial reduction in the light intensity, and the atom-
ic density required. Savage and Walls [7] put forward a
model of a single cavity-field mode interacting with an
ensemble of three-level A atoms and employed an
effective Hamiltonian to deal with the two-photon transi-
tions therein. As the optical Stark shift is ignored, the
effective Hamiltonian is exact only for special selections
of the physical parameters [8—10].

From a semiclassical viewpoint, a complete theory for
the two-photon process has been developed by Narducci
et al. [11], which reduces the problem to an effective
two-level model including the Stark shift. Holm and Sar-
gent III [9] took into account the Stark shift arising from
the interaction of the atoms with the classical pump field
in their quantum theory of multiwave mixing. The effect
of the Stark shift on squeezing was found to be approxi-
mately a simple translation of the atomic detuning [12].

In this paper we wish to present a fully quantum-
statistical treatment of two-photon optical multistability
in a A medium, including the optical Stark shift. In Sec.
II, we present a quantum formulation of a modified treat-
ment of Narducci et al. [11]to meet the A configuration,
which leads to an effective Hamiltonian for the two-
photon two-level model. In Sec. III, we use the method
of Haken [13] and Drummond and Walls [14] to derive
our basic equations. The effect of Stark shift on the
steady-state deterministic equation and the multistable
behavior of the transmission curve is discussed in Sec. IV.
We eliminate the atomic variables adiabatically in the
good-cavity limit in Sec. V and derived the linearized
equation for the fluctuation in Sec. VI. Following the
technique of Collett and Gardiner [15] and Collett and

Walls [16], the squeezing spectrum in the output field is

calculated in Sec. VII.

II. DERIVATION OF THE EFFECTIVE HAMILTONIAN

We consider a three-level atom in a A configuration in-

teracting with a light field of frequency co. The energy-
level diagram of the atom is shown in Fig. 1. The two
lower levels labeled ~2) and ~1), separated by energy
A'co2„are coupled to the upper level j~) by a direct dipole
transition. The Hamiltonian of the atom —light-field sys-

tem in the interaction representation is

Ht=ih'[g2e'"*(2)(j ~e "(be '"'+bte'"')

eik x~3 )( 1 ~e
' jl (be

—iut+b'teiut)]+H c

where co;k =co; —cok. b and b are respectively the boson
creation and annihilation operators of the light field. g&

and g2, assumed real without loss of generality, are cou-

pling constants describing the interaction between the
atom and the light field. We assume that co2, is small and

that the field frequency co is far from resonance with co 2

and co &, hence an effective Hamiltonian coupling the two
lower levels via two-photon transitions can be derived.

Taking the diagonal elements of (1) in the coherent-

(2)

floe 2I

FIG. 1. Schematic energy-level diagram for a three-level
atom in a A configuration.
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state representation, we obtain the normally associated
function H (t") corresponding to Hz [17]. This amounts to
replacing the operators b and b in (1) by c numbers a'
and (x.

The atomic-field system obeys the Schrodinger equa-
tion:

For a three-level atom, the state vector ~ti()t) ) can be
expanded as

lg(t) & =c, II &+c, l2)+c) ~j) .

Substituting (1) and (3) into (2), we obtain equations of
motion for the atomic amplitudes c„c2,and c . Follow-
ing the lines of Narducci et al. [11],we eliminate c, with
use of the slowly-varying-amplitude approximation and
the two-photon rotating-wave approximation. Retaining
only the slowly varying terms, we obtain the following
equations of motion for c, and c2 in the A-configuration
case:

—i2k.x
(
a [

2

CO 2 CO
2 2

C1 g2 2 2 C2
COJ2 CO COJ2 CO

lc1 = g1 2 2 C1+g1g2

LC2 =g1g2

C2

(4)

which satisfy probability conservation requirements.
Thus the three-level model is reduced to an effective

two-level model, with HI"' expressed in matrix form

H'"'=AI
g1g2

g1
CO COj1
e'2'" *~a~J2
2 2
J2

g1g2
COJ2 CO

, 2', ,faf'
g:.'-.

