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We present a detailed theoretical investigation of the transmission spectrum of a probe beam interact-
ing with atoms in a one-dimensional optical molasses obtained with linearly cross-polarized counterpro-
pagating pump beams. The study is performed for a Jg =

—,
' ~J, = 2

atomic transition in the limit where

the Hamiltonian part of the atom-field coupling is predominant over the relaxation part. We analyze the
stimulated Rarnan transitions occurring between different vibrational levels of the atoms in the periodic
potential created by the light shifts, and we show a dramatic lengthening of the damping time of coher-
ences between such levels due to the Lamb-Dicke effect. Very narrow Rayleigh resonances with a shape
sensitive to the probe polarization appear for a probe frequency close to the pump frequency. We inter-

pret these resonances in terms of scattering of the pump waves on density and magnetization gratings,
and show that they provide important information about the dynamics and localization of atoms at the
bottom of the potential wells. Such information should also be accessed by phase-conjugation experi-
ments. Finally, indications on the treatment of other atomic transitions are given.

PACS number(s}: 32.80.Pj, 32.70.Jz, 42.65.—k

INTRODUCTION

It is well known from both a theoretical and an experi-
mental point of view that the potential wells created by
the light shift may be used to trap atoms. Theoretically,
Castin and Dalibard [1] have predicted that in the case
where two counterpropagating cooling beams have or-
thogonal linear polarizations (linllin polarization) the
light shifts experienced by the atomic Zeeman sublevels
lead to a periodic potential which gives rise to atom local-
ization on the wavelength scale and to an energy-band
structure for the atoms. Experimentally, Westbrook
et al. have demonstrated the existence of localization in
three-dimensional (3D) optical molasses by observing a
Dicke narrowing of the fluorescence [2]. More recently,
Verkerk et al. [3] have studied the probe absorption by a
1D cesium optical molasses made from two counterpro-
pagating linearly cross-polarized beams. They have ob-
served narrow resonances which can be attributed on one
hand to Raman transitions between different bands and
on the other hand to Rayleigh resonances which provide
information about the localization and the dynamics of
atoms in the potential wells. One particularly important
and surprising feature of these resonances is that their
widths are more than one order of magnitude smaller
than the optical pumping rate. The aim of this article is
to give a detailed description of the position and the
shape of the resonances that can be observed on the
probe transmission and on the probe phase-conjugate
reAection. Our theoretical investigation is based on the
band model of [1] and is performed for a Jg =

—,
' ~J, = —',

atomic transition. In Sec. I we first recall the most im-
portant features of atoms interacting with two linllin
pump beams (geometry of Sisyphus cooling) which are

essential to understand this paper. We then give a quali-
tative interpretation of the characteristic evolution times
(associated with the width of the resonances) for two lim-
iting cases. We first show that in the limit of &rong atom
localization a dramatic lengthening of effective lifetimes
for some atomic variables occurs bee@use of the Lamb-
Dicke effect. Another effect invckving highly excited
states for the external degrees of freedom takes place in
the limit of weak atom loca~ation and leads also to very
long damping times for some atomic variables. These
effects are at the origin of the very narrow widths ob-
served in the experiment. In Sec. II we turn to a more
rigorous analysis and we discuss in detail all the impor-
tant features of the resonances. We finally give some
ideas about the treatment of this problem in the case of
other atomic transitions.

Our aim here is to extend the formalism of [1] to the
case of pump-probe experiments. Our theoretical
description is to first order in the amplitude of the probe
field. We are thus in a situation where the linear-
response theory can be applied [4]. In such a situation,
the probe excites some particular evolution modes of the
atom in the 1D optical molasses but does not modify its
dynamical characteristics. For example, the widths of
the resonances obtained in pump-probe experiments only
depend on the dynamics of the atoms in the 1D optical
molasses in absence of probe. The various shapes of the
transmission spectra obtained for different polarization
configurations of the probe arise from the different
dynamical evolution modes of an atom in a 1D optical
molasses that are excited by the probe in each polariza-
tion configuration.

By comparison with earlier theoretical descriptions of
pump-probe interaction in cold atomic vapors [5], we do
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not assume a particular form for the momentum distribu-
tion (this could be achieved through the interaction with
a reservoir at temperature T). In contrast, the popula-
tion distribution in the different Hamiltonian eigenstates
arises from the interaction of the atom with the incident
fields and is thus a dynamical variable in our approach.
Also the choice of molasses polarizations that we study
here puts the emphasis on the bound states of the atoms
in the optical potential wells while the recoil-induced res-
onances of [5] are actually associated with Raman transi-
tions between continuum states.

(Fig. 1):
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and
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I. ATOMS IN THE PRESENCE OF THE PUMP BEAMS

A. Presentation of the model
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We consider the simple case of a 10 optical molasses
in the geometry of Sisyphus cooling for an atomic transi-
tion between a Jg =

—,
' ground state and a J, =—', excited

state [6-8]. The cooling field results from the superposi-
tion of two counterpropagating pump waves of wave-
length A. =2m/k, traveling along the +z and —z direc-
tions. These waves have the same frequency co, the same
amplitude Ep, and are polarized along Ox and Oy, respec-
tively. The resulting polarization of light exhibits a spa-
tially periodic gradient of ellipticity: for a convenient
choice of phases, it is circularly polarized o at z =0,
linear at z =A, /8, circularly polarized o+ at z =1,/4,
linear at z =3k, /8, . . . (Fig. 1).

The effect of the interaction between an atom and this
field can be split into two parts [9].

(i) On one hand, the reactive part associated with light
shifts results in a sinusoidal periodic potential U+'(z) de-
pending on the atomic ground-state sublevel ~g, +) [1]

where 0= 2dEO—/fi is the resonant Rabi frequency
which characterizes the coupling between the atomic di-
pole d and the field, I is the natural width of the atomic
excited state, and h=co —co& is the detuning between the

pump beams (co) and the atomic (co„)frequency (we as-
sume 5 &0, atomic cooling occurring on the red side of
the resonance). This reactive contribution may be
characterized by the oscillation frequency A„ofthe
atoms at the bottom of a potential well U~+'(z). For ex-

ample, near z =0 the potential U' '(z) can be approxi-
mated by U' '(z) with

U'"'(z) = —-'U, + U, k'z'
2

and the characteristic oscillation frequency 0„is given by

2 Up

~
&ER/Uo

where Elt =R k /2M is the atomic recoil energy, M be-

ing the atomic mass.
(ii) On the other hand, the dissipative part of the

atom-field interaction accounts for processes where ab-
sorption of a laser photon is followed by spontaneous
emission. These processes are in particular responsible
for real transitions between ~g, + ) and ~g,

—) (optical
pumping) which give rise to finite lifetimes of the
ground-state sublevels and interrupt the oscillating
motion of the atoms in the potential. This contribution is
characterized by the optical pumping rate pp 9I sp. It
should be noticed that yp characterizes the transfer rate
between the two Zeeman sublevels. If one wishes to cal-
culate at which rate an atom scatters radiation from the
incident field, one should rather use

(b) r =rs, . (6)

FIG. 1. Polarization gradient in a linllin 1D optical molasses
and associated light-shifted Zeeman sublevels for a
J~ =

2
~J,= 2

atomic transition. (a) The cooling wave results
from the superposition of two linearly cross-polarized counter-
propagating beams having the same intensity and wavelength A,.
The resulting polarization exhibits a space-dependent ellipticity.
For a convenient choice of phase of the cooling beams, it is a
for z =0, linear along (e„—e~ )/&2 for z =A, /8, o+ for z =1,/4,
linear along (e„+e~)/&2 for z = 3A, /8. (b) The spatial modula-
tion of ellipticity results into a spatially periodic (period k/2)
modulation of the energies of the light-shifted ground-state Zee-
man sublevels.

The difference between I" and yp arises from the fact that
an atom can return to its initial sublevel through an
absorption-spontaneous emission cycle, the multiplicative
factor —,'between yo and I" (go= —', I") being associated
with the particular Clebsch-Gordan coefticients of the
Jg 2

~J
2

transition.
Since we want to describe the properties of localized

cold atoms, we restrict ourselves to the regime where the
reactive part of the atom-field coupling is predominant
over the dissipative part

Q, »I"
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and to the low saturation domain

p2
H' '= + U'"(Z)Ig, —) &g,

—
2M

+ U',"(Z)~g, + )(g, + ~, (9)

where P and Z are the momentum and position operators
of the atomic center of mass. This Hamiltonian contains
the atomic kinetic energy and the reactive part of the
atom-field coupling and is completely characterized by
only one dimensionless parameter Uo/E„. Due to the
periodicity (1,/2) of the potential, the energy spectrum of
the atoms displays a band structure similar to the one of
electrons in a crystal. Following the Bloch theorem [11],
the associated eigenstates can be labeled as

~ n, q, p ) where
n is a positive integer labeling the band, and where p=+
stands for the internal state g, + ). q is the Bloch index
which lies within the first Brillouin zone (

—k &q &k)
and takes only discrete values when periodic boundary
conditions in a box of finite size (an integer number of the
potential period l(, /2) are used.

