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The Volkov wave function describing the motion of a charged particle in a laser field serves as a
modified plane wave in the formulation of external-field collision theory and is widely used in applica-
tions. Exact solutions are unavailable for those cases in which the target, as well as the projectile, carries
a net charge. It is shown that this difficulty may be overcome through the adoption of a variational for-
mulation of the theory in configuration space. The essential feature of this procedure is the specification
of boundary conditions to be satisfied by the trial functions whereby the combined effect of the Coulomb
potential and the external field is accounted for with sufficient accuracy. Wave packets constructed from
such trial functions satisfy the physical requirement that they follow classical trajectories at asymptotic
times. The formalism is applied to the problem of potential scattering in a low-frequency external field
and leads to an approximate transition amplitude that serves as a generalization of the Kroll-Watson ap-
proximation, reducing to it for potentials having no long-range Coulomb tail. In addition, a relatively
simple Coulomb generalization of the cross-section sum rule is obtained. As a second application a low-
frequency approximation is derived for the amplitude for laser-assisted electron-impact ionization. It is
based on a choice of trial functions that accounts for the effect on the asymptotic motion of these parti-
cles of the long-range final-state Coulomb interactions among pairs of charged particles, in the presence
of the laser field. The applicability of this approach to multiphoton-ionization processes is discussed
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I. INTRODUCTION

There appears to be no exact solution to the wave
equation for the motion of a charged particle in a
Coulomb field in the presence of a time-dependent elec-
tric field. Such a solution, were it available, would serve
a function, in the theory of laser-assisted collisions and
multiphoton ionization, analogous to that of the Volkov
solution [1] describing the asymptotic motion of the par-
ticle under the influence of the external field alone. In a
number of applications [2-4] an approximation has been
adopted in which the plane wave appearing in the Volkov
solution is replaced by a field-free Coulomb wave func-
tion. While such a choice has its merits in certain situa-
tions, it lacks a proper basis in the formulation of the
theory. There are several indications of the shortcomings
of this product form. One first observes that wave pack-
ets constructed from such functions fail to follow the ap-
propriate classical asymptotic trajectories. An indication
that is perhaps more direct is the fact that when the
product function is inserted into the wave equation the
result vanishes no more rapidly than the Coulomb poten-
tial itself. Finally, one can point to a specific
application—the derivation of low-frequency
approximations—where asymptotic wave functions of
the product form would, if they were adopted, lead to the
appearance of spurious near singularities and erroneous
conclusions concerning the frequency dependence of the
transition amplitude [5].

It is clear that an asymptotic solution is needed that
more accurately accounts for the combined effect of both
fields on the motion of the charged particle. An im-
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proved solution, one that avoids the above-mentioned
shortcomings associated with the product form, is pro-
posed here and is discussed in some detail. The improve-
ment is achieved through the introduction of a Kramers-
Henneberger transformation [6] acting on a suitably
chosen field-free trial function. An approximation pro-
cedure for treating atomic interactions with high-
frequency laser fields, making use of this space-transition
idea, has received a considerable amount of attention in
recent years [7]. It is therefore important to emphasize
that the present application of the Kramers-Henneberger
transformation is not tied to any particular approxima-
tion. Rather, it is used to specify the boundary condi-
tions in a configuration-space formulation of the theory
of Coulomb scattering in a laser field of arbitrary spectral
and polarization properties. In fact, the application that
is discussed here is to the development of low-frequency
approximations, for potential scattering and for laser-
assisted electron-impact ionization.

A variational formulation of charged-particle collision
theory was presented some time ago [8]. This work is
used, in Sec. II, as the basis for a generalization allowing
for the presence of a time-dependent external field. The
variational approach provides a convenient means for the
development of approximations. The essential features of
the approximation can often be incorporated in the calcu-
lation through an appropriate choice of trial functions,
leading to a result of enhanced accuracy. In principle, er-
ror estimates can be obtained from an examination of
higher-order iterations. These features are illustrated in
Sec. III in the derivations of low-frequency approxima-
tions. The approximation obtained for potential scatter-
ing generalizes a well-known result of Kroll and Watson
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[9], reducing to it when the potential is taken to be of
short range. The low-frequency approximation provides
the basis for the derivation of a cross-section sum rule ex-
pressed in a relatively simple form. In the derivation of a
low-frequency approximation for electron-impact ioniza-
tion we base our choice of the final-state trial function on
a form that has been used successfully in recent calcula-
tions of field-free ionization [10]. This function contains
the effects of the dominant postcollision interactions
among the pairs of charged particles. In view of this the
method adopted here for including the additional
particle-field interactions is particularly appropriate since
the asymptotic interactions, which are dominant for
fields of low frequency, are thereby treated in a manner
that is essentially exact.

Section IV contains a summary of results obtained here
and includes some brief comments on the applicability of
the method to multiphoton-ionization processes.

