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Collective collapses and revivals in spontaneous emission of a partially inverted system
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Applying a perturbation method, constructed in terms of SU(2) group representations, we study spon-
taneous emission of a system of N identical two-level atoms immersed in a single-mode ideal cavity with
s atoms initially inverted. For the cases s ) 3, characterized by nonequidistant spectra of the eigenvalues
of the Hamiltonian, the phenomenon of collective collapses and revivals manifests itself. For s =3 the
approximate solution is compared with the exact one and the limit of good applicability of our method is
established.

PACS number(s): 32.80.—t, 42.50.Fx

I. INTRODUCTION

Since the fundamental paper of Dicke [1] on collective
spontaneous emission, a considerable amount of increas-
ing interest has been paid to an assembly of N two-level
atoms located within a distance much smaller than the
radiation wavelength. Such a system has commonly been
referred to as the Dicke model. The recent experimental
achievements [2,3] in realization of the Jaynes-Cummings
model encourage further intensive investigations, among
others of the Dicke model. The condition of a high-Q
cavity requires the Rabi frequency to be much greater
than the cavity-damping factor which is inversely propor-
tional to the time that radiation is stored in the cavity.
One of the ways of increasing the Rabi frequency is to in-
crease the number of atoms interacting with the cavity
field [4]. The Dicke model with a part of the atoms in-

verted is promising in this respect. Namely, for a given N
the Rabi frequencies increase as the number of the initial-
ly excited atoms s decreases [5].

In many papers [6—9], the problem of the interactions
of a system of N two-level atoms with a single field mode
has been dealt with numerically. Tavis and Cummings
[6] have found the eigenstates for such systems. Walls
and Barakat [7] have shown that, if but a small number s
of atoms from the system of X atoms is initially excited,
the spectrum of the eigenvalues of the Harniltonian is al-
most equidistant. Butler and Drummond [8] have stud-
ied the effect of the collectivity of the system on the mag-
nitude of squeezing compared to the Jaynes-Cummings
model. In turn, Li et al. [9] have discussed in the same

way the problem of higher-order squeezing.
Bonifacio and Preparata [10] and Kumar and Mehta

[11]have proposed approximate solutions to the problem
of spontaneous emission from partially inverted systems
in terms of elliptic functions. Cummings and Dorri [12]
and Seke [13] have solved exactly the problem of spon-
taneous emission from a system of N two-level atoms in a
cavity with only one atom initially inverted. Cummings
and Dorri [12] have considered nonsymmetrical initial
excitation of the atomic system while Seke [13] has per-
formed calculations for symmetrical initial excitation.
The effect of the symmetry properties of the initial state
and of the spatial distribution of atoms on the collective
emission rate has been discussed by Crubellier et al. [14]
and Buzek [15].

Senitzky [16] analytically and Abate and Haken [17]
numerically have revealed the effect of cooperative inhibi-
tion of radiation. According to them, total deexcitation
of the initially inverted system is impossible. This prob-
lern was studied later by many authors, such as by Stroud
et al. [18]and Cummings [19]among others.

With respect to the experimental realization of
photon-number states [2,3,20], the problem of the radia-
tion effects caused by the presence of such fields has al-
ready been examined as well. Seke and Rattay [21] stud-
ied numerically induced emission in the presence of a
Fock-state field for different cavity dampings. They have
shown, among others, that the initially inverted system of
N two-level atoms coupled to the Fock field will exhibit
quasiperiodic collapses and revivals. The influence of the
photon-number state field on the radiatively decaying

46 7220 1992 The American Physical Society



46 COLLECTIVE COLLAPSES AND REVIVALS IN SPONTANEOUS. . . 7221

atomic system has also been discussed by Hassan, Bul-
lough, and Puri [22].