As will be shown in Sec. II, wave functions ~n, q, p) are
very convenient for numerical calculations. However,
these completely delocalized eigenstates are not suited to
describe atoms of band n localized near the bottom of a
given potential well. This situation, well known in the
tight binding approximation for electrons in a crystal,
can be described by a linear combination of the Bloch
functions ~n, q) of band n (Wannier function). For
sufficiently deep potential wells and for small values of n,
the Wannier function roughly corresponds to an eigen-
state of the Hamiltonian of an atom in a single well-
defined potential well. Such a state should have a spatial
extension hz very small compared to A, /2. It then corre-
sponds to the intuitive representation of an atom well lo-
calized at the bottom of a potential well. In this regime,
called Lamb-Dicke regime, the potential U' '(z) can be
approximated near z =0 by the harmonic potential given
in (4). The Wannier function and the energy of the
lowest bands are then approximated by the correspond-
ing wave function and energy of the harmonic oscillator
of angular frequency 0, . Because the extension Az of the
harmonic oscillator wave function scales as QA'/MQ„,
the small parameter characterizing the Lamb-Dicke re-
gime is

ER

Uo

1/4

«1. (10)

sp «1
which have been proved to lead to the lowest tempera-
tures [10]. Condition (8) indicates that atoms remain
mainly in the internal ground-state sublevels. Condition
(7) means classically that an atom oscillates many times
at the bottom of the potential before its oscillating
motion is interrupted by an absorption-spontaneous emis-
sion cycle. For a given depth of the potential Uo, this
condition is fulfilled in the limit of large detunings h.

In this regime, all the physical phenomena can be in-
terpreted by means of the eigenstates of the Hamiltonian
H' ' associated with the potential U+'(z):

The use of Wannier functions instead of Bloch functions
is certainly appropriate when the tunneling rate from one
well to another is much smaller than the effective lifetime
of an atom in a given state caused by absorption-
spontaneous emission processes.

As will be shown in the following, a localized atom in a
bound vibrational level of the optical potential presents
some typical characteristics in the Lamb-Dicke regime
when (7) and (8) are fulfilled. The pump-probe transmis-
sion spectra reported in [3] display ultranarrow reso-
nances which demonstrate the occurrence of damping
rates much smaller than the typical optical pumping rate
I". This result is very surprising since one would expect
both the populations of the vibrational states and the
coherences between different bands to decay with a rate
similar to the absorption-spontaneous emission cycles
which occur at the rate I". In order to understand the
origin of these narrow resonances, we first aim at giving a
qualitative interpretation of the typical damping rates of
some atomic variables. We distinguish two limiting cases
of strong and weak atom localization and we show that a
dramatic lengthening of the atomic lifetimes can occur in
both situations.

B. Inhuence of localization on damping rates
of populations and coherences: The Lamb-Dicke eB'ect

We show here that in the case of sufficiently deep po-
tential wells, localization of atoms at the bottom of the
potential wells is responsible for a spectacular lengthen-
ing of the relaxation time of populations and coherences.
Let us consider a bound state having an atomic wave
function well localized near the bottom of the potential
U' ' where the resulting trapping wave is ~ polarized
and the internal atomic state is ~g,

—). At this location,
the prevailing process undergone by the atom is absorp-
tion from the Zeeman sublevel ~g,

—) to ~e,
—

—,
' ) frotn

where it can only return to ~g,
—) (because the Clebsch-

Gordan coefficient of the transition is equal to 1). The
probability of escaping from U' ' to a band of U'+' is
small because the transition probability of going from
U' ' to U'+' depends on the amount of the o+ component
over the spatial extension of the atomic wave function,
which is here very small. Furthermore, the probability of
reaching another vibrational band of the potential U' ' is
reduced by the Lamb-Dicke effect, similarly to the case of
trapped ions [12]. More precisely, the transfer of
momentum ( =8k) in the scattering process is small com-
pared to the width in momentum space of the initial vi-
brational wave function ( =QAMQ„)because Ett « fiQ,
[see Eq. (10)]. The atomic state at the end of the scatter-
ing process has then a very small overlap with the other
vibrational wave functions and has a probability close to
1 to coincide with the initial wave function. The damp-
ing rate of the populations of the lowest bands is thus
considerably reduced because several absorption-
spontaneous emission cycles are needed to induce a
transfer onto other levels. Similarly, coherences between
two vibrational states at the bottom of the potential well
are only destroyed after several absorption-spontaneous
emission cycles.
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r'„"=7,(y„~sin'(kz)~y„), (12)

which involves the average of the 0.+ component of the
light over the atomic wave function. For the lowest
bound states, we can use sin (kZ)=k Z which, using
the well-known value of (P„~kZ ~P„)for a harmonic
oscillator [(P„~kZ ~P„)=(n+ ,')haik /M—Q, ], yields

I'„"=y o n +—+Ex / Uo .
2

(13)

We now consider the transition rate from ~g,
—) ~P„)

to another state ~g,
—) ~P ) of the same potential well.

This transition may be written as

r„=r'[[(P„[cos(kZ)e'& (Q ) ('

+(—,'(P„(sin(kZ)e'i' (P ) )z], (14)

where p is the component of the wave vector of the spon-
taneous emitted photon along the z axis and the symbol
( ) describes the average over the direction of emission of
the photon. The first term of the right-hand side of (14)
corresponds to the absorption of a o. photon followed
by the emission of a o photon and the second term to a
process where two cr+ photons are involved. The factor
3

in the second term is the square of the Clebsch-Gordan
coefficient coupling g, —) to

~
e, +—,

' ).
The transfer rate to any level num is readily obtained

by summing (14) and using the closure relation

I ~„'=r'[(P„~cos(kZ)+ —,'sin (kZ)~P„)

—
I ( P„~cos( kZ) e'

—P ( P„(sin(kZ)e '~
( Q„)f ] . (15)

To obtain a rough estimate of I'„',we simply assume in
this section that the photons are emitted along the z axis
(with an equal probability in the +z and —z directions).
Expanding cos(kZ), sin(kZ), and e' and their products
up to order k Z, Eq. (15) yields

I'„'= —", I"( n + ,' )QE„/Uo . — (16)

By summing (13) and (16), one finds that the effective
departure rate I'„from level ~g,

—)j8I ~P„)is on the or-
der of

In the Lamb-Dicke regime where the wave functions of
the lowest bands can be approximated by those of an har-
monic oscillator, it is possible to estimate the order of
magnitude of these damping rates. We first consider the
transition rate from ~g,

—)s ~P„) [where ~P„) is the
eigenstate of the harmonic oscillator located around z =0
and having energy (n + —,

' )iriQ, ] to any ~g, + ) state. Be-
cause the light polarization eo of the pump at a point z is
[8]:

eo= cos(kz)e i —sin(kz)e+

(where e and e+ respectively correspond to the o and
o + circular polarizations), the average transfer rate from
~g,

—) ~P„)to the ~g, + ) states is

I'„=I"(n+ ,')Q—Ex/Uo . (17)

n+ +
2

(19)

or equivalently

EI"„=I"(n+m +1)
V

(20)

The considerable lengthening of the coherence relaxa-
tion time is due to an important transfer of coherence
during an absorption-spontaneous emission cycle [14]. A
semiclassical picture of the lengthening of the coherence
relaxation time may also be given. This relaxation time
describes how rapidly the phase of the oscillation of the
atom in an optical potential well is lost. For an atom os-
cillating at the bottom of the potential well, the oscillat-
ing motion is interrupted by absorption-spontaneous
emission cycles. However, the atom essentially returns to
the potential well it has left (because the Clebsch-Gordan
coefficient connecting ~g,

—) and
~ e, —

—,
' ) is equal to 1)

with only a small change of momentum. If this change of
momentum remains small compared to the average
momentum, the atomic motion is only slightly perturbed
and it thus takes several absorption-spontaneous emission
cycles before the oscillation is interrupted or loses the
memory of its initial phase.