II. FORMULATION

To simplify the formal presentation we consider the
problem of the scattering of an electron by a potential
V(r), behaving at great distances as Ze2/r. (Z may have
either sign.) The scattering takes place in the presence of
an external field described, in the dipole approximation,
by the vector potential A(z). The S matrix is taken to be

S(p,p)=lim [d’r Xy " (5,009 (r,0) . 2.1

Here W,"' is the outgoing-wave solution of the wave
equation (in units with #=1)

lH_,@_

ar | (61)=0,

(2.2)

corresponding to an incident wave of momentum p; the
Hamiltonian is

H=—(—iV—eA/cP+V(r) .
2m

To specify the final-state wave function X', ", along with
the corresponding initial-state function X p+), we first in-
troduce the modified plane waves that would be appropri-
ate in the treatment of the field-free scattering problem.
These functions are characterized by the asymptotic be-
havior

(2.3)

x(pi)(r,t)~(27r)_3/2exp[ip‘r—iEpt-Hs;,i)(r)] , (2.4)
with E, =p?/2m. The phase function
2
s‘pi’(r)Zize " In(pr Fp-r) (2.5)

represents a distortion due to the long-range Coulomb
tail. The effect of the field on the asymptotic motion of
the projectile is correctly accounted for by the choice

+ B E S T
X{,ﬂ(r,t)—)(;, [r—alt),t]

2 2( 47
—i fotdt’L(t) } , (2.6a)

X exp e’
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a(t)=——— [‘dr' A(r') . (2.6b)
mc Yo

The Kramers-Henneberger space translation has been in-
troduced in Eq. (2.6a) and this will play an important role
in all that follows. (Note that in the absence of a
Coulomb tail the Volkov solutions are reproduced by the
above construction.) To see the extent to which the effect
of the Coulomb tail is included in Eq. (2.6) we first ob-
serve that

9

1H—i~— X () =(h—E )X, (r,1), (2.7)

at

where A is the Hamiltonian in the absence of the field.
Now (h —E,)x,(r,t) is of order 1/r? at great distances,
as is the difference V(r)—V(r—a(t)). It follows that the
right-hand side of Eq. (2.7) falls off as 1/r% asymptotical-
ly so that the accuracy of the asymptotic wave function
in Eq. (2.6) is equivalent to that of the field-free version,
in the sense that both functions, Xp(r,t) and x,(r,?),
satisfy their respective wave equations when terms of or-
der 1/r? are ignored. We note that wave packets con-
structed from these field-dependent asymptotic solutions
are concentrated about the classical trajectories

il

rt)=a(t)+ 2L+ P ze2m In
m to

p

(2.8)

for t — F o (¢, is an arbitrary positive reference time), as
required by physical considerations.
We represent the wave function describing the propa-
gation of the system forward in time as
V=i lim [d*G(r,5r, )X (r,),

t'"—>—
(2.9a)
and for later reference define a solution

Vo) =i lim [d*' X7 (0,0)G(r, 15, t)  (2.9b)

L4 t'— o0

that evolves backward in time. The retarded Green’s
function G(r,z;1’,t’) is defined by the condition

G(r,t;r',t')=0, t<t', (2.10a)
and the differential equation
H—f—% Glr 1, t") = —8(r—r')8(t —t') . (2.10b)

Useful identities for the wave functions represented in
Egs. (2.9) may be derived [5] in the form

(+) —\pylt)
W, ) =W (r,1)

+fj:dt'fd%'G(r,t;r',t') [H:_l%
X rir,) (2.11a)

and



\I;:)— )#(r,t)=\1/(p:)t(r’t)

+[° dt'fd3r’l

0
H —i—
’at'

*

XG(r',t';r,t), (2.11b)

where the W' are trial wave functions that have the
correct asymptotic behavior but that need not satisfy the
wave equation (2.2). These identities provide the basis for
the construction of variational principles for transition
amplitudes, as shown below [11].

A convenient representation of the S matrix defined in
Eq. (2.1) may be obtained using the identity (2.11a) for
the wave function, with the trial function \I/i,j) chosen to
be the modified plane wave X,". This incident wave
makes no contribution to the S matrix in Eq. (2.1) owing
to the presence of a rapidly oscillating logarithmic phase
factor in the integrand (See Sec. IIB of Ref. [8] for a
more detailed discussion of a very similar calculation.)
The contribution from the second term on the right in
Eq. (2.11a) is determined using Eq. (2.9b) to evaluate the
infinite-time limit. One finds in this way that

S(p',p)=—iT(p',p), (2.12)
where
’ — ® 3 — )% . a
T(p,p)—f_wdtfd r\I/;,, *(r,1) [H—I—E)?]
XX, F(r,e) . (2.13)

A variational generalization of this 7-matrix identity is
derived below.

