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Femtosecond-pulse propagation in resonantly excited semiconductors is investigated by numerically
solving the semiconductor Maxwell-Bloch equations for plane waves. For excitation at the exciton reso-
nance, it is shown that the pulse absorption exhibits a strongly nonlinear dependence on the input pulse
area. Very long propagation distances for strong pulses are observed, but even when all dephasing pro-
cesses have been neglected, no lossless propagation (self-induced transparency) was found. The influence
of the electron-hole many-body effects, nonequilibrium carrier relaxation, and optical dephasing on the
pulse-propagation dynamics is studied. The exchange interaction in the electron-hole plasma is shown
to support large propagation distances. For excitation of the continuum states, the dependence of the
absorption on the intensity of the input pulse is reduced due to the rapid carrier relaxation into

quasiequilibrium distributions.

PACS number(s): 42.50.Md

I. INTRODUCTION

The development of a substantial variety of fem-
tosecond laser sources make it possible to study coherent
optical effects in semiconductor media. Examples include
the excitonic Stark effect [1-11], photon echo [12-15],
ultrafast adiabatic following [16], and more. Concerning
the propagation dynamics of ultrafast light pulses under
resonant excitation conditions, however, only few
theoretical investigations have been performed until now
[17].

Generally, it is known that the propagation of high-
power pulses in matter alters the linear absorption law of
Lambert and Beer. For the case of atomic systems there
are two situations in which the pulse propagation has
been particularly well studied. The first one is the case of
coherent propagation of optical pulses through an ensem-
ble of absorbing atomic systems. The most important re-
sult for this situation is summarized in terms of the area
theorem of McCall and Hahn [18,19]. The area theorem
describes phenomena such as lossless propagation in en-
sembles of inhomogeneously broadened two-level systems
and break up of propagating pulses [18-20]. A well-
known effect observed in atomic systems is the
phenomenon of self-induced transparency (SIT) for pulses
that are shorter than the characteristic dephasing time of
the matter system. SIT describes the special property of
sufficiently strong optical pulses to travel anomalously
long distances in resonant absorbers [18,19].

The second well-studied regime is realized when the
light-matter interaction time is long compared to charac-
teristic decay times of the material. In this case in-
coherent effects are dominant and the system is described
by the Frantz-Nodvik formula, which includes saturation
phenomena of the optical transition [21]. Both the area
theorem and the Frantz-Nodvik formula are valid for
two-level systems coupled to each other only through the
external electromagnetic field.

In contrast to the two-level dynamics, the generated
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charge carriers in semiconductors are not only coupled
by the external optical field, but they also interact via the
Coulomb interaction. This coupling of different one-
particle states leads to additional terms in the optical
Bloch equations, altering the polarization of the medium
and thus the source term that acts on the propagating
electromagnetic field. Furthermore, the dephasing time
in highly excited semiconductors is often of the order of
~100 fs [22-28], i.e., of the order of the duration of the
shortest light pulses that are experimentally generated to
excite the system.

In this paper we study how electron-hole many-body
interactions, carrier relaxation, and optical dephasing
influence the propagation of femtosecond pulses in semi-
conductors. To study this problem, we numerically in-
vestigate the semiconductor Maxwell-Bloch equations,
i.e., the semiconductor Bloch equations coupled to the
wave equation for the slowly varying envelope of a propa-
gating light field. Before we present our numerical re-
sults in Sec. III we summarize in Sec. II the basic equa-
tions and relevant parameters.