In conclusion, the preceding analysis shows that one
should expect a considerable lengthening of T, and T2
relaxation times for atoms in bound vibrational levels in
the limit of deep potential wells. The lengthening of
these relaxation times shows also that the boundary be-
tween the "oscillating regime" and the "jumping regime"
[10] may sometimes be subtle. For example, it seems
reasonable to consider that the system is in the oscillating
regime in state ~n ) if Q„&&I'„(theatom oscillates dur-
ing several periods before it actually leaves the state ~n ) )

even if Q„«I ' (the experiment of [3] was in fact realized

This rate is smaller than the optical pumping rate I '
by a

factor on the order of QER /Uo for the lowest bound
levels. Experimentally, it is easy to achieve values of
Uo/E„of the order of 1000. In these conditions, the
effective lifetime of the lowest bound states is lengthened
by a factor of the order of 30. Because the atom actually
scatters photons at a rate I", this means that the dom-
inant process is elastic scattering. For the figures con-
sidered above, one can estimate the number of elastic
photons in the fluorescence spectrum to be on the order
of 95% of the total number of scattered photons for the
lowest bound states [13].

Because QUO/Ex =RQ, /2Ex, one may rewrite (17)
in the following form:

EzI'„=I"(2n + 1)
V

Finally, using the same method, one can find the
effective relaxation rate I'„ for any coherence O.„be-
tween localized states n and m at the bottom of the po-
tential well. The corresponding result is
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in this situation). In this case, one has an oscillating re-
gime near the bottom of the potential well and a jumping
regime above.

C. Damping rates for atomic variables
involving continuum states

tU (p) =cos(QA. IDop),

with

~Do2

Po

(22)

(23)

where po denotes the typical momentum associated with
the typical highest continuum state excited by the probe
beam. As shown in Sec. II E4(a), a typical value is

po =100fik. It gives A, =10 I", which is much less than
the Lamb-Dicke estimate (17) applied to the case of shal-
low optical potentials. It can be noticed from (21) that
these very long damping times for the populations are as-
sociated with the very slow diffusion-induced relaxation
in momentum space of a mode excited by the probe, in a
regime where the cooling friction force is unefficient.
Note, however, that our theoretical investigation does
not take into account the Doppler cooling friction force

We show here that in the limit of shallow optical po-
tentials where the population of the continuum states is
not negligible, a lengthening of the relaxation time of
populations of a different kind is expected. Our analysis
is based on a semiclassical description of the atoms simi-
lar to the one of [10] where the atomic system is charac-
terized by a Wigner representation w+(z, p, t) of the den-
sity matrix reduced to the ground-state Zeeman sublevels
~g, +). The dynamical properties of the atomic system
are then represented by a Fokker-Planck evolution equa-
tion for the distributions w+. In particular, the eigenval-
ues of the associated Fokker-Planck operator give access
to the damping time constants of the populations.
Nonetheless, it is not sufficient to calculate the whole
spectrum of the Fokker-Planck operator to have an im-
mediate estimate of the widths of the resonances in the
probe transmission spectrum. Indeed, as previously em-
phasized, only a few number of evolution modes are ex-
cited by the probe beam and are of interest in the probe
transmission spectra. As will be shown in detail in Sec.
II E4 the probe can excite eigenfunctions of the Fokker-
Planck equation which satisfy the equation

0 w
Aw =Do (21)

Bp

where Do= —,",I k I"=A k I"/2 is the momentum
diffusion coefficient, w is the eigenfunction, and —I, is the
associated real negative eigenvalue. In order to deter-
mine the actual form of w, it is necessary to associate Eq.
(21) with boundary conditions which take into account
the characteristics of the probe interaction. It turns out
teat the probe excitation exhibits a cutoff in the momen-
tum space for a value po which is independent on the po-
tential depth Uo, provided that the potential is
sufficiently shallow (see Sec. II E 4). This property yields

(characterized by a friction coefficient aD). This eff'ect

actually constrains the damping rate of the populations
to be larger than aD/M, and thus puts a lower limit on
Eq. (23). It may be noticed that this influence of the con-
tinuum states on the dynamical properties of atoms in 1D
optical molasses occurs in a range of parameters close to
the threshold of the sub-Doppler cooling mechanism.

O' =L '0 (24)

where L is an operator acting on the density matrix. This
operator describes the interaction between atoms and

pump beams and encloses all the dynamical properties of
the atomic medium. In particular, the eigenvalues of L
represent the damping and evolution rates of populations
and coherences. Note, however, that the eigenmodes
generally involve a large number of density matrix ele-
ments, so that it is not possible to associate a damping
rate to a given population or coherence. As will be
shown in Sec. II, these eigenmodes and eigenvalues play a
key role in the description of all the dynamical properties
of the atoms, and are the central point of our theoretical
treatment.

II. ATOMS IN THE PRESENCE OF THE PROBE BEAM

A. General

In addition to the cooling pump beams, a weak probe
beam of amplitude E and frequency co =co+ 5 (

~
5~ ((co)

propagating along the +z direction is sent through the
atomic medium (Fig. 2). The linear polarization of the
probe e can be either parallel (along Ox) or orthogonal
(along Oy) to the one of the pump beam which propa-
gates in the same direction. In the following, we will
refer to these two polarization configurations as the R =

~~

and l configurations. Because we consider a pump-probe
experiment, all the quantities which appear in this section
will be written to first order in the small parameter:

E ((1 . (25)

We thus study the linear response of the system to the
probe. In the experimental situation of Fig. 2, one may
have access to several physical signals. We study two of
them in the following. The first one is the variation of
the probe transmission versus co . The second one corre-
sponds to four-wave mixing optical phase conjugation
[15]. This process is associated with absorption of pho-
tons from the counterpropagating cooling beams,
amplification of the probe and generation of a wave of
frequency 2' —co propagating in the direction opposite
to the direction of the probe. Such a wave can be detect-

D. Dynamical properties of the atomic medium

As shown in [1],it is possible to write a Bloch equation
for the ground-state part 0 of the density matrix taking
into account both the internal (Zeeman sublevels) and the
external (center-of-mass position and momentum) atomic
degrees of freedom. It is convenient to write this equa-
tion in the form
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ep

PD1 where the index PC refers to the phase-conjugate polar-
ization and direction [18].

All the experimental techniques considered above
(probe transmission, optical phase conjugation, or
fluorescence) thus give access to the dynamics of the 1D
optical molasses. However, each of these experiments
may be sensitive to a different combination of the eigen-
modes. For example, the eigenmode associated with the
steady state which has an infinite lifetime is only detected
through the elastic part of the fluorescence spectrum.

FIG. 2. Schematic experimental setup for pump-probe exper-
iments. In addition to the cooling wave at frequency co, a weak
probe beam having linear polarization e~ and frequency su~ is
sent through the atomic medium (represented by a graduated
sphere). By monitoring the probe intensity with photodiode
PD1 as a function of the probe frequency, one has access to the
probe transmission spectrum. The phase-conjugate rejected
beam (frequency 2' —co~) can also be measured by means of
photodiode PD2 (and of a plate located on the path followed by
the probe beam).

ed by introducing a plate on the path followed by the
probe (Fig. 2). Recently, such a signal has been observed
in experiments on 1D optical molasses [16].