The asymptotic form taken on by the scattered wave
‘T/;HE\P(;)—X ;,H may now be determined following
standard methods [12] suitably modified to allow for the
Coulomb boundary conditions [13]. Omitting details, we
find the form [14]

B, (r,0)~(2m) " [ “dEq exp[ —iEt1B(q,pir—al(t)) .
(2.14)

The projectile emerges from the collision region with a
distribution of possible energies since it can exchange en-
ergy with the external field; this is reflected in the pres-
ence of the energy integral in Eq. (2.14). The function
B(q,p;r) is a (Coulomb-distorted) outgoing-wave solution
of the time-independent Schrodinger equation. The ex-
plicit form is found to be

gD

AT(pp)= [ " di fa’r [ ar [ s
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B(q,p;r)~[(27)*%(—47’m)T(qr/r,p)]
/7

where the amplitude T is identical to the 7 matrix defined
previously in Eq. (2.13). The inclusion of the space
translation in Eq. (2.14) accounts for the fact that the
projectile interacts with the time-dependent external field
as well as the Coulomb potential.

Either of the wave-function identities shown in Eq.
(2.11) may be used as the basis for establishing a varia-
tional principle for the S matrix. We begin by introduc-
ing a trial wave function \lf;,j)=X LH +‘T/;j) whose
scattered-wave component has the asymptotic form
shown in Egs. (2.14) and (2.15), with the exact T matrix
replaced by a trial value T'.. Then, with

Ze’m

X exp |igr—i In(2gr) (2.15)

S,(p',p)= lim [ r x5, )% ir,0) (2.16)

one finds that S =—iT,, as may be verified [8] by
evaluating the limit in Eq. (2.16) with the trial function
replaced by its asymptotic form. [In taking the limit
t— o0 we may also let »— o since all results obtained
here are interpreted in terms of wave packets following
the classical trajectories (2.8).] We now introduce the
identity (2.11a) for the wave function into the defining re-
lation (2.1) for the S matrix. With the aid of Eq. (2.9b)
we arrive at the identity

S(p’,p)=S,(p’,p)

H—i2

—if_:dtfd3r \Il;,,_’*(r,t) £y

XWerr,e) . (2.17)

Finally, we replace the exact wave function in the in-

tegrand by the right-hand side of the identity (2.11b) and

make use of Eq. (2.12) to arrive at the decomposition
T=T, +AT. (2.18)

var

The variational approximation for the T matrix is

T,,(p,p)=T.(p,p)

+ 7 di [&Pr v {H—i%

XWrr,e) . (2.19)
The remainder, AT, is given explicitly as
) d
Sr,t) | Glr,t;r,t') lH'— Pyl AACARE (2.20)
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In the standard variational approach one introduces
trial functions sufficiently accurate so that the remainder
AT, of second order in the error in the trial functions,
may be neglected. Here we shall proceed somewhat
differently, seeking estimates of the remainder term by in-
serting suitable approximations for the unknown Green’s
function in Eq. (2.20). If the trial functions are accurate
at great distances the integral will converge rapidly and
the approximation for Green’s function need only be ac-
curate in the region near the target. This procedure will
be illustrated, in Sec. III A, in a derivation of a low-
frequency approximation for the T matrix. The simplify-
ing feature of this approach to scattering in a low-
frequency field lies in the possibility of using (space-
translated) field-free wave functions—either exact solu-
tions or approximations—as trial functions in the
external-field scattering problem. Trial functions of this
type are appropriate since they are accurate in the
asymptotic domain, where the low-frequency field has its
greatest effect on the motion of the projectile. For the
same reason the choice of a Green’s function which pro-
vides a good approximation in the neighborhood of the
target is simplified; in the electric-field gauge it is the
field-free Green’s function that provides a first approxi-
mation, with corrections of higher order determined by
an expansion in powers of the electric-dipole interaction.
(Thus the trial functions play the role of distorted waves
in a modified perturbation theory.) The applicability of
the variational method is, of course, not restricted to any
specific dynamical assumptions. A knowledge of the
boundary conditions is the basic requirement, and we
have seen that if the boundary conditions for the field-
free scattering process are known they may be modified
to apply to the external-field problem through the intro-
duction of a space translation, in the manner discussed
above.