II. BASIC EQUATIONS

In this section we present the basic equations that
govern the interaction between a propagating light pulse
and a semiconductor medium. The light-matter interac-
tion is treated semiclassically by solving the coupled set
of Maxwell-Bloch equations for the field. We consider a
laser pulse with a carrier frequency w; and apply the
slowly varying envelope representation for the electric
field E(z,t) and the polarization P(z,¢):
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Here we restrict ourselves to the propagation of plane
waves traveling in the z direction. The propagation con-
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stant k; and the carrier frequency w; are related by the
linear dispersion relation of the medium. Using the slow-
ly varying envelope approximation and introducing a
coordinate frame (§,7) traveling at the group velocity v,
of the light pulse, we find the reduced wave equation
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The group velocity v, is given by the linear dispersive
properties of the semiconductor. The resonant electronic
polarization P(£,7n) has to be computed from the semi-
conductor Bloch equations. These equations were de-
rived by several authors [5—8] and have been shown to be
a good approximation in the investigation of local prop-
erties of semiconductors excited by electromagnetic
fields. The coherent part of the equations results from a
Hartree-Fock approximation in the equations of motion.
Additionally, a realistic description of highly excited
semiconductors has to take into account screening of the
Coulomb potential and dephasing of the polarization.
The semiconductor Bloch equations can be written as
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where f¢/" are the carrier distribution functions for elec-

trons and holes, respectively, and P, is the polarization
for a given one-particle momentum state. The total po-
larization is obtained by summing the contributions of all
momentum states, including the two different spin states:
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and the renormalized energy w; and the local field ), are
given by
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Furthermore, d_, is the interband dipole matrix element,
fiw, is the semiconductor band-gap energy, T, is the car-
rier relaxation time, and T, is the polarization decay
time, respectively. Equations (3)—(6) are valid for semi-
conductors that are spatially homogeneous on a scale of

several exciton Bohr radii. The spatial dependence in the

A. KNORR, R. BINDER, M. LINDBERG, AND S. W. KOCH 46

propagation direction (coordinate z =§) is used as a pa-
rameter for the pulse propagation described by Eq. (2).

The dephasing of the system is modeled by a constant
dephasing rate 1/T,. The phase relaxation time T, is to
be expected on the femtosecond time scale [22-28]. The
scattering of the electron-hole population is included in
the relaxation-time approximation [28]. The screening of
the Coulomb potential is described in the quasistatic ap-
proximation
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Here n denotes the total carrier density of electrons
n=23,fi=23,fI €€, is the dielectric constant in the
medium, and m, is the reduced electron-hole mass. The
unscreened Coulomb potential ¥ is defined by taking
the limit «—O0 in (7). The terms ¥ V, . P, f4,
3¢Vi—gfqPr,and 3,V P, Pf are often referred to as
“exchange contributions,” and we use this terminology
also in the present paper. For the case of a vanishing in-
teraction potential ¥, the semiconductor Bloch equations
(3) reduce to the two-level Bloch equations.

In the case of the semiconductor the Coulomb poten-
tial couples different k states of the medium. One could
therefore expect that complicated interference effects
might destroy such coherent effects as Rabi oscillations
and therefore the possibility of SIT. However it was
shown in [16] that semiconductors excited at the exciton
resonance show Rabi-like oscillations in the time depen-
dence of the carrier density. Moreover, the density was
found to show almost twice as many Rabi flops as one
would expect for a corresponding two-level system. This
behavior is explained by the effective amplification of the
electric field E due to the Coulomb interaction term in
the effective Rabi energy (6). In the next section we show
how the many-body effects influence the propagation of
ultrashort light pulses and discuss the differences to the
propagation of light in two-level systems.

III. RESULTS AND DISCUSSION
A. Coherent pulse propagation

In order to gain some insight into pulse propagation in
semiconductors under idealized conditions we neglect in
this section all relaxation processes and screening effects.
This allows comparison with the solitonlike propagation
known from the two-level dynamics. From Eqgs. (2) and
(3) we find a propagation equation for the intensity of the
field
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After integrating Eq. (10) with respect to time we find
that the spatial dependence of the pulse energy
W=(c€y/2) [ |E(1)|*dt is proportional to the density at
the time after the pulse:

S wie)~ S filEn=w) . (12)
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Note that Eqgs. (10)-(12) are valid for two-level systems as
well as for semiconductor materials. According to Eq.
(12) the possibility of lossless propagation is given for
pulse areas for which the density is returned to zero after
the pulse, so that the density exhibits complete Rabi
flops. Then the pulse intensity is not changed while prop-
agating [Eq. (12)).