In the linear regime [4], the characteristics of the sys-
tem (position of the resonances, damping times, etc.) are
only determined by the unperturbed eigensystem of the
Bloch equation (i.e., in the absence of a probe). The in-
formation that can be obtained from such a situation con-
cerns the dynamics of the 1D optical molasses. More
precisely, the direct application of the linear-response
theory shows that the transmission of the probe beam of
frequency co can be calculated from the Fourier com-
ponent at frequency co of the function
8(r)( [Dz (0),D~ (

—r) ] &. In this expression 8(r) is the
Heaviside function [8(r)=0 if r(0 and 8(r)=1 if
r&0], D~+=(d+ e~)e'" (d+=P, dP where P, and Pg
are the projectors onto the excited state and ground state,
respectively), D =(D+), and D~+( —r) corresponds to
the evolution of D+ between 0 and —~ in the Heisenberg
representation under the effect of the trapping beams and
of the radiative relaxation. The average value of the
commutator is taken in the steady state of the system in
the absence of a probe. Such a result clearly shows that
the positions and widths of the resonances observed on
the probe transmission depend only on the zeroth-order
solution and the only eQect of the probe is to excite some
particular dynamical modes of the optical molasses The.
information that can be obtained from probe transmis-
sion are thus of the same kind as those obtained by moni-
toring the fluorescence spectrum [the line shape then de-
pends on the Fourier transform of correlation functions
of the type (Df+(r)Df (0) & where f now corresponds to
the polarization component and direction of analysis of
the fluorescence [17]]. Similarly, the wave generated in
the backward direction through phase conjugation has an
intensity which depends on the square of the Fourier
component of functions like 8(r)([Dpc(0), D& ( —&)] &

B. Optical Bloch equation for internal
and external degrees of freedom

We follow here a procedure similar to the one of [1] for
the quantum treatment of Sisyphus cooling, but in addi-
tion a probe beam is included. The reactive part of the
coupling still consists of a spatially periodic potential
U+(R, z, t) depending on the atomic ground-state sublevel

lg, + &, but it now depends on the probe polarization and
on time. Condition (8) being fulfilled, one can adiabati-
cally eliminate optical coherences and the excited-state
part of the density matrix and obtain an evolution equa-
tion for the ground-state part 0 of the density matrix,
taking into account both the internal (Zeeman sublevels)
and the external (center-of-mass position and momentum)
degrees of freedom:

d (t) = [H (R, t), o (t) ]+o(t)„„„,1

iA

with

(26)

p2
H(R, t)= + U (R,z, t)lg, —&(g, —

I

+U (R,z, t)lg, + &(g, +l (27)

and

o (t)„„„=— [ A (R, t)rr(t)+ o (t) A (R, &) ]
70

relax

Ak

+yof dp gN (p}B (R, t)e '~ "a(t)
m

Xe'P ~"B (R, t), (28)

A (R, t)= A (R,Z, t)lg, —&(g, —
l

+A (R,z, r)lg, +&&g, +I . (29)

with

+ [U"'(R,z)]'e'"} (30)

U'+'(Z) = [—2+cos(2kZ)],
2

(31a)

As in Sec. I the Hamiltonian H contains the atomic kinet-
ic energy and the reactive part of the atom-field coupling.
The potentials U+ differ from the potentials U+' because
of the probe contribution. More precisely, one has

U (R,z, t)=U' '(Z)+a[ U'"(R, Z)e
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L""(ll,z)= ( —2+e"" )
U0

4

Ii(1)(g Z) — (+1 2 2ikz)U0

4

(31b)

(31c)

N+((p) = 1+ p
84k

46k

(37a)

(37b)

The relaxation term corresponding to the dissipative part
of the coupling has two contributions. The first one de-
scribes the departure from a given level to the others via
an absorption process. The second one accounts for the
reverse process of feeding one level by the others through
an absorption-spontaneous emission cycle.

In presence of the probe, operators A + ( R, Z, t ) and
8 (R, t) take the form

A+(R, z, t) = A+'(Z)+a { A'+'(R, Z)e

C. Principle of the calculation

l. General

In order to calculate the transmission spectrum of the
probe, we solve the Bloch equation (28) using perturba-
tion theory to first order in c. and to zeroth order in

yo/Q„because we assume that (7) is fulfilled. The densi-

ty matrix we look for is of the form

+[A(')(R,Z)]te' '] (32) (0)+e[ (1) —i5t+( (1))1' i5t] (38)

with

A '+'(Z) =
—,
' [2+cos(2kZ) ],

A(~1)(ll z) 3(2+ 2 kz)

A'"(J., Z)= —'(+1+2e '"
)4

8 (R, t)=8' '(Z)+a[8'"(R, Z)e' '],
with

(33a)

(33b)

(33c)

(34)

L &("——O (39)

with

L o'= . [H' ' o ]
— [A' 'cr+o A' ']1 'Vo

iA
'

2

g(0) 4e —p / &e p / g(o)
m

(40)

The first step of the calculation consists in solving
equation

8() '(Z) = cos(kZ)lg, + & &g,
—

I

+i sin(kz)lg, —
& &g, + I, (35a)

and

A' '=A 'Ig, —&&g,
—I+A' 'Ig, + &&g, +I . (41)

8(0) (Z) ( ikz+ —ikz)A(+)1

2&2

Bo' (ll z)=-,'e '"'[Ig, + &&g, —I

—lg, —&&g, +I],

(35b)

(35c)

To simplify the resolution of the Bloch equation, we

use some symmetry properties of H' ' and of its eigen-
states In, q, I2&. The Hamiltonian H' ' is invariant by the
symmetry groups represented by the unitary transforma-
tion '7 and P:

(1)(ll»)=+ 1
e

—ikzA(+)
2&2

80(()(1., Z)=-,'e '"'[lg, + &&g, —I+lg —&&g +I]

(35d)
5'Iz&alp&= z+ —el —p&,

4

Plz&s I((2&=l —z&alp& .

(42)

(43)

8 ( ( )
( I Z) — —ikzA(+ )

2&2

(35e)

(35f)

It follows that the eigenstates
I n, q,

—
& and

I
n q + & have

the same energy E„andcan be expressed in terms of
functions In, q & which have a well-defined parity:

where

In, q,
—

&
= Ig,

—&e In, q & ,

In, q, +&=%In, q,
—

& .

(44)

(45)

A"'=(2 —q)lg, —&&g, —I+qlg + &&g, + I
. (36) Finally, we can note that the Bloch index q labels the way

functions In, q & transform by 7:
The integral is taken over the momentum p along Oz of
the spontaneously emitted photon, which only takes
discrete values when periodic boundary conditions in a
box of finite size are used. Index m represents the projec-
tion of the photon angular momentum along Oz and
functions N (p} stand for the normalized distribution
pattern for the spontaneously emitted photon [19],

c72I nq&eqk/2 lnq (46)

As shown in [1], when (7} is fulfilled it is possible to
prove, using secular approximation, that cr' ' is diagonal
in the basis In, q, p&. In particular every density-matrix
element between two states of different Bloch index are
zero (due to the invariance of o' ' by 'T). It is also possi-
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ble to show that the steady-state populations only depend
upon the dimensionless parameter Uo/Et(. These prop-
erties of the wave functions ~n, q, p) lead to a consider-
able simplification of the numerical calculations.

In a second step, taking into account the effect of the
probe to first order in c, one obtains an equation of the
form

upon R, equal to:

p„=(d es(R))(d+.eo(Z))e (52)

e (eo) is the polarization of the probe (pump) field, d+ is

the dimensionless exciting ~part of the dipole operator
(d+=P, dP ) and d =(d+) .

(i5+L) (r'"=S(R) . (47)
3. Case ofphase conj-ugate reliection

We solve this equation as follows: First, the Bloch opera-
tor is diagonalized:

(48)

The phase-conjugation reflection coe5cient R„is cal-
culated in the limit of a thin atomic medium, and is given

by

where u& is an eigenvector of eigenvalue —
y&

—ice&

(where y&~0 and co), are real). Second, the source term
S(R) due to the interaction with the probe is expanded on
the basis of the eigenvectors cr&.

with

2 2
Col [g ( ()))t]

&2eo)rtc(b, +il /2)
(53)

S=gs~o~ .
jig

(49) S„=[d ek(R)][d+ e()(Z)]e'" (54)

The density matrix to first order in c is then given by

~(1)—
y). +—i (5—co&)

(50}

For the numerical calculations, the integrals over the
momentum along Oz of the spontaneously emitted pho-
ton are substituted for a discrete sum since periodic
boundary conditions are used for both the spontaneous
emission and the band structure. In the spectra present-
ed in this article, a box of size A, has been used so that
bands are described by two Bloch vectors and spontane-
ous emission is assumed to occur only in the +z and —z
directions, as well as in any direction orthogonal to Oz.

2. Case ofprobe transmission spectra

In order to calculate the probe transmission spectrum,
we evaluate the polarization of the medium and calculate
the power transfer P„from the atoms to the probe field,
normalized to c., and neglecting linear absorption:

P„=——E (R).1 3 dp
dt

NAQ col I Im(b, i I /2)Tr( p„—tr"')],
2(i() +1 /4)

(51)

where N is the atomic density and I is the length of the
atomic medium. p„is an operator that only depends

where epc is the polarization of the phase-conjugate
beam, orthogonal to the polarization of the probe beam.
Expression (53) clearly shows that the calculation of R

„

is very similar to the one of P„sincethe phase-conjugate
reflectivity and the probe transmission are expressed in
terms of the same quantities.