J2

With the normal ordering operator [17] operating on
HI"' and introducing atomic spin operators s,s+, and s,
to describe the two-level atom, we obtain the following
effective Hamiltonian:

Hl=kg6b bs,

b 1'b [s
— —i(2k x+ vr/2) + ((2k.x+ vr/2)]

7

~here

(6)

CO .
2

g =g1g2 2
COJ 2 CO

2COj1 2COj2', —g2
COJ 1 CO COJ2 CO

(7)

g is the effective two-photon coupling constant in [7], and
the first term in (6) describes the optical Stark shift. It is
seen that g6 may have the same order of magnitude as g
and must be included.

III. QUANTUM-MECHANICAL EQUATION

Now we consider the N three-level "A-configuration"
atoms in a single-ported optical ring cavity interacting
through two-photon transitions with a cavity mode. The
two-photon transition is modeled by the effective two-
photon Hamiltonian derived in Sec. II. With (6), our
model Hamiltonian is

H =HF+HE+HI+HD,
N

He=fico, btb+ —,)A'co2( g S„'
p=1

Hz =i R(eb "e e'be— ),
N

Hz=hg5 g btbs„'
p=l

—i(2k x +n/2) + i(2k x +m/2)N

p=1
N

H = y (r,s„'+r„s„'+rt s„- )+r,b'+ rt b .
p=1

HF is the free Hamiltonian for the cavity-field mode of
frequency co„and for the lower two levels of the X
atoms. HE accounts for the driving of the cavity by an
external coherent field of amplitude e and frequency coL.

Hz models the two-photon interaction of the cavity mode
with the effective two-photon two-level medium, g and g5
are given in (7), with co replacing by ~L, for the frequency
of the intracavity field is equal to the frequency of the
external driving field in steady states. Thus the Stark
shift included comes from the interaction of the intra-
cavity field with the atoms. HD describes the coupling of
atoms to reservoirs I ~, I „, representing incoherent
pumping, and to the reservoir I"~, representing phase
damping. The final terms couple the field to reservoirs
I z and I z describing dissipation of the field through the
cavity port.

Following the method of Haken [13] and Drummond
and Walls [14], we may derive a master equation for the
density operator p from the Hamiltonian (8), including
various damping and incoherent pumping effects.
Specifically, we included damping of the cavity mode at
rate ~, phase damping of coherence between the lower
levels at rate y, population decay from level ~2) to ~1)
at rate y &, and incoherent population pumping from level

~1) to level ~2) at rate yt.
The master equation for the density operator yields a

Fokker-Planck (FP) equation for the distribution function
P in positive P representation which is valid for a large
number of atoms X. A correspondence between complex
c numbers and system operators is established as follows:

u, a ~~b, b+

—i (2k X +7T/2)
V~~ = gs„e

p=1
(9)

N +i (2k-x +sr/2)V+~~ = g s+e
p=1

N

D~~2$ —2 g s
p=l
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We transform the resulting FP equation with positive-
definite diffusion into stochastic differential equations:

a=@—a(1+ip)a —i5g —a —g( V+ —V)a+1

V= —y~(1+i 5)V i—5ga+a V+ga+aD + I z,
V+ = —yj(1 i 5—}V++i5ga+a V++ga+aD+ I

D = —
y~~(D

—Dp) —2ga+a( V+ V+)+I D,

where

(10)

CO& COL COp ~

fC

and

r~~=rt+ri ri= ,'r~~+-r, Do=r~~ '(rt rt—» .

a+ =@*—~(1—iq))a++i 5g a—++g( V+ —V)a++I
2 a+ '

IV. THE STEADY-STATE DETERMINlSTIC
SOLUTION

Ignoring quantum fluctuations altogether in the first
instance, we obtain the steady-state deterministic equa-
tions (a,+=a,*, V,+= V,"):

g/a f'N

r,(I+is, )11
' ' ll '

(13)
2CXhdY=X 1+ y+ +

X

where C+(gN/2a)(y~~/yj)' is the cavity cooperativity
parameter, n p=( y~tyj)' /2g is the saturation intensity
on resonance, and

+

v'2f '
np Knp

hd=b, +f5X, II=1+, X=1+X +Ad .X
]+Ad

~ is the relaxation rate of the cavity, y~ and
y~~

are the
transverse and longitudinal relaxation rates of the two-
level atoms, respectively, while y~ is the rate of
collision-induced phase decay of the atoms
(yj =yp+y~~/2). In our paper we shall set yj =0 as in