Such an ideal case is realized if a sech-shaped pulse of
an area of 27 travels through an ideal two-level medium
(18]. This pulse returns the rotating dipoles exactly to
their initial state, so that lossless propagation is possible.
Until now we could not find any pulse shape that satisfies
such conditions in semiconductor media. Numerical in-
vestigations predict that a finite amount of total polariza-
tion and charge carriers are remaining in the medium
after the pulse [16].

For the numerical treatment the sample length is
discretized into N slices. Beginning with the first slice the
semiconductor Bloch equations are solved using a
fourth-order Runga-Kutta method in the time domain
for the initial conditions P (§,m= — o )=0,
felE,m=—o0)=0, and fHEn=—0)=0. The
Coulomb potential is integrated over the angle between k
and g corresponding to [29]. To calculate the optical field
the wave equation (2) is solved in the first slice of the
sample by a Runge-Kutta method of second order in the
spatial domain. The calculated electric field resulting
from the first slice serves as an initial field for the second
slice while all distribution functions and polarizations are
again initially zero in the time domain. This method is
repeated to propagate the optical field through the whole
sample. The number of points used in the time domain
was typically 2000, the k space is resolved by approxi-
mately 100—150 points, and the number N of slices over a
propagation distance of az=1 is about 50—100. The
propagation distance is measured in small signal absorp-
tion length a ™!, so that za=1 corresponds to the propa-
gation distance after which the area of a low intensity
pulse is reduced to 1/e of its original value.

To investigate the propagation of a pulse of an area of
27 we solved the system of coupled partial integro-
differential equations [(2) and (3)] for the case of excita-
tion by a sech-shaped pulse of a full width at half max-
imum (FWHM) of 100 fs. The laser frequency is chosen
to excite the exciton resonance. If the generated excitons
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FIG. 1. Intensity (solid line) and density (dashed line) profiles
for an initially 27 area sech-shaped light pulse at different posi-
tions in the semiconductor sample for the case of coherent prop-
agation. This specific pulse shape would travel shape invariant
in an ensemble of two-level systems I, = (10" *e,c#*fs2)/(2d2).

would behave like particles that can be described in terms
of two-level systems, the sech-shaped pulse would travel
without disturbance [18].

We choose material parameters representative of the
case of bulk CdSe: m,=0.125m,, m, =0.431m,, and
the exciton Rydberg energy E,. =16 meV.

Figure 1 shows the computed pulse intensity (solid
lines) and generated carrier density (dashed lines) at
different positions in the sample. It can be seen from Fig.
1 that, in contrast to the two-level dynamics, the initial
27 pulse develops a shoulder and becomes shorter during
the first part of the propagation. In the first slice of the
sample, we confirm the result of Ref. [16] that the num-
ber of Rabi flops is nearly doubled compared to the same
excitation conditions for a two-level system (Fig. 1,
dashed line below). However, due to the remaining densi-
ty in the system after the pulse, the energy of the elec-
tromagnetic field is slowly absorbed during its propaga-
tion. This can be seen from Fig. 1 by comparing the ini-
tial intensity profile and the profile after the propagation.
Due to this absorption the effective Rabi frequency is
gradually reduced so that the second Rabi flop cannot be
maintained during the propagation through the sample.

In the case of a two-level system, a 27 pulse would
create one Rabi flop following the shape of the pulse [18].
The doubling of Rabi flops in the semiconductor, which
causes an oscillating temporal structure of the source
terms in (10), leads to peak amplification and temporal
compression of the field. To gain some analytical insight
into the problem of coherent pulse propagation in a semi-
conductor, we show in our Appendix that SIT analogous
to that in a two-level system cannot occur.