D. Raman transitions

We first investigate the characteristics of the Raman
transitions occurring between different bands. We expect
that such transitions mainly involve the lowest energy
states of the optical potential, because the most impor-
tant population differences occur for these levels and be-
cause most of the atoms occupy these bands in steady
state. For these levels, the distance between adjacent
band states is approximately constant, of the order of
AQ„. We can thus estimate that Raman resonances will

occur around 5= m Q„(minteger number). As a conse-
quence, in the limit where (7) is fulfilled and for 5=m Q„,
a coherence (n, q~o ln +m, q ) (m%0} is mainly coupled
to a coherence (n',

q~

r~(n' +mq') with m =m' (secu-
lar approximation). It is thus possible to analyze in-
dependently for each value of m%0 the different Raman
resonances involving transitions from bands n to bands
n +m. We then obtain the Raman spectrum with peaks
centered around 6=m 0, .

The source term used for the calculation of Raman res-
onances is

(n, q, p~S~ln +m, q,p)

(n, q, p~ U'" ~n +m, q, p)(m'„+) ~
—m'„z)+ (n, q, p~ A„("~n +m, q, p)(n'„+ +m'„' )

—
yo g f dp gX (p)&n, q, p(l(B"') e ' "(ln', q', p'&&n', q', p'((8' 'e' "(n+m, q, p&n'„.' ~ . (55)
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The first term is associated with the probe-induced cou-
pling between levels n and n +m and involves the popu-
lation difference between these levels. This term corre-
sponds to the usual contribution to Raman resonances.
The second and third terms describe the effect of the
probe on the radiative relaxation part of the Bloch equa-
tions. These terms, which exist even when there are no
population differences between the levels, correspond to
the radiative relaxation-induced extra resonances con-
sidered by Bogdan, Downer, and Bloembergen [20] for
the case of four-wave mixing and which have been recent-

-1.2-

-1.4-

-1.6-

-1.8-

45

Slope =-

los (Uo/ER)

5.5

(a) P~(arb. units)

h6/E„

FIG. 4. Ratio of the width of the first Raman resonances to
I ' vs the dimensionless parameter Uo/E& for a detuning
6= —10I in the R=l polarization case (log-log representa-
tion). The variation is in agreement with the QE„/Uu law ob-

tained in the Lamb-Dicke limit.

-40 -20

(b)

R~(arb. units)

-40 -20 20 40
h6/Ea

FIG. 3. Raman spectra for probe transmission and phase
conjugation in the R=l polarization case. These spectra were
obtained for a detuning 6= —10I, Uo/E& =100, by consider-
ing the first 40 band states with Bloch index q =0, 1. Only the
first Raman resonances and the first overtones are represented.
(a) Probe transmission spectrum. Whereas the typical pumping
rate I" is equal to 15E& /A, the width of the Raman resonances
are on the order of 5ER/A' because of the Lamb-Dicke effect.
The Raman resonances are centered at 5=co~ —co=+0, . The
first overtones are much broader than the Raman resonances
because of the contribution of high bound vibrational levels

which are less affected by the Lamb-Dicke effect. The energy
separation between these levels is less than RA„so that the
overtones are not exactly located at 6=co~ —~=+20„due to
the optical potential anharmonicity. (b) Phase-conjugate spec-
trum. This spectrum provides the same information as the
probe transmission spectrum. In particular, the Raman reso-
nances and the first overtone are clearly visible. Note that this
calculation does not take into account the effects related to the
saturation of the optical transition. Such effects would have a
contribution independent on the probe frequency. The interfer-
ence with the contribution due to the ground state only, which
does not have the same sign for 6)0 and 6 (0, can lead in ex-
perimental spectra to Raman resonances of different weights.

ly observed on probe transmission (two-wave mixing res-
onances) [21,22].

An example of theoretical Raman spectrum is shown
in Fig. 3 for both probe transmission [Fig. 3(a)] and phase
conjugation [Fig. 3(b)]. The resonances have been calcu-
lated for m = 1 and 2 (first overtone). As previously men-
tioned, Raman spectra exhibit resonances whose width is
smaller than the typical pumping rate I '. The depen-
dence of the ratio of the width of the first resonance to I '

versus the dimensionless parameter Uo/Ez is in good
agreement with the simple law (19) obtained in the
Lamb-Dicke limit (Fig. 4). In the range considered in

Fig. 5, the position of the first Raman resonances is also
in good agreement with the QUo/Ez law, but its exact
position exhibits a slight shift compared to the value cal-
culated for a harmonic oscillator, which is due in particu-
lar to the potential anharmonicity. In contrast, the posi-
tion of the resonances is in reasonable agreement with the
energy difference between two deep adjacent bands calcu-

34-

FIG. 5. Position of the first Raman resonances (represented

by diamonds) vs the dimensionless parameter Uo/E& for a de-

tuning 5= —10I in the N=l polarization case (log-log repre-

sentation). The position dependence is in very good agreement
with the +Uu/E„ law corresponding to a harmonic approxi-
mation. However, the exact position is slightly different from

the expected 0, value (represented by stars). This shift is due in

particular to anharmonicity of the optical potential.
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lated from the exact potential. However, for small values
of Uo/E& (Uo/E~ (50), the Raman resonances result
from a sum of curves centered at different locations be-
cause of the potential anharmonicity so that the compar-
ison becomes meaningless. In addition, for large values
of Uo/Ez (Uo/Ez )500) the shape of the resonances
clearly demonstrates the occurrence of different relaxa-
tion time constants associated with the different damping
rates of the eigenmodes of the Bloch operator.

The amplitude I2 of the first overtone is always much
smaller than the amplitude of the first Raman resonance
I„andthe ratio Iz/I, decreases when Uo/Ez increases.
This variation is a consequence of the Lamb-Dicke effect.
More precisely, if terms of the order of
khZ=(Ez/Uo)' such as (P„+,IkZIP„& (obtained in
the expansion of terms like e ' found in U ~ and 2 ~
in power of kZ) are sufficient to induce the first Raman
resonance, one should consider terms of the order of
(kbZ) such as (P„+&I(kZ)IP„&to excite the first over-
tone. In the Lamb-Dicke regime where khZ (& 1, the ra-
tio I2/I, is thus expected to decrease when Uo/Ez in-

creases. Moreover, in the case of very deep potential
wells (large values of Uo) the contribution of the lowest
bands to the first overtone can become negligible com-
pared to the contribution of higher bound vibrational lev-
els which are less populated. These levels, which cannot
be approximated by harmonic potential eigenstates, are
separated by less than 0, so that the center of the first
overtone is not located around 20„butappears closer to
the first Raman resonance. These predictions are in good
agreement with a very recent experiment [16]where over-
tones have been observed.

The fact that optical phase conjugation displays a reso-
nant enhancement when 5 coincides with the energy
difference between two bound states in the optical poten-
tial is very similar to the resonant enhancement of non-
linear susceptibility in quantum wells [23]. One might in
fact describe the present system as an atomic quantum
well.

One further possibility with the Raman resonances
would be the observation of substructures in the Raman
spectra due to the anharmonicity of the potential. It
turns out that such structures arise only for large detun-
ings and small values of Uo/Ez ( Uo/Ez =40 and
b = —20I are typical) for which the substructures are
not hidden by the width of the different contributions. In
contrast, it seems extremely difficult to obtain evidence
for the occurrence of a band structure different from the
structure of energy levels in a single potential well.
Indeed, the width of the lowest bands due to tunneling
transition to an adjacent potential well (through the po-
tential barrier) is much smaller than the width induced by
interaction with light.

E. Rayleigh resonances

l. Adiabatic states

In order to give simple physical pictures and to simpli-
fy numerical calculations, we will not base our descrip-
tion here on the eigenstates of the Hamiltonian H' ' in
the absence of probe but on the eigenstates of the total
Hamiltonian H. In the limit where (7) is fulfilled, it is
possible to use an adiabatic approximation [26], so that
the eigenstates In, q, p& of H can easily be expressed in
terms of those of H~o~ In, ,qp &:

In, q, p&=In, q, p&+a[In, q, p&'+'e ' '+In, q, p&'"&' ,'],

(56)

with

(n', q, pI U„'"In, q, p&
In, pq&'~"= g " In', q, p &

n'Xn n, q n', q

(57a)

(n', q, pI(U„"')In, q, p&

n'An n, q n', q

(57b)

In this basis, it is then possible to use the secular approxi-
mation, so that the density matrix modified by the probe
is diagonal. It follows that only the populations of the
adiabatic band states In, q, p&are mod, ified, and simple
physical pictures can be obtained.