III. LOW-FREQUENCY APPROXIMATIONS
A. Potential scattering

By way of introduction, and to establish notation, we
first consider the variational formulation of the field-free
scattering problem and apply the treatment developed in
Sec. II to this situation. Time-dependent trial functions
are to be chosen in the form

Wi (r,0)= exp(—iE t)up; (1), (3.1)

where the u;f) are trial solutions of the field-free wave

equation (h—E)u,~'=0. The transition amplitude is
given in terms of the exact ¢t matrix of the field-free prob-
lem by

T(p',p)=2m8(E, —E,)t(p’,p) 3.2)

a relation that expresses energy conservation in the ab-
sence of the external field. A variational identity for the ¢

J

S
+ [d’r [dr[(h

ol
tip,p)= e'P "y

—E e F. 7 (r')]*g(r',;E)(h —E,)e P F() (1)
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matrix is provided by the expression

t(p’,p)=t,,.(p’,p) +At(p',p), (3.3a)
where the variational approximation is
t..(p,p)=t.(p,p)
+ [dPrul*(Oh—Epult(r),  (3.3b)
with the remainder given formally by
p)=[d’r [d*r[(h—E u (D]*g(r,t;E,)
X(h'—Eyuy(r') . (3.3¢)

In arriving at this form for the remainder we have re-
placed the Green’s function in Eq. (2.20) by g(r,¢;1',¢),
the field-free version, which may be represented as

gr,;r,t)=2m) " [© dWexp[—iW(1—1)]

Xg(r, ;W) . (3.4)

Here g(r,r’; W)={(r|(W+ie—h)"!r'), the coordinate
representation of the time-independent resolvent opera-
tor, with € a positive infinitesimal parameter. With the
scattered part of the trial wave function at great distances
expressed as

a () ~@2m)

o1 2 f (pr/r,p)

2
X exp ipr—ize m In(2pr)

/r ) (3.5)

we find, from the field-free versions of Egs. (2.14) and
(2.15), along with Eq. (3.2), that the relation between the
trial ¢+ matrix and the conventionally defined scattering
amplitude is ¢ (p’,p)= —[4m*m |~ 'f (p',p).

It is sometimes convenient to adopt a simple form for
the trial function; the identity remains valid though the
term shown in Eq. (3.3b) need not be an accurate approx-
imation. We may choose, for example,

upy (1)=027) 2 explip-1)F\ (1) , (3.6a)
where
Fi,i)(r)— exp[ts‘“ (r)]{1— exp[ —B(pr Fp-1)*]} ,
(3.6b)

and where [ is an arbitrary positive constant. This func-
tion provides, asymptotically, the required logarithmic
phase shown in Eq. (2.4). By including a factor that van-
ishes sufficiently rapidly for |pr ¥ p-r| -0 we have can-
celled the logarithmic singularity in the phase factor,
leaving a function whose value and first two derivatives
are finite everywhere. It is therefore an allowable trial
function, with ¢ (p’,p)=0. The identity given in Egs.
(3.3) becomes, with trial functions chosen as in (3.6),

(r)]*(h—E,)e™"F\"(r)

(3.7)
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This result, a time-independent analog of the identity
shown in Eqgs. (2.18)-(2.20), will be referred to later on.

With the external field now assumed to be present we
choose the trial functions [14]

(£)
pT

Wi (r,1)=exp(—iE )ult [r—a(t)] . (3.8)

[Here the ul;’ are arbitrary field-free trial functions, not

restricted to the form shown in Eq. (3.6).] The function
defined in Eq. (3.8) is an allowable choice since it satisfies
the boundary conditions; from an examination of the am-
plitude of the outgoing wave at infinity we find that the
trial scattering amplitude, entering into the variational
expression (2.19), is given by

T.(p',p)=278(E,—E,)t.(p',p) . (3.9)
P P

We remark that in the weak-field limit, and with the
functions u:,f)(r) taken to be accurate approximations to
the field-free solutions, the trial functions (3.8) will be ac-
curate everywhere, not only asymptotically, and the vari-
ational approximation (2.19) will introduce an error of
second order in the error in the trial functions. (If the
functions u ;,f’ are exact field-free scattering solutions, the
variational approximation, evaluated to first order in the
charge of the electron, reproduces the exact single-
photon spontaneous bremsstrahlung amplitude, as is
readily verified.) As the field intensity is increased the tri-
al function (3.8) will not, in general, remain a good ap-
proximation. An estimate of the correction term AT,
given in Eq. (2.20), should then be included to retain an
accurate representation of the effect of the particle-field
interaction in the neighborhood of the target. This may
be accomplished using the modified perturbation expan-
sion reviewed below. The validity of such an approxima-
tion procedure depends, firstly, on the special properties
assumed for the field, namely, low frequency and
moderate intensity. One also requires the use of
sufficiently accurate “distorted waves,” such as those in-
troduced here, to properly account for the asymptotic in-
teractions. Otherwise, spurious near singularities arising
from poorly convergent spatial integrations may appear,
as demonstrated earlier [5].