B. Incoherent propagation of pulses exciting
the exciton resonance

The discussion in Sec. III A neglects dephasing pro-
cesses in order to allow comparison of the results with
the solitonlike propagation in atomic media, where de-
phasing times are often on the order of several
nanoseconds. On the other hand, it is known that de-
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phasing of the polarization and screening of the Coulomb
potential are of significant importance for highly excited
semiconductors. The phase relaxation times are often as
short as ~ 100 fs.

Ultrashort laser pulses can have FWHM of ten to a
few hundred femtoseconds. Therefore, under realistic
circumstances one has to expect that the carrier relaxa-
tion and characteristic dephasing times T, T, are on the
order of the pulse duration itself. To study this realistic
situation we include optical dephasing, carrier scattering,
and screening into the semiconductor Bloch equations as
described in Sec. I, Eqgs. (3)-(9).

We investigate again the propagation of light pulses
with a FWHM of 100 fs, including finite relaxation times
of T, =100 fs, T, =100 fs. The excitation is chosen to be
at the exciton resonance. Sech-shaped pulses were found
to be approximate solutions of the steady-state round trip
equation of passively mode-locked lasers [30]. For this
choice of the input pulse shape and input parameters we
expect our results to be a reasonable approximation for
experimentally relevant situations.

We depict in Fig. 2 the spatial development of the
pulse intensity (solid line) of a 27 input pulse versus time.
Additionally, the temporal profile of a light pulses of low
intensity (here chosen to have an initial area of 0.17) is
shown as a dashed line. The comparison reveals that
pulses of lower intensity are absorbed rapidly, whereas
the 27 pulse suffers only a minor reduction of its peak in-
tensity over several Lambert-Beer absorption lengths.
The origin of this behavior can be traced back to the
phase-space filling process in semiconductors and was al-
ready found in [17]. The phase-space filling effect is com-
parable to the saturation of the upper level in two-level
systems. Schematically, the behavior can be understood
such that the temporally first part of the pulse generates
carriers and is partially absorbed, so that the second part
is able to pass the sample without strong absorption. Fig-
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FIG. 2. Intensity profiles vs time at different positions in the
semiconductor sample. Relaxation times and pulse duration are
chosen to be 100 fs. The solid line shows the intensity of a pulse
with an initial area of 277. The dashed line shows the intensity
of a O.17 pulse. The distance between the curves is 0.6
Lambert-Beer absorption lengths.

ure 2 shows the pulse is gradually delayed during the
propagation due to the described asymmetric absorption
in time. In contrast to the case of coherent propagation
(Fig. 1), no pulse compression can be observed. This is
expected because the temporal change of the carrier den-
sity due to relaxation processes occurs on the same time
scale as the pulse duration. Therefore, pulse-induced
transient oscillations relax during the characteristic time
in which they are generated. Consequently, peak
amplification and compression of the pulse are not ob-
served in the incoherent regime for the chosen parame-
ters.

In Fig. 3 we compare the temporal development of the
carrier density for the incoherent case (short-dashed line)
and the coherent case (long-dashed line) to show that the
Rabi-like oscillations are not pronounced enough to lead
to pulse compression if the relaxation times are on the or-
der of the pulse duration itself. Due to the finite phase
relaxation time the generated density is larger than in the
coherent case because the linewidth of the electron-hole
transitions is broadened.

