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Recently, a technique [M. Edwards, Phys. Rev. A 45, 409 (1992)] was presented for calculating
multiphoton-ionization Green's functions based on the Wentzel-Kramers-Brillouin (WKB) approxima-
tion. In that paper it was shown that the ability of this method to produce accurate cross sections and
angular distributions depended critically on the single-particle potential for the valence electron that was
used in the calculation. In this work we present a supporting technique for determining the optimal po-
tential for use with this method in low-Z alkali-metal atoms. The technique produces the parameter
values for a parametric model potential whose WKB Green's function has poles that coincide with the
measured energy levels of the atom. We have determined the parameter values for a specific model po-
tential in Li and Na. For these cases, only two parameters are needed to produce a potential whose
WKB energy levels match all of the measured ones to within 165 cm '. We have calculated cross sec-
tions for two-photon ionization of Li and Na for a range of laser-photon energies using this model poten-
tial and present comparisons with previous work.

PACS number(s): 32.80.Rm, 42.50.Hz

I. INTRODUCTION

Although lowest-order perturbation theory (LOFT) is
not valid for the type of multiphoton processes that have
been the main focus of research for the past several years
(e.g. , multiphoton ionization with ultrahigh-intensity, ul-
trashort pulsed lasers), its importance has not diminished.
Non-perturbative dynamical models of these processes
usually include atomic parameters such as n-photon Rabi
frequencies and ac-Stark shifts [2]. The quantitative and
even qualitative predictions of such dynamical models are
often sensitive to the actual values of these quantities.
And since they are many times calculated perturbatively,
LOPT continues to play a role in these models.

The LOPT expression for multiphoton-ionization cross
sections and angular distributions (as well as the atomic
parameters mentioned above) generally take the form of
sums over complete sets of atomic states divided by
energy-level differences. These cross sections exhibit a
rapidly varying dependence on the energy of the laser
photon. The value of the cross section near a minimum
depends sensitively on all terms in the summation and
also on the accuracy of the wave functions used.

The practical problem of extracting numerical values
from such expressions generally divides into two parts.
First, accurate atomic wave functions are required; and
second, a method for performing the infinite summations
over the complete set of atomic sets (both bound and con-
tinuum) is needed. Many of the methods used in the past
have balanced these two requirements.

Other methods have included the truncated-
summation method [3], the Dalgarno-Lewis technique
[4], and the Green's-function method [5]. In the
Green's-function method, the summation is converted to
an N-dimensional integral (where N is the order of the
multiphoton process) with the Green's functions replac-

ing the infinite summations. This method has the advan-
tage of accounting for the entire sum, both the bound and
continuum parts. Evaluation of the Green's function was
initially done only for cases in which the atomic wave
functions were known exactly [6] or within the frame-
work of quantum defect theory [7].

Recently a method for approximating the Green's
functions based on the WKB method was introduced [I].
In that work it was shown that all of the functions ap-
pearing in the integrand of the N-photon radial matrix
element needed for calculating cross sections and angular
distributions satisfied a differential equation of the same
form. The solutions of differential equations of that form
could be approximated using the WKB method. This al-
lowed all of the functions appearing in the matrix ele-
ment to be uniformly approximated.

The WKB method has an important advantage over
the single-channel quantum defect theory (QDT) method
for this type of calculation. The WKB method wave
functions behave correctly near the origin. The QDT
continuum state wave function, however, diverges in this
region requiring that a cutoff function be inserted so that
the N-photon radial matrix element will not diverge.
Also, if the region near the origin contributes appreciably
to the matrix element, the accuracy of the QDT result
will be degraded. This does not appear to necessarily be
the case with the WKB method.

Although the WKB Green's-function method has been
applied to the calculation of multiphoton-ionization cross
sections, it is in principle applicable to any expression
that has the form of sums of matrix elements divided by
energy-level differences, provided that the summations
extend over a complete set of states. Sums of this form
occur in the general Rayleigh-Schrodinger perturbation
expansion. This indicates that the method can be used to
calculate a wide range of quantities.
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As was noted in the previous paper [1] (hereinafter re-
ferred to as ME), the potential used for the outermost
electron is of critical importance in the performance of
the WKB method in alkali-meta1 atoms. In order to ob-
tain accurate estimates of multiphoton-ionization cross
sections with this method, the poles of the WKB Green's
function must be positioned correctly. Therefore a tech-
nique for the determination of such a potential represents
a critical element in the overall procedure. A candidate
technique is presented in this paper.