Here, we are interested in spontaneous emission by a
system of X two-level atoms placed in a lossless cavity.
In fact, the approach used in this paper describes very
well the process when only a part s [s & (N +4)/4] of the
N atoms radiates spontaneously in the presence of N —s
unexcited atoms. In our previous paper [5] we restricted
the time evolution of the system to the purely harmonic
terms; i.e., we neglected the anharmonic corrections to
the eigenfrequencies for s 3. Such an approximation is
valid even for long times, albeit for s very small in com-
parison with X. The anharmonic corrections to the
eigenfrequencies are responsible for the spread in the
Rabi frequencies resulting in modulation of the oscilla-
tions. Here, it is our aim to present the time evolution of
the system with these anharmonic corrections. A
phenomenon of collective collapses and revivals, mani-
festing itself significantly for s (X is found. Moreover,
we present the exact solution for s=3 and compare it
with the approximate one.

II. THEORY

We discuss a system of N identical two-level atoms
coupled to a single-mode quantized radiation field in an
ideal cavity and assume a small-sample approximation.
Thus the linear dimensions of the atomic system are
much smaller than the wavelength A, of the radiation and
all the atoms are treated as occupying equivalent mode
positions, i.e., we deal with a field invariant throughout
the sample. However, the wave functions of the atoms
are not supposed to overlap. The cooperative nature of
the spontaneous emission from the system is then due to
indirect atom-atom coupling via the field only. The
above satisfies most of the requirements of the Dicke
model. Such a model is realized in experiments with

JV=a a+ g S,'+—
1

2
(2)

commutes with the Hamiltonian (1), i.e., is an integral of
motion. We take its eigenstates is, m ) as the basis vec-
tors:

is, m &=is —m &. eim &f, O&m &s, (3)

where im)f denotes the Fock state of the field and
is —m ), is the normalized symmetric Dicke state of the
atomic subsystem with s —m atoms excited:

Rydberg atoms the transition wavelength of which is of
the order of millimeters. It is then possible to prepare a
sample of many atoms ("dilute gas") with negligible in-
teratomic interactions in a volume small compared to A,

[23].
The electric-dipole Hamiltonian in the rotating-wave

approximation for the system in question is (A'= 1)

Hfree + Vint

N

Hr„, =era a+cof g Si~, (1)
j=1

N

V;„, =gV, V= g (a SJ +aSi+),
j=1

where a (a) is the photon creation (annihilation) opera-
tor and Sj Sj, and S are pseudospin lowering, raising,
and inversion operators of the jth atom, respectively. cof
denotes the frequency of the field mode while co is the
atomic transition frequency. In what follows, we assume
exact resonance and choose the scale in such a way that
co=mf =1. With respect to the small-sample approxima-
tion the coupling coefficient g is the same for all the
atoms.

The excitation number operator JV

QI
k!(N —k)!

' —1/2

for k=s —m; als o, (nik), =5„k . (4)

The summation is over all possible manners of choosing k
indistinguishable atoms from the group of N atoms.

Consequently, the time evolution of the system is re-
stricted to the (s + 1 }-dimensional subspace spanned by
the basis vectors (3). In particular, the time evolution of
the system in such a subspace is related with the initial
condition is, o) when s atoms are initially inverted and
no photon is present. In this subspace there acts the rep-
resentation of the group SU(2}, the generators of which
are determined as follows:

I

They satisfy the commutations rules of su(2) Lie algebra.
Let us briefly recall the main steps of our method [5].

The free part Hf„„of the Hamiltonian (1) leads to an
unimportant phase factor in the transition amplitudes.
In turn, the interactions part V may be presented as fol-
lows:

V= V++ V

X is, m ) =v'(m +1)(s—m)is, m +1),
X+ is, m ) =&m (s —m +1)is,m —1),
S'is, m ) =(s/2 —m )is, m ),
S =(X++X )/2, S"=(X+—X )/2i .

(5)

N N

V =a gS, V+=a gS+.
j=l j=1

The nonvanishing matrix elements of these operators in
the basis (3) are
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(s, m +1!V !s,m ) =&(m +1)(s —m)(X —s+m +1)=(s,m! V+!s,m +1), 0&m &s .