To investigate the origin of the pulse absorption we
show in Fig. 4 the distribution function f§ of the elec-
trons at different time delays (d) with respect to the peak
intensity of the exciting pulse. If the absorption of the
pulse energy occurs purely due to the generation of exci-
tons the depicted distribution function would follow
roughly the slope of the ls exciton wave function. How-
ever, from Fig. 4 it can be seen that the excitation is
moved further into the continuum states than the slope of
the 1s exciton wave function. This was already discussed
for far-off-resonant excitation in Ref. [11]. For resonant
excitation with high pulse energies the maximum of the
distribution function (time delay d =0) is at much higher
k values than the half width of the 1s exciton wave func-
tion. This effect is due to many-body effects like band-
gap renormalization and amplification of the effective
Rabi frequency. Therefore, the absorption of the propa-
gating light pulse is not only determined simply by the
generation of excitons but by more general many-body
electron-hole effects. Furthermore, comparing the band-
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FIG. 3. Light-induced density vs time for the coherent case
(long-dashed line) and the incoherent case (short-dashed line).
The intensity profile of the incident pulse is shown as a solid
line.
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FIG. 4. Electron distribution function f§ for different delay
times (d) inside the sample excited by a 27 pulse. The parame-
ters are the same as in Fig. 2. The delay is measured with
respect to the peak intensity of the pulse. The square of the nor-
malized 1s exciton function is included for comparison. The
normalization factor is given by 327n(t), where n(?) is the car-
rier density.

width of the light pulse (approximately 1 exciton Ryd-
berg energy) with the bandwidth of the particle distribu-
tion (Fig. 4), it can be seen that the excitation energy is
transferred into k regions that are not directly dipole
coupled to the exciting electromagnetic field. This part
of the excited states is lost for the reamplification process
needed for true SIT-like propagation. Due to the band-
gap renormalization the pulse interacts with the continu-
um of states even though the excitation frequency is orig-
inally at the exciton resonance.

To investigate the spectral energy distribution of the
incident pulse we calculated the pulse spectrum, defined
by

1

€ (o, —wt 2
C e
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As can be seen from Fig. 5 the spectrum remains mainly
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FIG. 5. Spectral intensity of a propagating 27 pulse at
different positions in the semiconductor sample. Parameters are
the same as in Fig. 2 [So=1/(27)10*I,].
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FIG. 6. Intensity profiles vs time at different positions in the
semiconductor sample. Relaxation times and pulse duration are
100 fs. The solid line shows the intensity of a 27 pulse. The
dashed line shows the solution with the same parameters but
without exchange terms. The distance between the curves is 0.6
Lambert-Beer absorption lengths.

symmetric during its propagation. In general, an asym-
metric density of states will result in an asymmetric pulse
shape. In the present case, however, the density of states
is essentially constant due to the interband Coulomb
enhancement.

In order to understand the importance of the exchange
terms in Eq. (3) for the anomalously long propagation
distances in the high excitation case (Fig. 2, solid line) we
solved Egs. (2) and (3) without exchange contributions.
As shown in Fig. 6 we find that for propagation in a sys-
tem without exchange contributions the transmitted in-
tensity (dashed line) is reduced by nearly a factor of 2
compared to the result that includes the exchange terms
(solid line). The equations without exchange terms may
yield carrier distributions that exceed unity and hence
violate the Pauli principle. A consequence of this un-
physical result is that the absorbing states can be popu-
lated by more carriers as if they would obey Fermi-Dirac
statistics. This causes the electromagnetic field to lose
more energy during its propagation as shown in Fig. 6.
Hence the exchange terms obviously play an important
role for the proper description of the resonant pulse prop-
agation in semiconductors.

C. Incoherent propagation of pulses exciting
above the band gap

Until now all calculations were made for the case
where the optical frequency of the pulse is centered at the
exciton resonance. If the light pulse excites the sample
high above the band gap, the role of carrier relaxation is
enhanced since the optically generated distribution func-
tions deviate more strongly from Fermi functions. This
deviation causes drastic changes in the pulse absorption
since the influence of phase space filling on the pulse de-
pletion is reduced. If the generated carriers leave the re-
gion of excitation fast enough the saturation of the transi-
tions is suppressed and even a high intensity pulse nearly
follows the linear absorption law of Lambert-Beer

To investigate this scenario the 27 pulse used in Sec.
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FIG. 7. Intensity profiles vs time at different positions in the
semiconductor sample. Relaxation times and pulse duration are
100 fs. In contrast to Fig. 2 the excitation occurs highly above
the band gap (ka,=4). The solid line shows the intensity of a
2m pulse. The dashed line shows the intensity of a pulse with in-
itially 0.17 pulse. All other parameters are the same as in Fig.
2. The distance between the curves is 1 Lambert-Beer absorp-
tion length.