In evaluating the variational approximation (2.19) we
adopt the simple form A(z)=a cosw? for the vector po-
tential, so that, from Eq. (2.6b), a(t)=a,sinwt, with

e
wmc

(3.10)

ag= —

The trial functions may then be expanded in Fourier
series. Consider the second term on the right in Eq.
(2.19), namely, the contribution

TV, p)= [ 7 dt [dPr W %(r,1) lﬂﬂ'%

X r,1) . (3.11)

After the Fourier transformation is introduced this term
becomes
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T(p',p)= 3 2a8(E,—E,—no)T"(p’,p),

(3.12a)
with
1 27 : _
(1)( ot -1 in@ 3 (—) _ :
T, ’(p',p) e fo dOe™ fd ruy,* (r—agsinb)
X(h—E,)u{l (r—a,sinb) .

(3.12b)

The index n is interpreted as the net number of photons
absorbed (n >0) or emitted (n <0) during the collision.
To obtain an estimate of the error term shown in Eq.
(2.20) we first introduce a gauge transformation of the
Green’s function that provides the basis for a modified
perturbation theory, as described below. Thus we write

G(r,t;r',t')=e/(¢/OAUVIG (1 1. ¢! t')e ~ile/OVALNT

(3.13)
The transformed Green’s function satisfies
17—% G(r,t;r',t")=—8(r—r')8(t—1¢t') , (3.14)
with
— V2
H=——+V(r)—eE(t)r, (3.15)
2m
and
E()=—L9A _ 9 Gt . (3.16)
c dt

The solution of Eq. (3.14) may be expanded (with integra-
tion variables suppressed) as

G=g+g(—iEr)g+ -, (3.17)

where g(r,¢;r',t') is the field-free Green’s function intro-
duced earlier in Eq. (3.4). For fields of moderate intensi-
ty, and in the absence of resonances, we may treat the
electric-dipole interaction as a perturbation in this expan-
sion since successive terms bring in higher powers of the
frequency. More specifically, we introduce the small pa-
rameters [15]

pi2m’ Tt op’ )

€

each parameter is treated as a quantity of first order, with
the electric-dipole interaction (suitably scaled) taken to be
of second order. It is one of the advantages of this
method that higher-order corrections may be introduced
in a systematic way. However, to simplify the present
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discussion, we shall work to first order in these small pa-
rameters. The term AT, defined in Eq. (2.20), may be ex-
panded as

AT= 3 278(Ey—E,—no)TP(p',p). (3.19)
With the definitions
|
(2)f out ~ it Zﬂd_e 20 d 6’
Tn (p'p)—n'szo 2 Jo 27 ©

As a first step in carrying out the sum over n’, while
maintaining first-order accuracy, we expand the time-
independent Green’s function as

g(E,+n'w)=g(E,)+g(E,)(—n'0)g(E,) . (3.22)

p

The contribution from the second term is transformed
through an integration-by-parts procedure, resulting in
the replacement

niwein'GK(p+)(r’9)__>ein'9 lw_a% K;H(r,ﬂ).

The required sums may now be performed using the rela-
tion

1 0
2 2

n'=—co

em 0= =5(0—9) . (3.23)

We find in this way that, to first order in the small pa-
rameters introduced in Eq. (3.18),

T,(,z)(p',p)=fozv%fd3rfd3r'K§,7)*(r’,9)
Xgo(r',5;E))K ) (1,6)
(3.24)

where a modified Green’s function has been introduced of
the form

golr',GE )= (3.25)

-1
. ,. O
Ep+ts+1w55—h] .

To summarize, we have obtained a first-order approxi-
mation for the amplitude T, for scattering with the ex-
change of n photons with the field. Combining Egs.
(3.12) and (3.24) we have

T,(p,p)=t.(p’,p)d,ot f:ﬂg—ge""eC(p',p;e) , (3.26a)

with
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K} (r,0)=exp | —iZa-rcosd |(h—E,)

Xuy (r—aqsinb) , (3.20)

and with only the first term in the expansion (3.17) re-
tained, we arrive at the approximation

xp[—i(n'—n)0'+in'0] [ d* [ d*r'K 7 *(r',0")8(r' 1, By +n'0)K P (x,6) .

(3.21)
-
Clp',p;0)= [d*r ul* (r—apsind)(h —E,)
Xu;,f)(r—aosinf))
+fd3rfd3r’K;,T’*(r’,9)
Xgo(r',E, K (r,0) . (3.26b)

The first term on the right in Eq. (3.26a) represents the
contribution from the trial transition amplitude, as deter-
mined from Eq. (3.9).