The source term can be split into two different parts:

connected to the two-wave mixing resonances (also called
stimulated Rayleigh or two-beam coupling resonances)
that have been observed in atomic vapors [24,25,21].
These resonances are generally associated with the excita-
tion of a slow atomic observable by the combined effect of
a pump beam and a probe beam. The subsequent interac-
tion of the pump beam with the atomic observable which
is not in phase with the excitation (because of the atomic
response time) leads to an energy transfer between probe
and pump which exhibits a resonance when the two fre-
quencies differ by the inverse of the atomic response time.
Similar effects occur in the molasses with the additional
interest of the existence of effects due to atom localization
and the additional complexity of the existence of several
response times associated with the various eigenstates of
the Bloch operator. It is the aim of this section to give a
detailed interpretation of such resonances for the case of
a J =

—,'~J, =—,'atomic transition.

As experimentally shown in [3], probe transmission
spectra display amazing resonances at the center of the
spectrum where 6=0. These resonances have uncommon
shapes, very steep slopes, and depend dramatically on the
probe polarization. In fact, these resonances are strongly with

~diss +~reac (58)
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and

&n, q, plSd;„ln,q, p&= yo&n, q, pl A„'"In,q, p&~'„'q
Ak—

yo g f dp &X (p)&n, q, pl(B'") e '~ "In', q', p'&&n', q', p'IB' 'e'i' ~"In, q, p&rr'„.' ~

n', q', p' m

(59)

&n, q, plS„„ln,q, p&= yo[&n, q, pI A' ln, q, p&'+'+'"&n, q, pl A' 'In, q, p&]F'„'
flak

&'o g dp g N (p)P(n, q, p;n', q', p';p)rr'„~', ,
n', q', p' m

where

(60)

13(n, q, p;n', q', p', p)=" &n, q, pl(B' ') e ' "In', q', p'&&n', q', p'IB'o'e'i'z~~ln, q, p&

+ &n q~pl(B~ '} e '~ "In', q', p'& '+' &n', q', p' B' 'e'I' "In, q p&

+&n q, pl(B' ') e '~ "ln', q', p, '&'"&n', q', p'IB' 'e'I' "ln, q, p&

+&n, q, pl(B ') e ' "ln', q', p, '&&n', q', p'IB' Ie'i' "In, q, &" I (61)

Despite the apparent complexity of this expression, the
physical interpretation is rather clear and allows us to
understand the features of the central resonances. The
dissipative part of the source term accounts for the
modification of the optical pumping in the presence of the
probe on the populations of the eigenstates in the absence
of the probe. The reactive part of the source term stands
for the effect of the optical pumping in the absence of the
probe on the population of the eigenstates modified by the
probe. These effects will be discussed in detail in the fol-
lowing for the two polarization configurations of the
probe.

2. Evolution ofpopulations: Global analysis

which clearly shows that in the R=
II configuration the

population modifications are identical in each potential
well and the total population of a given well is unchanged
[Fig. 6(b)], whereas in the N=l configuration the popula-
tion modifications of the two potentials are opposite and
there occurs a net population transfer from one potential
to the other [Fig. 6(c)].

When calculating the power transfer P„from the
atoms to the probe field one has to calculate the mean
value of the operator p„[Eq.(52)] by means of the
modified density matrix O'". For the two polarization
configurations of the probe, p„is given by

(I J e 2ikz) (65a)

'TL T+ =L, (62)

the properties of the source terms for the two polariza-
tion configurations of the probe

The precise inhuence of the probe beam on the popula-
tions of the vibrational levels is complex and will be dis-
cussed in the following. In a first step, we want to give
simple ideas about the way these population
modifications lead to probe amplification or absorption.
For this purpose, it is enough to characterize these popu-
lation modifications by use of simple symmetry con-
siderations. Due to the invariance of the L operator by
"T (translation by A, /4 along Oz and exchange of internal
state}

(b)

1(
4 ~/

(63a)

(1)~+ (1)

~~(1)~+ ~(1)

(64a)

(64b)

(63b)

provide important information about the density-matrix
modification o''I. Indeed, combining (47), (62), and (63),
we obtain

FIG. 6. Probe-induced population modifications. (a) In the

absence of probe, the different optical potential wells are equally

populated. (b) In the R =
II polarization configuration, the probe

beam induces modifications of the population of the vibrational

levels, but these modifications are the same in each potential

well, so that the global population of each potential well

remains constant. {c)In the 8=l polarization configuration the

probe induces population transfer from one potential well to the

adjacent ones, so that the global population of each potential
well oscillates in time with frequency ~ —co.
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and

p
—

( J +re —2ikz)
v'2

(65b)

where I is the identity operator for the internal degrees of
freedom which accounts for atomic density effects and J,
is the component of the angular momentum along Oz.
The terms dependent on z stand for effects due to the
backscattering of the pump wave which counterpro-
pagates with the probe on a magnetization (R=~~) or a
density (R=l) grating. The terms independent on z
represent contributions due to the copropagating pump
beam interacting with a population (R= ~~) or a magneti-
zation (R=l) global modification. We now precise the
interpretation and the different contributions of these
terms.

a. Configuration R =
~~. Because of the conservation of

the total atomic population, the first term of (65a) does
not contribute to the power transfer. It follows that the
central structure of the probe transmission spectrum only
results from the backscattering of the counterpropagating
pump wave on the magnetization grating induced by the
probe. Let us describe how the magnetization grating
can give rise to such a transfer.

In the absence of the probe beam, due to localization of
atoms at the bottom of the potential wells associated with
a given internal state ~g, + ) or ~g,

—), the atomic mo-
lasses looks like an antiferromagnetic medium, whose
magnetization is alternatively positive and negative each
A, /4. The presence of the probe induces population
changes which are exactly the same in every potential
well [Fig. 6(b)]. The resulting spatial modulation of the
magnetization is thus also alternatively positive and nega-
tive each A, /4, and its amplitude varies in time with
period 2~/5. The scattering of the counterpropagating
pump beam on this time-modulated magnetization results
in a wave whose polarization, frequency, and direction of
propagation coincide with those of the probe beam, so
that it can interfere with it. The phase of the scattered
wave varies with the sign of the magnetization and thus
changes sign every k/4. The reason for this phase varia-
tion is that the elementary process is a Faraday rotation
of the counterpropagating pump-beam polarization
around the atomic magnetization [21]. Because the sign
of the rotation changes for opposite values of the magne-
tization, the wave scattered by the atoms having a posi-
tive magnetization experiences an intrinsic n. phase shift
with respect to the wave scattered by atoms having the
opposite magnetization. This ~ phase shift compensates
for the ~ phase shift due to the propagation of the back-
scattered wave between two magnetization planes which
are A, /4 apart, so that the backscattered pump beam can
interfere constructively with the probe beam. As shown
in [21], one can obtain absorption or amplification of the
probe depending on the sign of 5. The range of values of
5 over which amplification or absorption is observed
gives an estimate of the response times of the molasses.

To have an efficient constructive interference for the
backscattered light, it is fundamental that the atoms are
mell localized every A. /4. If me consider, for example, the
delocalized wave function of a highly excited band, the

backscattering may occur from any position in the mo-
lasses, leading to a broad distribution for the phase shift
due to propagation. The resulting effect will be a destruc-
tive interference on the backscattered wave. The ex-
istence of the central resonance for this polarization
configuration has thus two important consequences. On
one hand it proves the existence of well-localized states
near the bottom of the potential wells. On the other hand
it shows that there is a large-scale spatial order with
atoms having opposite magnetizations every A, /4. Such a
structure obviously presents some analogy with an anti-
ferromagnetic medium.

b Con. J7gurr2tion R=l. Let us distinguish between the
different contributions of the two pump waves. The
copropagating pump wave is sensitive to the global mag-
netization of the atomic sample [Eq. (65b)]. In the ab-
sence of probe, due to the antiferromagnetic character of
the molasses, the average magnetization of the sample is
equal to zero. In contrast, the interaction with the probe
induces net popu1ation transfers from one potential well
to adjacent ones [Fig. 6(c)] which result in a net magneti-
zation of the medium. Because the medium is now opti-
cally active [21], the copropagating pump wave under-
goes a net polarization rotation (associated with a change
of frequency [21]), and can interfere constructively with

(a) P~(arb. units)