We construct a perturbation theory by introducing a parameter e

e=(X—s/2+ —,
'

)

(7)

2

s E s1+— ' ——+m ——' ——+m +
2 2 2 8 ' 2

( + )( m)
(9)

In principle, the perturbation method we use requires not only e to be small but s ((N as well. However, as it is also
the case in other problems solved by perturbation methods our approximate formulas work satisfactorily well even for
not small values of e and s/N, at least for not very large s.

Expanding the matrix elements (7) in a power series in e one gets
' 1/2

Comparing the appropriate matrix elements obtainable
from Eqs. (5) and those given by (9) it is easily seen that
the operator V may be expressed in terms of the genera-
tors of the group SU(2) as follows:

oo

V= — g e"V„,
~ n=o

(10)
V„=V„++V„=K„[X ( —,

' —S')"+(—,
' —S')"X+],

where the coefficients E„read as

1 for n=O
for n =1

K =. '
n

are the matrix elements of the transition between the vec-
tor basis (3) and the basis of the eigenvectors of the Ham-
iltonian V0.

Basing on the expansion (10) of the Hamiltonian V one
can construct a perturbation theory with small parameter
e and with the operator V0 treated as the zeroth-order
unperturbed term.

Let us denote by A, the eigenvalues, by !%,~ ) the
eigenvectors of the interaction Hamiltonian V,

(17)

and by 3 the matrix elements of the transition from
the vector basis ! s, m ) to the vector basis! (p, ~ ),

(
—1)"+' "

for n )2 .
2"n!

In particular,

V0 =X +X+=2S (12)

W, =(s,m!e„) .

Expanding the eigenvalues A, and the eigenvectors
) in a power series in e, by standard perturbation

methods in the first-order approximation for the eigen-
vectors we find that

So, the zeroth-order interaction Hamiltonian V0 coin-
cides with the generator 2S of the (s + 1)-dimensional
irreducible representation of the SU(2) group. The spec-
trum of the eigenvalues of the generators of the SU(2)
group representation is well known. For the Hamiltonian
(12) we obtain

=a' + —,
) e[(s —2p + 1)&p (s —p +1)a'

—(s —2p —1)&(p +1)(s —p)a' +,],
(19)

while within an accuracy of e for the eigenvalues one ob-
tains

V !
)(o)—g(o)! )(o)

where its eigenvalues A.',' are

', '=s —2p, 0(p (s .

(13)

(14)

(0)
(p) ~p, s e (s —1)(s —2)A',' = —' . 1 — Sp(s —p)—v'e

O&p &s . (2O)

(s, k!s, ) '=5 (15)

where

a', = (s, m!s,p &"'= m!p!
2'(s —m )!(s—p)!

1/2

(16)

Their spectrum is equidistant, irrespective of the value of
s /N.

In turn, the eigenvectors!s, p )' ) read [5]

Because of the choice of the form of the parameter e, the
first-order correction to the eigenvalues vanishes. In fact,
all odd-order corrections to the eigenvalues are equal to
zero. For simplicity, we will omit the second subscript s
following A.

For s =1, p may take the value 0 and 1. For these
values of p the terms in square brackets are zero. In turn,
for s =2, p may be 0, 1, and 2. Again, for p =0 and 2 the
terms in square brackets vanish while for p = 1 the
zeroth-order eigenvalue A,

' ' is equal to zero. In conse-
quence, the spectrum of the eigenvalues is equidistant for
s = 1 and 2 and the time evolution of the systems with
such s is truly periodic. For s ) 3 the spectra of the ei-
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genvalues become unequidistant due to the nonlinear
dependence of Eq. (20) on p. However, if s is very small
in comparison with N, these spectra may be approximate-
ly treated as equidistant. Agreement of the eigenvalues
given by Eq. (20) with those numerically obtained by
Walls and Barakat [7] is amazingly good even if the con-
dition s ((N is not satisfied [5].