In Sec. II we present the condition that determines the
positions of the poles of the WKB-approximate Green's
function. Then we describe a general technique for deter-
mining the values of the parameters in a parametric
single-electron model potential. No specific mathemati-
cal form is assumed for the model potential in the general
technique. In Sec. III this technique is applied to Li and
Na for a particular model potential. In Sec. IV we
present two-photon ionizations cross sections in Li and
Na where we have used the previously determined model
potential and then compare these cross sections with pre-
vious calculations.

II. GENERAL TECHNIQUE

A. WKB Green's-function method

Xriu (ri )

the N-photon radial matrix element of LOFT. In the
above equation v„=(E„,1„),E„=ED+nA'e3 (Eo is the en-

ergy of the initial atomic state), co is the laser-photon fre-
quency, and l„ is the angular momentum of the set of in-

termediate states reached by the absorption of n photons.
The quantities u (r) and u„(r) are the radial parts of

0

the final continuum- and initial-state wave functions, re-
spectively. The factor g (r, r') is the radial Green's func-
tion which may be written as [1]

g (r, r')= 2nR, (r —
& )I,(r& ) . (2)

The basic quantity that must be calculated in estimat-
ing multiphoton-ionization cross sections and angular
distributions is [8]

M„.. . „—f dr~ ' ' f dr)u (rN)r~

Xg„(rN, rN 1) ' ' '

where the function U(r) is the full potential energy of the
electron.

The WKB method can then be applied to Eq. (3). The
WKB general solution has different forms for different in-
tervals of the radial coordinate r. The end points of these
intervals are roughly determined by the positions of the
turning points of the classical motion of an electron hav-

ing a potential energy U(r) So. lutions in regions far from
the turning points are called "proper solutions" and are
given by the standard WKB approximation solutions [9].
Solutions valid near a turning point are called "local solu-
tions. "These solutions are determined by approximating
the effective potential energy [U(r)+1(l +1)/2r ] near
the turning point to first order in r (linear turning points)
and solving the approximate differential equation.

The typical turning point structure of electron poten-
tials in low-Z alkali-metal atoms consists of two "well-
spaced, " linear turning points. Turning points are
termed "well-spaced" when their separation is larger
than or comparable to the size of the region of validity of
the local solutions.

Approximations for the specific functions appearing in

Eq. (1) from the WKB general solutions are obtained by
imposing continuity boundary conditions between adjoin-
ing proper and local solutions and by imposing specific
boundary conditions for each function at r =0 and ao.
Such solutions were obtained for two well-spaced, linear
turning points (E &0) and for one linear turning point
(E )0) in ME.

The WKB solutions for E (0 where there are two
turning points consist of different forms in each of five re-
gions of the radial coordinate. Two of the five regions
surround the turning points (the region around the inner
turning point is labeled A and that around the outer turn-
ing point is labeled B) and the local solutions are valid in
these regions. The other three regions are those in which
the proper solutions are valid. They are labeled I for r
smaller than the inner turning point, II for r between the
turning points, and III for r greater than the outer turn-
ing point.

B. Positions of the WKB Green's-function poles

As a result of boundary condition matching, the WKB
Green's-function regular part [R (r)] and irregular part
[I (r) ] are given by [1],for E & 0,

As noted in ME, all of the functions appearing in the
integrand of Eq. (1), u„(r), u (r), R (r), and I„(r),

N 0

satisfy a differential equation of the form

2/m. '"eR'"(r)= ~C (r)) ' exp[ —)w„(r)~], (5)
4 cos(a„)

(E H„)4„=0, — (3) I '(r) =(2/m )' e 'cos(a„)~C„(r) ~ exp[ ~w, (r)
~ ],

where v=(E, 1). We use atomic units throughout the rest
of this paper except as explicitly noted. The radial Ham-
iltonian 0 has the form

1 d l(1+1) ++U r),
2 dr 2r

R' '(r)= [w„(r)/C„(r)]'4cos ~/6 cos a

X[J)/3( w(r)) J+&&3(w„(r))],
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1(A) (r)—
e "[w,(r)/C, (r)]' '

cos(vr/6)

X sin a ——J,/3(w (r))

2K+sin a,— J,/3(w (r))
3

(2/n. )' eg (II)
( &)—

~
C„(r)

~

' cos w, (r) ——
2 cos(a„) " ' 4

(8)

In the above equations, ro and r, are the inner and
outer turning points associated with U(r) and the energy
E. Also w'„'(r) is a special case of w„(r) given in Eq. (16)
where U(r') is replaced by the Coulomb potential energy.