-4 6

h5/E„

Pi (arb. units)

h5/E„

FIG. 7. Central structure of the probe transmission spectrum
in the conditions of Fig. 3. (a) The contribution of the magneti-
zation and of the density modulation are represented, respec-
tively, by a dashed and a solid line. This figure clearly shows
that both effects are important and contribute to the signal. (b)
The sum of these two contributions gives a curve with a steep
slope at the center and broad wings in agreement with experi-
mental observations. The unusual shape of the central reso-
nance is due to the existence of various time constants in the
population dynamical evolution.
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the probe beam. Note that this contribution does not in-
volve atom localization, so that even excited band states
contribute to the signal. The counterpropagating pump
wave which has the same polarization as the probe can
undergo a Bragg diffraction on the density grating in-
duced by population transfers from one potential to the
other. Note that the density grating induced by the
probe has a spatial period equal to A, /2. Such a periodici-
ty is important for having a constructive Bragg scattering
in the backward direction since the phase shift due to
propagation between two planes distant from k/2 is just
equal to 2~. This diffraction is also associated with a
change of frequency, so that the backscattered wave can
interfere constructively with the probe beam. This con-
tribution due to the backscattering process involves atom
localization. It is responsible for a significant part of the
signal as can be seen in Fig. 7(a) where the relative weight
of these two contributions is presented for U0=100E&.
It clearly shows that both effects are important and con-
tribute to the central structure.

The resulting intensity is space and time dependent and,
when averaged over the spatial extension of a band wave
function, has an alternative o.+ and cr dominant com-
ponent. It has no net effect on the populations of the vi-
brational levels [Fig. 8(a)]. This result can be understood
by considering the intensities I'+'(z) in the rotating frame

Z

3. Dissipative beets

The interpretation of the dissipative part of the source
term will be based on semiclassical arguments, describing
the effect of light on atoms at rest at a given point z. This
information can then be used to obtain interesting pic-
tures in the band model by averaging the semiclassical
quantities over the spatial distribution of the band wave
functions. Let us consider an atom at rest at a given
point z, irradiated by the pump beams and the probe. In
the case of a J =

—,'~J, =—', transition, the stationary
values n.+(z) and rr (z) of the populations of the Zeeman
sublevels ~g, + ) and ~g,

—) are solutions of the system

Z

I+ (z)m. (z)=I (z)m. +(z),

(z)+~+(z) = l, (66)

rr (z)=n' (z)+e~'"(z),

I, (z) =I"'(z)+eIP(z),
~(+z) =sin (kz),

~' '(z)=cos (kz},

(67)

vr'"(z) = —m'"(z) =I'"(z)cos (kz}—I'"(z}sin (kz),

which clearly shows that the modification of the steady
state due to the dissipative part of the source term de-
pends only upon the intensity components I'+', which are
evaluated in the following.

a. Configuration N =
~~. The combination of the probe

with the two pump beams leads to

I'+'(z) = +cos(2kz —5t)+cos(5t),

~'+'(z)=+sin(5t)sin(2kz) .
(68)

where I+(z) and I (z) are the intensities of the o+ and
0. polarization component of the field at point z, nor-
malized to the intensity of the pump field (2Eo). Using
perturbation theory to first order in c, this system trans-
forms into FIG. 8. Semiclassical representation of the probe-induced

dissipative effects. The density plots represent the temporal
evolution of m'+'(z). Black (white) color denotes a negative (pos-
itive) value of ~'+'(z). It is possible to understand the effect of
the probe by averaging ~'+ (z) over the spatial extension of a
band wave function (represented in gray at the bottom of the

figure, for a single potential well). (a) R =
~~

polarization
configuration. The average value of ~'+'(z} for any band state is

clearly equal to zero, so that the probe-induced dissipative effect
does not lead to population changes. (b) R=l polarization
configuration. The average value of ~'+'(z) for any band state is

nonzero and oscillates in time. The probe-induced dissipative

effect thus leads to alternative population transfers from one po-
tential well to the other. It is interesting to note that the value

of ~'+'(z) for z =0 is constant equal to zero, which means that
an infinitely localized atom would not be affected (in the serni-

classical limit) by the dissipative effects due to the probe. We
have checked that the population of the lowest vibrational levels

are less affected than the others for sufticiently deep potential
wells.
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for the probe

[I+"]R„(z)= I + cos(2kz), (69)

I'~"(z) =cos(2kz —5t) + cos(5t),

n'~"(z) =+—,
' [cos(4kz —5t) —cos(5t) ] .

(70)

which is nothing but the intensities due to the pump
beams alone. Sd;„is thus nothing but —I.-cr' ', which is
by definition equal to zero, so that the dissipative effects
of the probe have no influence on the probe transmission
spectrum. This result is typical of a J~ =

—,
' J, =

—,
' atom-

ic transition.
b Co.ttfiguration R=l. Combining the probe with the

two pump beams, we obtain

popu1ations. The typical time constant involved in these
processes is the time necessary to reach the equilibrium
between the populations of the lowest band states which
are affected by the probe-induced modifications of the po-
tential. In order to estimate this time constant (related to
the width of the central resonance), we distinguish two
limiting cases.

(i) Case of deep potential wells. In the case of deep po-
tential wells, the total steady-state population of the con-
tinuum states is negligible [I] and the coupling between
the bound and the continuum states is very weak. As a
consequence, the dynamical properties of the system are
mainly due to the response time of the lowest bands pop-
ulation, which is considerably reduced due to the Lamb-

The resulting intensity is space and time dependent and,
when averaged over the spatial extension of a band wave
function, has an alternative cr+ and o. dominant com-
ponent. Its net effect on the populations corresponds to
an alternative departure from the wells of potential U'+'

to the wells of potential U' ' [Fig. 8(b)]. It is interesting
to note that (70) is equal to zero for z =mA, /4 (m is an
integer), which corresponds to the bottom and the top of
the potential wells. It follows that the population of an
infinitely localized atom would not be modified by the
dissipative effects of the probe. The departure from one
potential to the other is due to the optical pumping in-
duced by the probe beam. Typical evolution times on the
order of yo

' are found for this process which involves
the global equilibrium between levels ~g,

—) and ~g, + ).

4. Reactive sects (b)

t= 0

it I

a+ a- 0+ a- a+

t = 0.5 T

Up

a+ (r a+ W a+

t= 0

t= 0.25T

a+ a- a+ a- a+

t=0.75T

.e"

I

I

a+ W o+ W a+

t = 0.25 T

The reactive part of the source term accounts for the
time-dependent modification of the potentials U+ and of
the band wave functions due to the interaction with the
probe. Because of the probe-induced translation of the
optical potential and modification of its curvature, the
steady-state atomic populations are no longer in equilibri-
um with the pump beam. Optical pumping due to the
cooling beam then tends to adapt the populations to the
time-dependent shape of the potentials. We discuss, in
the following, the two polarization configurations of the
probe, the way potentials are modified, their effect on the
populations, and the different time constants involved in
the atomic response to the probe perturbation.

a. Configuration R =
~~. The periodic perturbation

(period T =2m /5) of the potentials induced by the probe
is represented in Fig. 9(a) at four different times. At t =0
(0.5 T) the depth of potentials U and U+ are modified
by the same quantity and are smaller (larger) than Uo.
As a result, the atomic populations in each potential will
be modified to reach the equilibrium state corresponding
to the new depth of the potentials. Due to the symmetry
between potentials U and U+, this equilibrium does not
imply a global population transfer from one potential to
the other. At t =0.25 T (0.75 T) the depth of potentials
U and U+ is not modified, but their bottom is translat-
ed by a small amount on the left (right). This translation
is also responsible for a modification of the steady-state

o+

I I

I I I

(j+ (j- a+ ci- a+

t = 0.5 T t = 0.75 T

a+ d (i' cr a+

I I
I

a'r d' (i (i+

FIG. 9. Probe-induced modifications of the optical potential.
The dashed lines permit us to localize the potential wells in ab-
sence of probe. The black (gray) potential corresponds to the
~g, + ) ( ~g,

—) ) ground-state Zeeman sublevel. The local polar-
ization of the cooling wave is indicated. We have represented
the potential shapes at four different times during a period
T=2

r~ r/coco~~. At t =0 and 0.5 T the potential depth is
modified, whereas at t =0.25 and 0.75 T the potential wells are
translated in space. These potential changes lead to population
modifications due to the tendency of the cooling beams to adapt
the population distribution to the new potential shape. (a) R=

~~

polarization configuration. The potential wells associated with
the two Zeeman sublevels are simultaneously modified so that
the population changes are the same in each potential well. (b)
R=l polarization configuration. The potential wells associated
with the two Zeeman sublevels are modified with a phase delay
of m., so that the population changes are opposite in adjacent po-
tential wells.
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Dicke effect (see Sec. I B). The width of the central struc-
ture is thus expected to be on the order of I"o [Eq. (17)]
[Fig. 10(a)].