In general, the problem in question is exactly solvable
for s ~8. The eigenvalues predicted by our method are
commensurate quantities, irrespective of s. The eigenval-
ues given by the exact solutions are commensurate for
s =1 and 2. For the remaining s (s )3) the exact eigen-
values would be noncommensurate [4]. Hence, in princi-
ple, the perturbation method we propose can yield even
the exact results for s = 1 and 2 but is unable to give them
for s & 3. In fact, for the cases s =1 and 2 one gets the
exact solutions [24] in the zeroth- and second-order ap-
proximations for the eigenvectors, respectively [5].

ergy for the whole system of N atoms, in the eigenstate
is, m ) is

(s, m ~S is, m ) = —N/2+s —m .

In turn, from Eqs. (5) we have

(s, m ~S'is, m ) =s/2 m—.

(21)

!22)

E'„(t)=(s,O e™S'e' '~s, O), (23)

Comparing both these quantities we see that the latter
represents inversion of the atomic energy for the group of
s atoms. In what follows, we will calculate the quantity
(22).

The time evolution of the expectation value of the
atomic inversion is obtained with the standard formula

III. TIME EVOLUTION

The expectation value of the collective operator
S =pi, Si, representing the inversion of the atomic en-

where is, O) is the initial state of the system with s atoms
excited and with the number of photons equal to zero.

Making use of the transformation (19) and its ortho-
gonality we find quite generally that

s s SE t(t)= g g m Ao AoqA qA es'(A A )

p, q=Om =0
S S S S S

Aoz g mA z 2 g g Ao&Aoqcos[gt(Aq Az)) g mA
p =0 m =0 p =0q =p+1 m=0

(24}

The expectation value of the photon number is readily obtained from Eqs. (2) and (22) with the help of Eqs. (23) and (24)
at the eigenvalue s for the excitation number operator.

From Eq. (24), after some lengthy algebra, in the first-order approximation for the eigenvectors and in the second-
order approximation for the eigenvalues we arrive at

s —1 S' E' (t)=—g ' [(I—
—,'e[(s —2p —2) —2p —1])

p 1(s —p —1)!

Xcos[gt(A'2+', —A' ')]——,'ep cos[gt(A~+, —
A~( ', )]]+

16
(25)

The above expression contains the factor which does not vanish under the operation of time averaging:

s(s —1)
8(2N —s + 1)

(26}

which simply means that some portion of the energy is trapped in the atomic subsystem. For fixed s this quasistation-
ary value of the energy decreases as N increases. This situation is the opposite of that for nonsymmetrical initial excita-
tion [1,12] when the effect of energy trapping grows with increasing N. In turn, for a given N this energy diminishes
with decreasing s.

On substitution of the eigenvalues (20) into Eq. (25) one gets

s —1
' E'„(t)=—g, I (1—

—,'e[(s —2p —2) —2p —1])cos(2Q,t) —
—,'ep cos(40 2t ) ] +pp. s p I! (27)



KOZIEROWSKI, CHUMAKOV, S%'IATK0%SKI, AND MAMEDOV

and
1/2

s —1
Oo=g N— (29)

At t =0 the system is prepared in a definite state. Hence
all terms in Eq. (27) are correlated. As time goes on,
these terms begin to oscillate with different frequencies
and become dephased. Later on, they rephase again lead-
ing to modulation of the oscillations (except in the cases
s =1 and s =2), in particular to their collapses and re-

where the Rabi frequencies 0
&

and 0 2 read

Q, =Qo[1+ —,', 3e [5p(p —s + 1)+(s —1)(s —2)]],
(28)

Q, =Qo[1+ —,', 3e [10p(p —s)+2s —s+4]],

vivals. This collective mechanism of modulation of the
oscillations in spontaneous emission of the Dicke model
has its source in the unequidistancy of the eigenvalues
spectra.

Seke and Rattay [21] considering emission of the ini-
tially inverted atomic system stimulated by a Fock field,
have revealed collective collapses and revivals of the Rabi
oscillations. Here we find the possibility of such effects
for spontaneous emission from partially excited atomic
systems. In the case of spontaneous emission of the total-
ly inverted systems this phenomenon does not manifest
itself so distinctly [4].