The differential cross section for scattering, summed
over all final states of the field, is given by the expression

do _ 2m)'m

- * 2 ’EI—E—
T s > fop dp'S(Ey —E,—naw)

n=—oo

X|T,(p’,p)I? . (3.27)

The approximation (3.26) is now adopted for 7,. The
sum over terms proportional to 8,, may of course be
evaluated trivially and we focus our attention on the
remainder. With the introduction of the 8-function rep-
resentation

B(Ep.—Ep—rM)):fjc %exp[i(EP,—Ep~nw)s] ,

(3.28)

the sum encountered in the evaluation of this remainder
may be performed using the identity (3.23). The contri-
bution to the cross section of the remainder term then
takes the form of an integral over final states of the ex-
pression

« ds .
f—mﬁ expli(Ey —E, )s |

2rdO , ,
Xfo 2. CH P, p;0)C(p,psO+ws) . (3.29)

With the quantity ws appearing in the argument of the
function C treated as a first-order term, the parameter s
being effectively limited in magnitude by the convergence
of the integral in which it appears, we make the replace-
ment

C(p',p;9+ws)EC(p',p;0)+wsa%9C(p’,p;0) . (3.30)
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The second term on the right makes no contribution to
the integral over 0 in the expression (3.29) since that con-
tribution, to first order in the small parameters, is of the
form

J "6 F(sing) coso=0 . (3.31)

In this way we arrive at the sum rule

do =(2‘17)4”1 ® 27 —
P fop dp'8(E, —E,)
2rd 0
x ’ [ 2
fo 5, [1-(Pp)+HCPp;0)2

(3.32)

accurate to first order. As a consistency check on this
approximation we note that the exact field-free cross sec-
tion is recovered in the limit of vanishing field intensity.
This may be verified by referring back to the identity
t=t,, + At given in Eq. (3.3).

To see more clearly the relationship between the
present formulation of the low-frequency approximation
for Coulomb scattering and that obtained by Kroll and
Watson [9] for the case of scattering by a short-range po-
tential we apply to the latter case the approximation pro-
cedure developed above, leading to Eq. (3.26). For the
trial function u,.(r) we choose the plane wave
(27) 732 exp(ip-r); this is acceptable since the boundary
conditions are thereby satisfied, with 7 _(p’,p)=0. With
go in Eq. (3.25) expanded out to first order in the frequen-
cy, the approximation (3.26) is readily evaluated as

T,(p',p)= fozvj—g exp[in@+i(p’—p)-aysind]

X 1(p'(6),p(6);E g)) - (3.33)

Here p(6)=p—{(e/c)acosf and t(p’,p; W), the off-shell
scattering amplitude, is defined as the momentum
representation of the scattering operator
[V+V(W+ie—h) 'V]. The approximation (3.33) was
obtained, in a different manner, by Kroll and Watson,
who went on to reduce it to a form involving the on-shell
¢t matrix. (An analysis of the domain of validity of such a
reduction was given in Ref. [15].) The approximation
(3.26) may then be understood to be a generalization of
the Kroll-Watson low-frequency approximation, allowing
for scattering from a potential with a long-range
Coulomb tail.

To lowest order, that is, with p’=p and with the re-
placement p(6)—p in the z-matrix arguments of Eq.
(3.33), that expression simplifies to

T,(p',p)=J_,((p"—p)ay)(p’,p;E,), (3.34)

involving the on-shell ¢+ matrix and the regular Bessel
function

J_,((p'—p)ay)= f:"g—: exp[in@+i(p’'—p)-aysinf] .

(3.35)

Equation (3.34) remains valid, to lowest order, in the
case where the potential has a Coulomb tail [16]. This
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may be verified by choosing the modified plane wave
shown in Eq. (3.6a) as trial function. Then Eq. (3.26),
with ¢ (p’,p)=0 and with terms of first order neglected,
leads directly to Eq. (3.34). We arrive at this result with
the exact field-free ¢ matrix represented by a version of
the identity (3.7) in which the replacement

FiH (1) F{P (r—aysinb) (3.36)

has been made. This replacement leaves the asymptotic
behavior of the trial functions, and hence the validity of
the identity, unaltered.

B. Laser-assisted (e,2e ) reaction

The procedure described for generating a low-
frequency approximation for scattering by a center of
force in the presence of a laser field may be generalized to
apply to a wider class of problems. As an illustration, we
consider the process of electron-impact ionization of an
atom, taken here to be hydrogen for simplicity. Given
sufficiently accurate trial functions appropriate to scatter-
ing in the absence of the field, they may be adapted, by
means of a coordinate translation, for use in a variational
calculation of the laser-assisted transition amplitude.
Fortunately, a trial function is available that has a rela-
tively simple form incorporating the correct Coulomb
boundary conditions. That function, when used in a non-
variational calculation of the field-free ionization ampli-
tude [10], leads to impressive agreement with experiment
in a range of scattering energies above 100 eV, yet below
values at which the Born approximation is adequate.
One has reason to expect, therefore, that the approach
described below may provide some improvement over
methods proposed earlier [4,17], based on the Coulomb-
Born approximation, with field effects incorporated
through the introduction of a Volkov phase factor.