By examining Eqs. (5)—(14) it is easy to find the condi-
tion that determines the positions of the poles of the
WKB Green's function. Note that, for all values of r ex-
cept in region III, R„(r) is inversely proportional to
cos(a„) while I (r) is directly proportional to this quanti-

ty only in region I. Thus at values of E for which cos(a„)
is equal to zero the WKB Green's function will diverge.

This condition on E can be written as
(9)

I„'"'(r)= (2/m )'/ e '~ C,(r) ~

'/ cos w, (r) a,+ ——

e "[w' (r)/C„(r)]'/'
Z',"(r)=

2 cos(~/6)cos(a, )

X sin a,——J,/3(w', (r))

2K+sin a,— J,/3(w„'(r))

(B)
e '[w'„(r)/C„(r)]' '

2 cos(m. /6)

X[J)/3(w„'(r))+J &/3(w', (r))], (12)

g (III)(p.) 1(2/~)1/2e —™/4~C (p)
~

1/2

X exp
~

w'„(r)
~

i 0„———

+exp —~w'„(r)~+i 0„—— (13)

(l+ —,')
C,(r) =2 'E — U(r)+

2f'
(15)

I""(r)=—,'(2/m)' e '[C„(r)
(

' exp[ —[w'„(r) [], (14)

where

7l

a,= C„(r')dr' = (n '+ —,
'

)m =(n —1 —
—,
' )n, (21)

where n' is the number of nodes in the radial wave func-
tion and n and l are the usual principal and angular
momentum quantum numbers, respectively. This is pre-
cisely the well-known [9] condition that determines the
energy levels of bound states of U(r) under the WKB ap-
proximation for the case of two linear, well-spaced turn-

ing points. Thus we have the intuitive result that the
poles of the WKB Green's function occur at the positions
of the WKB energy levels.

These poles also correspond to the positions of the res-
onances in the N-photon ionizations cross section. The
N-photon radial matrix element given in Eq. (1) contains
N-1 Green's functions g„(r,r'). The nth of these func-
tions represents the intermediate summation associated
with the absorption of the nth photon. This Green's
function is evaluated at an energy E„=ED+neo, where ~
is the energy of the laser photon. When the laser is tuned
so that E„coincides with one of the energies determined
by Eq. (21), the N-photon radial matrix element (and
hence the cross section) diverges. This is manifested as a
LOPT cross-section resonance.

Since multiphoton-ionization cross sections vary rapid-
ly with photon energy, it is important that the poles of
the WKB Green's function be correctly positioned. As
seen above, this will occur if the WKB bound-state ener-

gy levels coincide with the measured levels. It is possible
to develop a numerical technique based on Eq. (21) whose
WKB bound-state energy levels are equal to the mea-
sured ones. Such a technique is presented below.

C. Technique
for determining model potential parameter values

w (r) =f "C,(r')dr',
0
7l

w'„(r)= f C (r')dr',
7

(16)

(17)

(18)

The general method for determining the parameter
values in a parametric model potential may be formulated
without reference to any specific mathematical form for
the potential. We assume that the electron potential en-

ergy U(r) depends on M fitting parameters,

o = lim w' (r)+ —— kr —,'la+ —ln(2kr )—1 U(r, x, , x2, . . . , x~)=U(r, x}, (22)

(19)

a„=f C„(r'}dr', (20)

and k =(2E)'/ The functions J+, /3. (x) are Bessel func-
tions of order +—,'.

where x is a column vector whose elements are the fitting
parameters

(23)
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Here M is the number of energy levels we wish to fit. We
denote these levels E„'I,E„"I,. . . , E„"I . For produc-11 22 MM
ing accurate multiphoton-ionization cross sections, it is
essential that one of these levels be the ground state.