Putting a=0 in the frequencies (28), from Eq. (27) we
get our earlier result [5] obtained in the first-order ap-
proximation for the eigenvectors and in the zeroth-order
approximation for the eigenvalues:

' E'„(t)=—cos[2gt(N —s/2+ —,
' )' ]+ [1 cos[4gt—(N —s/2+ —,

' )' ']]at 4(2N —s +1) (30)

From Eq. (30) it is more easily seen that the first-order
correction to the oscillation amplitudes is of the order
x=a(s —1)/8. Therefore, for a given fraction p=s/N
this correction decreases as s and N decrease (contrary to
e which then becomes greater}. As for the eigenvalues,
the correction is of the order x . In consequence, for a
given p Eq. (27) approximates reality better for small s
and N than for large s and N. Moreover, since the
corrections to the eigenvalues are of the order x our
method for given s and N describes the eigenvalues with a
smaller error than the oscillation amplitudes although, as
mentioned, it gives them as commensurate quantities.
On the other hand, however, even subtle differences in
the eigenvalues may lead in long times to a phase shift of
the oscillations predicted by Eq. (27), relative to the exact
ones.

For s = 1 the second term in Eq. (30) vanishes while the
first term represents the exact solution for spontaneous
emission of the system with one atom initially inverted.
For s =2 the exact solution [5] is obtained in the second
approximation for the eigenvectors. For s ~3 the above
formula is still able to describe the real situation for rela-
tively short times if N is not significantly greater than s,
or for long times if s is extremely smail compared to N.
Then, in fact, even the pure zeroth-order approximation
[the first term in Eq. (30)] is sufficient, at least for realistic
times.

IV. EXACT SOLUTION FOR s =3

The case s =3 is the first in the hierarchy of those
characterized by the unequidistant eigenvalue spectra.
The eigenvectors ls, m ) for s =3 are l3, 3), l3, 2), l3, 1),
and l3, 0). The total wave function of the system in the
interaction picture reads as

lc (t) & =Co(t)13,3&+C)(t)l3,2&

+C (t)l3, 1)+C,(t)l3,0), (31}

Co = —ig &3N C, ,

C~ = ig &3N Co—2ig v'N —1C2-,

C~ = 2ig &N ——1C, ig &3(N —2—)C~,

C, = ig &3(N —2)C2, —

with the initial condition C&(t =0)= l.
The solutions for the probability amplitudes are

(32}

6ig'&N (N —1)(N —2) s'nQ it »nQ2t
Co(t) =—

0)—Q2 0) 02

2g &3(N —1)(N —2)
C

/
t = cosQ ) t cosQpt

0)—Oz

ig&3(N —2)
2 n2 02c (tj=—

1 2

(33)

0)—3Ng
sinO t—02 —3Ng

sin02t
02

C~(t)=
2 ~ [[Q', g(7N 4)]cosQ—,t—

1

—[Qz —g (7N —4)]cosQ2t],

where the Rabi frequencies 0, and 02 have the form

where C„(t) are the probability amplitudes.
The time-dependent Schrodinger equation leads to the

four coupled equations of motion
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1/2 1/2Q, =g[SN —+ 1—5+ 1+ 16N —32N+25) ]
1/2 1/216N —32N+25)' ]A2=g[SN —5 —1
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To conclude, our perturbation approach seems aston-
ishingly accurate in the description of the eigenvalue
spectra [5] and sufficiently good to describe the time evo-
lution of the Dicke model in an ideal cavity with some
part of the atoms initially inverted for fractions p up to
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FIG. 3. Envelope of the atomic inversion for s = 3 and N =8.

2 —4 shows that an increasing number of atoms N (at a
given s) gives longer revival and collapse periods.

In Fig. 5 the envelopes of the oscillations are plotted
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condition of satisfactory and good applicability of the ap-
proximate result. In fact, comparison of these curves
with the exact computer ones confirms this to some ex-
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the value (N+4)I4N. The accuracy of Eq. (27) becomes
better as p decreases. But, certainly, we considered it
more interesting to present the graphs for the limiting
cases of applicability of our approach.
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