[7].
The r(t)s are 5-function-correlated noise functions

with zero mean. The nonzero correlations of the quan-
tum noise terms are

& I (t)I ~(t') ) =(gaD i5ga V)5(t —t'), —

& I +(t)I +(t') ) =(ga+D+i 5ga+ V+ )5(t t'), —

& I ~(t)r~(t'}) =2ga+aV5(t t'), —

&r (t)I v (t')) =2ga+aV+5(t t'), —

&I' (t)I' (t')) =[y (D+N)+ylN]5(t t'), —
(12)

& rD(t}rD(t') ~

=2[rial(N

) —2ra a( V+ V )]

x 5(t t'), —

&r.(t)r (t')) = —2gaV+5(t —t'),
&r .(t)r, (t')) =2ga+V5(t —t'),

&r,(t)r (t')) = 2y~~V5(t —t'), —

&r, ( )rt, ( ')t) = 2yiiV 5(' t')

Equation (13) clearly demonstrates that Stark shift not
only changes the atomic detuning 5 into a dynamic de-
tuning b,d, but also introduces a term C5/II to give the
true cavity resonance. In other words, Stark shift pro-
vides another nonlinear mechanism which imposes on the
mechanisms of saturation, dispersion and two-photon
Kerr effect [18]. The change of transmission curve
caused by inclusion of Stark shift is shown in Fig. 2. Ow-
ing to the competition of various mechanisms, multi-
stable behavior of the transmission curve is displayed.
The domain boundaries of the multistable behavior for
different 5 in the (p, C) subspace are shown in Fig. 3.
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For later use, it is practical to define a ratio which
gives the relative degree of radiative and collisional
damping f =y~~/2y~.

If Stark shift is ignored (5=0), Eqs. (10) and (12) are
identical with the formulas derived by Savage and Walls
[7]. It is seen that Stark shift brings about changes in
both the drift coefficients and the correlations between
the stochastic forces.

200 400 600

FIG. 2. Transmission curves. The dashed line indicates in-
stability. Parameter values: C =20, 6+ 16, y = —16, and

=1.



7238 0 AND SONGYI ZHENGZHICHENG WANG, WENAN GU 46

20

V. ADIABATIC ELIMINATION
OF ATOMIC VARIABLES

mic variables under the assump-We eliminate the atomic varia
))~ which allows us to set V=tion y~, y~~
&&~, w

10

+a NAi 5aN 2@alg a
211(1+a„)

2 +2NQ++ig a +N 2ig aa Na+ =@*—~(1 iy—}a
y~II(1+bq }

where

iXl Xh„
2IIa 1+Q 2

0
—20 —10 10 gaI ~+

y~(1+ id, q )

gal +

yj(1 i Aq )—

iX Xhd
II ]+&' 2

iX
II 1+g'„2

20 ixr, xa„
2H + 1+5 2

D +

ga I
&

II I+q„Z1—
2

(15)

10 v

y~(1+i b,„) II 1+b, ~~

f the stochastic forces F(t amIThe correlations o
F+(t) are

—20 —10

ndaries of the multistable behaviors in

IV double bistable' V saturatedt d bistable; III, tristable; IV, dou e is
bistable. (a) 5=0.0 and (b) 5=—

(F(t)F(t') ) =~d5(t t'), —

(F+(t )F+(t') ) =xd '5(t t '), —

(F(t)F+(t')) =aA5(t —t'),
(,F+(t)F(t') ) =IrA5(t —t'),

where

(16}

1—2CX if5X
(1+ib.q )II I +i b,„

iX X~d 5 2i CX~ ~ X~d +—
1+5 2 (1 i—)11 1+A„

2

+Re .
(1+tbq) II

2CX f iX Xhd

ih„) II 11 1+6,
1+

2 2

2

2
1 ix+ +—(1—f) 1+—+2f 1+

1+Ed

1
' iix +—(1 f} 1+—+2f —1+

1+a'd

8iCX f
1+5 d

(17a)
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and

A= —Re(d) . (17b)

where

5a
e(t)5a+

(19)
VI. LINEARIZED THEORY OF FLUCTUATIONS

The effect of fluctuations is estimated by linearizing
(14) about the steady-state solutions a„V„and D, of Eq.
(13). Writing a=a, +5a, we obtain the following equa-
tion describing to first order the fluctuations: and

(E;(t4,(t') ) =5+(t —t'),
a b d A

A=]c ~, , D =sc
Ib' a

5a= —A5a+D' e(t), (18) 2CXb, z
a =]+i q+ + +b,

rr

[(bq —5X)(1+hbq)+X(5f Xb )] .—
X

(20)
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F&G. 4. V(X&,0) vs driving strength Y. 5=16 (solid line),
6=32 (dashed line). Other parameters as for Fig. 2. (a) 6==0.0
and (b) 5= —0.2. LB, MB, and UB denote lowest branch, mid-
dle branch, and upmost branch, respectively.