To obtain the equations that determine the values of
the fitting parameters, xk, we insert each experimental
energy level into the integral in Eq. (21) to get

(l;+—')'
f, (E„'/I. , n, , l, ,x) =f— '2 E„I'/' — U(r, x)+

2T
dr (n; ——l; ——,

'
)m =0, (24)

(l;+ —,')
E„'I — U(ro ")+

I l 2T
=0 (25)

and

where i =1, . . . , M. The turning points ro and r& are
themselves functions of E„'I, l, , and x and are determined

I

by the following conditions:

that requires an initial estimate, xo, to converge to a solu-
tion. The (n+1)th approximation to the solution is ex-
pressed in terms of the nth approximation by the follow-
ing equation:

x„+,=x„A'—(x„)f(x„), (27)

where f(x) is a vector whose elements are the

f, (E„'/I, n;, 1;,x),
(l;+—,

' )'
E„'// — U(r~, x)+

zI l 2T 1

=0. (26)

f(x)= (28)
Note that there is a different pair of turning points for
each experimental energy.

The condition that all of the functions f; equal zero
constitutes a set of M nonlinear equations that deter-
mines the parameters x„x2, . . . , x~. In general, these
equations must be solved numerically. We have chosen
the well-known Newton-Raphson method [10] for their
solution.

The Newton-Raphson algorithm is an iterative method
I

fear«", / &I lM»

A; (x„)= af,
Bx

(29)

The partial derivative can be written as

The quantity A is the matrix of partial derivatives of f(x)
given by

Bf;

BXJ
'2 E„'/ — U(r, x)+

r, ()X.J 2T

—1/2

(30)

since the integrand of Eq. (24) vanishes at both ro and r
&

For the purpose of calculating multiphoton-ionization
cross sections for a restricted range of laser-photon ener-
gies, it is possible to fit only a few energy levels to pro-
duce satisfactory results. These levels could be the
ground state and only those levels that are scanned across
in the energy range of interest. For a high-order multi-
photon process, the number of resonances in the range
can become large. Fitting this many levels such that the
poles of the WKB Green's function are very accurately
positioned using the above technique becomes a highly
numeric-intensive task.

For low-Z alkali-metal atoms, however, it is possible to
fit all of the tabulated energy levels with reasonable accu-
racy using only two fitting parameters. In the next sec-
tion, we apply the above procedure to fit the lowest two
levels of I.i and Na. %'e also illustrate with this example
that reasonable initial estimates for the fitting parameters
may be obtained if the physical meanings of these param-
eters are known. If these estimates are not sufficiently
close to the actual solutions, the iterative Newton-
Raphson method may not converge.

III. TWO-PARAMETER FITS FOR Li AND Na

where

LkL

Z,~(r, )=xZ —g (32)
, I 1 +exp[ x~/, , ( r —x ~/, }]—}

This model potential imitates the shell structure of the
atom. The function Z,/r(r, x) is the screening function for
the valence electron. The core electrons are divided into
L shells where the kth shell contains Lk electrons and is
located at an average radius x2k from the nucleus. The
shell is assumed to have a spherical shape whose radial
thickness is roughly equal to the reciprocal of the sharp-
ness parameter x2k, . The total number of electrons in
the core must be gk &Lk=Z —1 where Z is the atomic
number of the atom. This ensures that U(r, x} behaves

We have chosen a screened Coulomb parametric model
potential

Z,fr(r, x)
U(r, x)=—
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( r )„,= [3n 1 (
—I +1)],

nl

(34)

where Z„& is obtained by assuming that shells closer to
the nucleus than nl completely screen the nuclear charge.
For Li there is indeed only one shell in the core, thus
Z =Z=3. This makes (r)„= x=20. 5 a.u. For Na1s

the initial distance parameter used was the average dis-
tance of the middle core shell (2s) assuming that the 2s
electrons are fully screened by the 1s shell so that Z„ in

Eq. (34) is 9 instead of 11. Thus (r)2, =x2=0.67 a.u.
The functions f, (E„&,n;, l;,x ) vary much less rapidly

I

when the sharpness parameter (xi ) changes than when
the average distance parameter (x2) is varied. Thus we
have used 4.0 for the initial estimate in all cases. This
makes the radial thickness of the shell roughly 0.25 a.u.
The convergence or nonconvergence of the Newton-
Raphson procedure is relatively insensitive to this choice.