In the scattering problem under consideration an elec-
tron with initial momentum p strikes a hydrogen atom
initially in its ground state, with wave function and ener-
gy denoted as ¢(r,) and Ejp, respectively, in the presence
of a low-frequency laser field. We look for the amplitude
T(p’,q';p) for the transition in which the atom is ionized,
with the two electrons emerging in the final state with
momenta p’ and q'. The formulation of the external-field
scattering problem given in Sec. II is readily extended to
allow for a composite target. The initial-state trial func-
tion is chosen as [14]

Wi (ry,1,,t)=(2m) "3 2 exp{ip-[r,—a(t)]}

X exp i% A(t)r,—iE;t |6(ry), (3.37)

with E;=E_,+E;. Here we have introduced an approxi-
mation for the target wave function in the presence of the
field, arrived at by transforming to the electric-field gauge
and retaining only the leading term in the perturbation
expansion of the wave function in powers of the electric-
dipole interaction. This approximation procedure, which
is in close formal analogy with our earlier treatment of
the Green’s function in Eq. (3.17), will be accurate for
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photon energies small compared with characteristic tar-
get excitation energies. For simplicity the effect of the
projectile-target interaction is ignored in the construction
of the initial-state trial function. (In doing so we lose the
variational property, so that a first-order error in the
final-state trial function will introduce a first-order error
in the calculated transition amplitude, even in the ab-
sence of the external field.)

In preparation for the introduction of our choice of
final-state trial function we first consider the field-free
problem. A form that satisfies the Coulomb boundary
conditions and accounts in an approximate way for the
long-range pairwise Coulomb interactions can be taken as
(18]

W ()1, 1) =(27) Pexpli(p'r,+q' 1)) —iE 1]

(3.38)

Xy r)my (r)n(y ()

Here the function 7} '(r,), for example, is defined by ex-
pressing the continuum wave function for electron 1 in
the Coulomb field of the proton as

Wi (r))=(2m) "3 2 explip’-r,)n| " A1) . (3.39)

The function 15~ is similarly defined, as is 7}, ’, the

latter expressed in terms of the relative momentum of the
two-electron system in its center-of-mass frame. [The re-
quired antisymmetrization is not explicitly indicated in
Eq. (3.38) and in the following; in fact exchange effects
are expected to be small in the range of scattering ener-
gies appropriate to this approximation.]

Returning now to the laser-assisted scattering problem
we introduce an identity for the transition amplitude,
given in terms of the exact final-state wave function, as
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T(p',q5p)= [~ dt [d’r, [dPr, 07"

ot

(r),rpt),

XWPr (3.40)

which is just the three-particle generalization of the iden-
tity given in Eq. (2.17), with the trial T matrix taken to be
zero as required by the form of Eq. (3.37). An approxi-
mate final-state trial function may be obtained from the
function shown in Eq. (3.38) by making the replacements
r;—r;—al(t), j=1,2. The field-modified boundary con-
ditions are thereby satisfied and wave packets constructed
from functions of this form will be concentrated about
the classical trajectories. The explicit form for the ap-
proximate T matrix resulting from this choice is

T(p',q';p)= fjwdtfd3’1
X [ d3r, Wy *(r—alt),r,—alt),1)

X VW (r,,1,1), (3.41)

with V,=—e2/r,+e?/r;,—eE(t)r,, The (second-
order) electric-dipole interaction term shown here will be
dropped in the following. The generalization of this ap-
proximation to allow for a nucleus of charge Z > 1 is ob-
tained, in the obvious way, by replacing the plane wave in
the initial-state trial function by a Coulomb-modified
plane wave.

The integrand in Eq. (3.41) may be expanded in a
Fourier series. This leads to the representation

_ 1 27 , . e
T,=(2m) 9/25;1'0 d(?fd3r,fd3r2 exp(z[n6—p-a0sm0+:a-rzcose])

X exp{ —i[p’'-(r,—

Xn(l_ )*(r]

—a,sind)ny”

T(p',qp)= 3 278(E;—E,—no)T,, (3.42)
with
J
a,sinf)+q'-(r,—a,sinb)]}
* (£, —aysind)n'y (1) —e2/r, +e2/rple T T dr,) .
(3.43)

The spatial integral appearing in Eq. (3.43) is similar in
form to that evaluated in Ref. [10], reducing to it in the
limit of vanishing field intensity. The calculation is com-
plicated by the presence of an additional integral over the
angle 6. That integration may be interpreted as an
averaging of the transition amplitude over the phase of
the field, with the scattering assumed to be completed in
a time short enough compared with the period of the field
that it may be thought of as taking place instantaneously.
The effect of the field, in this picture, is to shift the elec-
tronic configuration by an amount determined by the
classical displacement of the particle in the presence of
the electric field alone. The time plays the role of a pa-