ITII B is now assumed to excite the system at 16 exciton
Rydberg energies above the band gap. The spectral
width of the pulse is on the order of 1 Rydberg energy,
thus the excitation is well above the band gap. We com-
pare in Fig. 7 the propagation of a 0.17 and a 27 pulse.
All other parameters are the same as in Sec. IIIB. As
can be seen from Fig. 7 only relatively small differences
occur between the absorption losses of the low (dashed
line) and the high intensity pulse (solid line) in contrast to
the case of excitation of the exciton resonance (Fig. 2).
For excitation in the continuum both pulses are absorbed
on the same length scale. The remaining difference in
Fig. 7 is due to the fact that the relaxation of the carriers
is on the order of the pulse duration, and not infinitely
fast. In Fig. 8 we show the corresponding electron distri-
bution function (dashed line) in comparison to the distri-
bution function in the case in which the excitation occurs

DISTRIBUTION FUNCTION

3
(20 2]
h

3 4
WAVE NUMBER (units of ap')

FIG. 8. Electron distribution function f§ for the case of exci-
tation at the exciton resonance (solid line) and for excitation
into the continuum (dashed line) after a propagation over one
small signal absorption length.

FIG. 9. Intensity profiles of 27 input pulse after the propaga-
tion over 1 Lambert-Beer absorption length in the semiconduc-
tor sample. In contrast to Fig. 6 the excitation occurs well
below the band gap (eight exciton Rydberg energies). The solid
line shows the intensity of a 27 input pulse. The dashed line
shows the pulse intensity after the propagation. The solution
without exchange terms shows no significant deviation.

in the exciton resonance (solid line) after the propagation
of one small signal absorption length. It can be seen that
in the case of excitation into the continuum states the in-
traband relaxation process transfers electrons out of the
excitation region.

D. Incoherent propagation of pulses exciting
below the band gap

For the excitation of a semiconductor well below the
band gap it was shown in Ref. [11] that the exchange
effects are of minor importance due to the smaller
amount of generated carriers. Therefore it is expected
that the exchange effects will not strongly influence the
transmitted pulse energy compared to the case of reso-
nant excitation where the occupation of the one-particle
states is high (Fig. 6). To confirm this we show in Fig. 9
the results of our calculations for the temporal pulse
profile if the carrier frequency of the pulse is centered 8
exciton energies below the semiconductor band gap. We
could not find any significant difference between results
with or without inclusion of the exchange terms. This is
expected because the exchange effects are most relevant
only when the one-particle states are highly occupied. A
theory-experiment comparison of nonresonant pulse
propagation in semiconductor waveguides can be found
in Ref. [31].

IV. CONCLUSION

In conclusion, we present a theoretical study of reso-
nant pulse propagation through semiconductor media.
For excitation into the exciton resonance our numerical
solutions of the semiconductor Maxwell-Bloch equations
show that pulses with an area in excess of 7 propagate
anomalously long distances, many times the length over
which weak intensity pulses are completely absorbed.
For the idealized case of vanishing dephasing and carrier
relaxation we found pulse compression and Rabi flop-
ping. Even though many of these features resemble the
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phenomenon of self-induced transparency in atomic sys-
tems, true SIT in semiconductors is not obtained even un-
der idealized conditions without dephasing and carrier
scattering. For the excitation in the continuum we show
that the input intensity dependence of the pulse propaga-
tion is reduced due to the intraband relaxation processes.
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APPENDIX