FIG. 5. (a) V(X&,0) vs p and (b) V(X&,0) vs A. Solid,
dashed, and dash-dotted line correspond to 6= —0.2, 0.0, and
0.2, respectively. Other parameters as for Fig. 2 except X =0.3.
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A and d are given in (17).
This procedure of assuming small fluctuation about a

steady-state deterministic solution is only consistent if the
deterministic solution 0., is stable, i.e., if the eigenvalues
of the matrix A have positive real parts. The stability
criteria are:

Tr( A)=2~0,
det( A) )0 .

One can easily verify that

det( A) = dF

(2 la)

(21b)

(22)

Criterion (21a) is always satisfied, so the stability is
only determined by the slope of transmission curve, as
shown in Fig. 2.

VII. SQUEEZING SPECTRUM
IN THE OUTPUT FIELD

Of particular interest to us is the field transmitted
through the cavity port. Using the techniques developed
by Collett and Gardiner [15] and Collett and Walls [16],
we calculate the squeezing spectrum for the output field
from the linearized drift and diffusion coefficients.

The squeezing spectrum is defined as

V(Xs, co) = f e' '(Xs(r +r),Xs(t) )dr, (23)

where Xs(t)=a,„,(t)e ' +a,„,(t)e' is the quadrature
phase amplitude of the output field in which we seek
squeezing and the angle 0 specifies the particular quadra-
ture of interest.

The squeezing spectrum can be calculated from the co-

(a) (a)
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0.0
10 20 30
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20 40

FIG. 6. (a) V(Xq, 0) vs y and (b) V(Xq, 0) vs A. Parameters
as for Fig. 5 except X = 10.

FIG. 7. (a) V(X6,0) vs y and (b) V(X&,0) vs h. Parameters
as for Fig. 5 except X =50.



46 QUANTUM THEORY OF OPTICAL MULTISTABILITY IN A. . . 7241

V(Xo, co) = 1+2a[S,2(co)+Sz, (co)—2~S„(co)
~ ], (25)

where S; is the element of the covariance spectrum ma-

trix S(co) which can be calculated from drift and diffusion

matrix, as follows:

S(co)=( A+icoI) 'D( A +icoI) (26)

It is a straightforward numerical task to calculate the
squeezing using the above equations. Figures 4(a) and
4(b) are the zero-frequency component of squeezing
V(Xo, 0) plotted against the strength Y of the driving
field, for the lowest branch (LB), middle branch (MB),
and the upmost branch (UB) in the tristability. In con-
trast with a medium with ":--configuration" atoms,
squeezing is also found in the upmost branch, due to the

variance spectrum S(co) in the stationary state:

V(Xo, co) = I+2tc[S|2(co)+S2,(co)

+e 'eS„(co)+e ' Sz~(co)] . (24)

Choosing 0 to maximize the squeezing for given m, we
find

absence of spontaneous emission. Good squeezing is
found at the turning point of the lowest branch, while
perfect squeezing is found at the turning point of the
middle branch. But the regimes where good squeezing
can be found in both cases are rather narrow, only limit-
ed at the turning points. Optical Stark shift changes both
the turning points and the squeezing depth significantly.

Figures 5(a) and 5(b) exhibit the squeezing versus cavi-
ty detuning g and atomic detuning 6 in the limit of low
intensities. We see from Fig. 5(a) that the apparent effect
of Stark shift is simply to translate the curve. This can be
explained by noting that in this limit 6d =6 and the only
significant change in the drift and diffusion coefficient is a
change from y to y+C5. On the contrary, the curve of
V(X&,0) vs b is by no means a simple translation with 5.

Figures 6(a), 6(b), 7(a), and 7(b) are plots of V(X&,0) vs

q and 6 in the middle- and high-intensity regimes, which
show more complicated variations.
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