We have used this model potential to fit the 2s, &2 and

2p, &2 levels of Li and the 3s, z, and 3p, &2 levels of Na
[11]. The values of the fitted parameters along with the
final values of the f; are given in Table I.

The model potentials produced by these fits have WKB
energy-level spectra that agree quite well with a11 of the
measured levels. Once the parameters in U(r, x) have
been determined, the positions of the WKB energy levels

for other nl values may be calculated by a Newton-
Raphson method similar to that described above. Table
II presents a comparison of the lowest 20 WKB energy

TABLE I. This table presents the results of fitting the model

potential of Eqs. (31) and (33) to the two lowest levels of Li and

Na. The second and third columns contain the final fitting pa-
rameter values x, and x2 in a.u. for each atom. These parame-
ters were determined by varying these parameters so that the
functions defined in Eq. (24) were simultaneously zero. The lev-

el label and the final value of each function are given in the
fourth and fifth columns. In the fifth column, the quantities in

square brackets indicate the power of 10 by which the number

preceding the brackets is multiplied.

correctly as r ~~.
There are many ways to partition the core electrons for

use with this model potential. We have chosen the sim-
plest possible partition: one shell containing Z —1 elec-
trons. This reduces the number of parameters to two.
The screening function then has the form

(Z —1)Z (r,x,x )=Z—
t 1+exp[ —xi(r —xz)] I

(33)

To obtain initial estimates for the parameters x, and
x for Li we assumed that both 1s core electrons were ex-X2
posed to the full nuclear Coulomb potential. Their aver-
age distance from the nucleus is then given by [12]

levels with their measured values for both Li and Na.
We find that the largest difference occurs in the np series
of levels for both atoms. The maximum difference for
any two levels is 165 cm '. For all but three levels the
difference is less than 50 cm

IV. CROSS-SECTION RESULTS
FOR Li AND Na

As a test of the usefulness of these model potentials for
Li and Na, we have calculated two-photon ionization
cross sections for these atoms for the case of linearly po-
larized laser light using the WKB Green's-function
method. The two-photon radial integrals were calculated
by a method identical to that described in ME. We
briefly describe that method here.

For linearly polarized light, the two-photon ionization
cross section can be written as [1]

1Q-45

E
1Q-46z0
1O-47-

0
U
F4 10-48

z0
10-49-

0
10-50-z0

0
1p-51

0

2.6 2.8 3.2 3.4 3.6 3.8

PHOTON ENERGY (eV)

I

4.2 4.4 4.6

1p-38

E

10-410

104
Ch0
V

1p 47

N

0 1O

z0
10 53x

C4

0

(35)

The quantities M' ' and M', ', , are the two-photon
20 1 0 2210

Atom
Xl

(length a.u. )

X2

(length a.u. ) nl

10-56
2.4 2.6

I

2.8
I

3.2
t

3.4 3.6

PHOTON ENERGY (eV)

3.8 4.2

Li

Na

3.443 71

4.434 15

0.435 86

0.400 36

2$

2p
3$

3p

+ 5.3[—6]
—1.8[ —6]
—7.7[ —6]
—3.7[ —5]

FIG. 1. (a) A plot of the two-photon ionization cross section
around the 3p resonance of Li vs photon energy. (b) A similar

plot for Na around the 4p resonance. The points marked with a
x are the results of Ref. [13].
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radial matrix elements that represent the two angular
momentum pathways from the initial s bound state to the
s and d partial wave continuum states, respectively. Each
of these double integrals was written in the form of two
integrals that could be converted into a system of
differential equations. The differential systems were then
evaluated numerically using a fourth-order Runge-Kutta
algorithm. This method has been described in detail in a
previous work [8].

For Li, two-photon ionization cross sections were cal-
culated for photon energies ranging from 2.6 to 4.6 eV.

This range of energies scans across the 3p resonance of
Li. For Na, cross sections were calculated in a range of
energies between 2.4 and 4.2 eV. This range scans across
the 4p resonance of Na. The results are presented in
Figs. 1(a) for Li and 1(b) for Na.