In this appendix we show that SIT exactly analogous
to that in a two-level system cannot occur in a semicon-
ductor. The proof is based on the approximation of a k-
independent interaction matrix element. Since even in
this case we find SIT to be impossible, we strongly believe
SIT is all the more unlikely if a realistic Coulomb interac-
tion would be considered. We will show that there can be
no SIT in semiconductors analogous to the well-known
two-level solutions with sech-pulse shapes. This pulse
shape is to date the only known SIT solution in two-level
systems. We therefore believe that it is not a very serious
restriction when we investigate only semiconductor solu-
tions analogous to those sech solutions.

The proof consists of two steps: First, we bring the
semiconductor Maxwell-Bloch equations into a form that
is identical to that of a two-level system. The only
difference is the definition of an effective Rabi frequency.
We then show that the regular sech solution for the
effective Rabi frequency contradicts the analogous solu-
tion for the polarization and inversion functions.

A k-independent interaction potential allows the k
sums in Egs. (5) and (6) to be performed:

D Vi_gfq=v 3 fy=VF,
q q

~ ~ ~ (A1)
S Vi—gPy=v Y P,=vP,
q q
where the total polarization function P and the total den-
sity F for each spin degree of freedom have been intro-
duced. Restricting ourselves to a soliton solution

E—E(x)e’®, P, —>P.(x)e®, fi—filx),

where all functions depend on x =t —z /v,, Egs. (2) and
(3) take the form

. 5 o
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% 2
a=2u, K B=1/v,—1/c .

A constant of motion of these equations yields the rela-
tion
F=Ljap. (A6)
2a
Using Egs. (A4) and (A5) we can now eliminate F and P
in Egs. (A2) and (A3) material. After the transformation

Poope’® , Lo=—2Lap,
dx a A7)
#k?

2m,

ﬁAk =ﬁCOL _ﬁwg -

b

the Bloch equations assume a form exactly analogous to
two-level systems:

_ga;Pk=—iAkpk—i%(l—2fk)ﬂeﬂ" (AS)

a—i'fk=i%(9':ffpk_c'c') . (Ag)
Here the effective Rabi frequency

Q= 1—2vﬁ Q—Zivﬁiﬂ e '® (A10)
a a ox

has been introduced. The SIT solution requires Q.4 to

have a sech shape [18]
Q.4=2y sech(xy) . (A11)

The corresponding solutions for the polarization and in-
version functions are

-1

k
=————5sech(xy)
Pk 1_*_(Aky_l)zsec xy
i
+I—+—(Wse0h(xy)tanh(xy) , (A12)
fi= 1 zsechz(xy) . (A13)

1+(Ay ™)
We can now formally perform the k summation and ob-
tain
F=Fysech’(yx) , (A14)

—ie L (Al5)

P=[pgsech(yx)+iF,tanh(yx )sech(yx)]e

where
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F :2 1 :"2 AkVﬂ
M TN LA R ENV VO

(A16)

The definition of Q.4 [Eq. (A9)] and its solution Eq. (A10)
yield

1-—2v§ Q—Zivﬁ——a—ﬂ e 1 ®=2ysech(yx) .
a a ox

(A17)

We can eliminate here the derivative of {} with the help
of Eq. (A4), utilizing Eq. (A14), and obtain an equation
for Q, which readily gives an expression for [|>. On the
other hand |Q|? is given by Eq. (A6), in which F is now
the solution (A13). We finally can equate the two equa-
tions for [Q|%:

2
?aFOsechz(J/x )=(—2vpy+2y )?sech?(yx)

+4F,v’tanh*(yx )sech’(yx) .  (A18)

Hence only for v =0 the SIT solution is possible.

*Also at Institute for Optics and Quantum Electronics,
Friedrich-Schiller-University, Max-Wien-Platz 1, O-6900
Jena, Germany.
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