f

rameter here, rather than of a dynamical variable, and
this is the essential simplification achieved by the intro-
duction of the low-frequency approximation. A similar
interpretation may be given to the low-frequency approx-
imation for potential scattering shown in Eq. (3.26). This
latter result includes a correction term, the second term
on the right in Eq. (3.26b), that accounts, approximately,
for the error in the final-state trial function. The corre-
sponding term for the (e,2e) reaction could be included
formally but would be more difficult to evaluate. In omit-
ting this correction term we have assumed that the
postcollision interactions play a dominant role in the
field-free scattering problem and that they are adequately
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described by the final-state trial function shown in Eq.
(3.38), as may be inferred from the calculations of Ref.
[10]. It has also been assumed that for moderate intensi-
ties the low-frequency field has its greatest effect on the
asymptotic motion of the electrons (as a result of the near
degeneracies that exist between adjacent states of the sys-
tem differing in the number of soft photons present in the
field), and that these asymptotic interactions are accu-
rately accounted for by the space-translation procedure.
We note, finally, that a sum rule for the ionization cross
section, based on the approximation (3.43), is readily ob-
tained by following the procedure outlined earlier in the
derivation of the analogous sum rule for potential scatter-
ing shown in Eq. (3.32).

IV. DISCUSSION

The problem of scattering by a potential with a long-
range Coulomb tail, in the absence of an external field, is
usually treated by introducing distorted waves in the
form of exact solutions for scattering by the unmodified
Coulomb potential. Such a procedure is not generally
applicable; for example, exact final-state Coulomb solu-
tions are not available for the calculation of electron-
impact ionization amplitudes. Coulomb scattering in an
external field provides another example in which exact
distorted-wave solutions are unknown. The variational
method, based on the introduction of trial functions hav-
ing the correct asymptotic form, provides a convenient
procedure for dealing systematically with such problems.
Given the correct boundary conditions appropriate to
scattering in the absence of the field, the modification re-
quired to include the effect of the field may be introduced
by means of a simple (Kramers-Henneberger) coordinate
translation. This procedure is readily incorporated into
standard time-dependent scattering theory, as shown in
Sec. II. Derivations of low-frequency approximations
were given in Sec. III as illustrations of the applicability
of the method to problems of current interest. The ap-
proximation obtained for potential scattering reduces, to
lowest order in an expansion in the small parameters
defined in Eq. (3.18), to the same form as that obtained
for scattering by a short-range potential. That result,
shown in Eq. (3.34), involves the physical (on-shell) field-
free scattering amplitude. The more accurate approxima-
tion given by Eq. (3.26) cannot be evaluated in terms of
on-shell parameters alone. In contrast, the scattering am-
plitude appearing in the Kroll-Watson approximation for
scattering by a short-range potential, is on the energy
shell. This distinction reflects the fact that the two long-
range interactions—arising from the presence of both the
laser field and the Coulomb tail—cannot be treated in-
dependently. The field induces a distortion of the

Coulomb wave function at great distances, taking the
form of the space translation shown in Eq. (2.6). Failure
to account for this effect in calculations can lead to nu-
merical inaccuracies.

The procedure leading to the low-frequency approxi-
mation for the laser-assisted (e,2e) reaction could easily
be modified to apply to the (computationally simpler)
process in which a negative ion is placed in a superposi-
tion of two laser fields. One field is taken to be weak and
of frequency high enough so that two electrons may be
ejected by single-photon absorption; this final state is
then ‘“dressed” by the presence of an intense low-
frequency field. A variational formulation of a two-color
ionization processes of this type can be developed in anal-
ogy with the treatment given earlier of the process in
which a single electron is ejected [19]. The final-state tri-
al function shown in Eq. (3.38) and adopted, after appli-
cation of the space-translation method, in the derivation
of Eq. (3.43) would be appropriate for use in such a calcu-
lation.

An important feature of the variational method lies in
the fact that it provides an explicit expression for the er-
ror in the approximation. In the present formulation of
the low-frequency approximation this expression is pro-
portional to an integral that converges rapidly enough so
that it is nonsingular in the zero-frequency limit. One
can then be confident in assigning an estimate to the or-
der of the error term. The accuracy of the asymptotic
solutions is crucial in this regard; with less accurate solu-
tions one must account for the possible appearance of
near singularities [5] that can complicate the task of es-
timating the order of the error integral.

The methods described here are applicable, in princi-
ple, to the treatment of the multiphoton ionization of a
neutral atom. The long-range nature of the Coulomb po-
tential manifests itself here not only in the asymptotic
form of the final-state wave function but also in the ap-
pearance of intermediate-state resonances, and special
care must be taken to properly include such resonance
effects. Isolated resonances can be accounted for by stan-
dard methods, but the close spacing of bound states
below the ionization threshold may require the introduc-
tion of new techniques. It seems likely that variational
methods, such as that described here, can provide an ap-
propriate framework for the development of such tech-
niques.
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