We have chosen these ranges so that the results can be
compared with those of Mizuno [13], who published
cross-section results in tabular rather than graphical
form. These points are marked with an x in Fig. 1 and
were calculated by the Dalgarno-Lewis technique using a
single-electron potential due to Bottcher [14]. The cross

TABLE II. This table presents a comparison of the lowest 20 WKB-approximate energy levels with
the measured levels of Ref. [11] for a Li and (b) Na. The fourth column lists the difference between
these two numbers. The first two levels listed were used to determine the values of the model parame-
ters. Note that, for fixed angular momentum, the difference between levels of higher n decreases.

nl

2$

2p
3$

3p
3d
4s
4p
4d
4f
Ss

5p
5d
Sf
6s
6p
6d
7$

7p
7d
8s

E„I (Moore's tables)
(cm ')

00000.0
14 903.66
27 206.12
30 925.38
31 283.08
35 012.06
36 469.55
36 623.38
36 630.20
38 299.50
39 015.56
39 094.93
39 104.50
39 987.64
40 390.84
40 437.31
40 967.90
41 217.35
41 246.50
41 587.10

Eni (WKB)
(cm ')

(a) Li
—0.09

14 903.68
27 219.81
30 760.26
31 294.14
35 017.75
36 383.06
36 628.57
36 628.60
38 302.25
38 968.00
39 097.66
39 097.70
39 989.14
40 362.78
40438.91
40 968.92
41 199.32
41 247.63
41 588.02

E„I (Moore's tables)-E„I (WKB)
(cm ')

+0.09 (fitted)
—0.02 (fitted)

—13.69
+ 165.12
—11.06
—5.69

+86.49
—5.19
+ 1.60
—2.75

+47.56
—2.73
+6.80
—1.50

+28.06
—1.60
—1.02

+ 18.03
—1.13
—0.92

3$

3p
4s
3d
4p
5s
4d
4f
Sp
6s
5d
Sf
Sg
6p
7$
6d
6f
6h

7p
8s

00000.0
16956.18
25 739.86
29 172.86
30 266.88
33 200.70
34 548.75
34 588.60
35 040.27
36 372.65
37 036.78
37 057.60
37 060.20
37 296.51
38 012.07
38 387.29
38 400.10
38 403.40
38 540.40
38 968.35

(b) Na
0.13

16 956.45
25 723.93
29 256.61
30 143.93
33 192.58
34 591.06
34 591.07
34 971.19
36 368.38
37 060.15
37 060.16
37 060.16
37 256.68
38 009.64
38 401.38
38 401.39
38 401.39
38 515.86
38 967.07

—0.13 (fitted)
—0.27 (fitted)

+ 15.93
—83.75

+ 122.95
+8.12

—42.31
—2.47

+69.08
+4.27

—23.37
—2.56
+0.04

+39.83
+2.43

—14.09
—1.29
+2.01

+24.54
+ 1.28
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sections have also been calculated by McGuire [15]where
good agreement with Minzuno was obtained. Figure 1

shows that for both Li and Na the agreement between the
present work and that of Mizuno is quite good. The posi-
tions of the resonances and the antiresonances in both
graphs are o6'set by no more than 0.1 eV from those of
Mizuno.

In conclusion, we showed that the poles of the WKB
Green's function coincide with the WKB energy-level po-
sitions and presented a general technique for determining
the parameter values for a parametric model potential
whose WKB energy levels match the measured values.
We also applied this technique for a specific model poten-
tial for the valence electrons of Li and Na. We found
that, using only two parameters, all of the measured ener-

gy levels for these atoms could be fitted to within 165
cm '. We then used this model potential in the calcula-
tion of two-photon ionization cross sections in these
atoms. We obtained good agreement with previous cal-
culations of the same cross sections.

The technique of using the WKB energy-level condi-
tions to determine the values of parameters in the model

potential is an integral part of the WKB Green's-function
method. We have shown above that it is possible in some
cases to reproduce an entire energy-level spectrum with a
very few model parameters. Thus, unless tighter accura-
cy constraints are imposed on the Green's function, no
further model potential fitting is required for such a case.
If such accuracy is needed, it is possible to fit particular
energy levels.

We have also seen that the resulting Green's function
produces good results for cross sections. Thus it seems
that the WKB Green's-function method, as described in
this paper and in ME, promises to be a useful technique
for the calculation of a wide range of quantities. Further
study is needed, however, for refining the fitting tech-
nique described in this paper and also for extending and
applying the method to other cases.
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