(ii) Case of shallow optical potential wells. As men-
tioned in Sec. IC, the physical characteristics of the
atomic medium in the case of shallow optical potential is
significantly different from the case of deep potentials. In
the present situation, the total steady-state population of
the continuum and its coupling with the bound states are
not negligible. In order to estimate the typical damping
time of the populations, we consider a semiclassical
description of the system in terms of Wigner distributions
to+ independent on z (see Sec. IC) which satisfy a
Fokker-Planck equation [10]. Similarly to the descrip-
tion of the atomic system in terms of a Bloch operator
(Sec. I D) the damping rates for atomic variables are here
given by the eigenvalues of the associated Fokker-Planck
operator. Due to symmetry properties of the system by
exchange of the two internal Zeeman sublevels (unitary
transformation 'T of Sec. IB), the eigenfunctions of the
Fokker-Planck operator which are excited by the probe

P~ ~(arb. units)

-10

h5/ER

10

-0.5 0.5

h6/ER

1

FIG. 10. R=
~~

polarization configuration. Dependence of
the shape of the central resonance on the potential depth.
When not mentioned, the conditions are the same as in Fig. 3.
(a) Case of deep potential wells (Uo/E„=200, AI '=30E&).
The central resonance looks like a dispersion of width

I o 1Eg /A. (b) Case of shallow optical potential wells

( Up /Eg =40, RI ' =6E& ). The central resonance looks like a
dispersion of width =10 ' I"=0.03E~ /R. Note the change of
sign of the resonance in the two situations.

in the R=
~~

polarization configuration satisfy (63.a):

to+ (p) =to (p) =to (p) (71)

Following [10], the corresponding eigenvalue problem
can be written:

W
AW Do

Bp
(72)

where Do= —'„'A' k I '=A' k I"/2 is the momentum

diffusion coefficient and —
A, is the real negative eigenval-

ue associated with w. As mentioned in Sec. IC, w is

given by equation (22). The corresponding value for A, is
given in equation (23) where po stands for the maximum
momentum excited by the probe beam. In order to evalu-
ate this quantity, we note that the reactive part of the
source term (60) which depends on the modification of
the band states decreases in momentum space as I/p [the
denominator of (57) is proportional to I/p for a continu-
um state corresponding to momentum p]. A rigorous
calculation based on the Bloch equations shows that a
cutoff in momentum space arises for p0 =60 and that it is
relatively insensitive to the potential depth for small
values of Uo/Ez. This is not surprising since both the
continuum states and the distribution of population in
the continuum are only slightly affected by the optical
potential. The calculation also proves that the exact ei-
genvalues are in good agreement with (72) and that the
eigenstates w(p) are consistent with a sinusoidal shape,
even if their amplitude decreases with p to satisfy

f w(p)dp =0 (conservation of the total population). As

expected, these modes are coupled with the lowest bound
states. This condition is necessary for the eigenmodes to
contribute to the probe transmission spectrum because
the central resonance arises from a backscattering of a
pump wave onto a magnetization grating modulation
(Sec. II E 2o), so that only the well-localized states play a
role in the process. The occurrence of such long damping
times on the central resonance is visible on Fig. 10(b)
where we also note an inversion of this central structure.

b. Configuration N =l. The periodic perturbation

(period T =2m/5) of the potentials induced by the probe
is represented on Fig. 9(b) at four different times. At
t =0 and 0.5 T, the depth of potentials U and U+ are
differently modified: one is larger than Uo, the other is

smaller. As a result the atomic populations will adjust to
reach the equilibrium state corresponding to the new

depth of the potentials, but contrary to the previous case,
this equilibrium requires a net population transfer from
one potential to the other. At t =0.25 and 0.75 T, the
depth of potentials U and U+ are not modified, but

their bottom are translated (in different directions), which
also lead to population modifications. Similarly to the
previous polarization configuration, we estimate the
width of the central resonance in two limiting cases.

(i) Case of deep potential wells. In contrast with the
R=

~~
polarization configuration, the atomic system here

goes towards equilibrium by two means. First, dynamical

population modifications occur to adapt the population
distribution to the modulated depth of the potential.
Second, this adaptation implies a net population transfer
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w+(p)= —w (p)=w(p) . (73)

Following [10], the corresponding eigenvalue problem

from one potential to the other. In the case of deep po-
tential wells where the dynamical properties of the sys-
tem are mainly due to the response time of the lowest
bands populations, one expects these processes to occur,
respectively, at a rate I o

' and I o
' (see Sec. I B), which

are both on the order of I p and smaller than I" because
of the Lamb-Dicke effect.

The actual shape of the central structure results from
the combined effect of the dissipative and the reactive
part of the source term. It is thus the superposition of
two structures having a width on the order of I p and of
yo (see Sec. III D3b), which leads to an unusual cliff
shape [Fig. 11(a)].

(ii) Case of shallow optical potential wells. Similarly to
the R=~~ polarization case, the eigenfunctions of the
Fokker-Planck operator which are excited by the probe
in the R=l configuration satisfy (63b)

can be written

8 w
(yo —

A. )w =Do
Qp2

(74)

and the same reasoning as in the previous polarization
case yields

=pp (75)

III. CONCLUSION

This result, which is in good agreement with the exact
calculation indicates that in the case of shallow optical
potentials and of the R=l polarization configuration, the
central structure is no longer cliff-shaped but rather looks
like a dispersion of width =yp for which the Lamb-Dicke
effect plays no significant role [Fig. 11(b)]. It is also in-

teresting to note that the contribution to the central reso-
nance of the backscattering on the time-modulated densi-

ty grating becomes very small compared to the contribu-
tion due to the forward scattering on the magnetization
grating.

P~(arb. units)

h5/E„

10

(b) P~(arb. units)

-2

h5/ER

FIG. 11. R=l polarization configuration. Dependence of
the shape of the central resonance on the potential depth.
When not mentioned, the conditions are the same as in Fig. 3.
(a) Case of deep potential wells (Uo/E& =200, AI '=30E&).
The cliff-shaped central resonance results from the super-
position of two structures of width =y o =7E& /R and
=I o =1E„/4'. (b) Case of shallow optical potential wells
(Uo/Eg =40 flI =6E& ). The central resonance looks like a
dispersion of width =po 1' /fl.

In this paper, we have presented theoretical line shapes
for probe transmission and phase-conjugate reflection in
1D linllin optical molasses. The results are in good
agreement with experimental observations [3,16] and in

particular prove the following points:
(i) The typical width of the resonances can be tnuch

smaller than the optical pumping rate I" because of atom
localization (Lamb-Dicke effect).

(ii) The intensity of overtones is generally much weaker
than the intensity of Raman resonances. Their positions
cannot always be simply deduced from the position of the
Raman resonances. Conditions in which overtones can
be observed have been found.

(iii) The shape of the central resonance is very sensitive
to probe polarization. This central structure corresponds
to a two-wave mixing resonance [24] and its shape and
width give indications on the response times of the
dynamical modes of the molasses that are excited by the
probe.

(iv ) The central resonance results from two contribu-
tions. The first is associated with the forward scattering
of the pump copropagating with the probe on a global
observable of the molasses. The second corresponds to
the backward scattering of the counterpropagating pump
on a spatially modulated grating. This second contribu-
tion gives indication on atom localization and on the ex-
istence of a large-scale spatial order.

All these points clearly show the importance of the lo-
calized bound states and of the periodic structure in this
molasses configuration. An obvious prolongation of this
work is to study the probe transmission in the case of a
molasses obtained with two circularly cross-polarized
trapping beams. In this case, the light shifts are space in-
dependent [6] and no bound states are expected for this
configuration. Apart from Raman resonances between
two differently light-shifted Zeeman sublevels [27] and
two-wave mixing resonances having a width on the order
of the optical pumping rate, one also expects to find here
narrower Rayleigh resonances due to damping phenorne-
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na induced by the cooling friction force. The study of
this molasses configuration will be the topic of a forth-
coming paper.

Extension of this work to other cooling mechanisms
can also be considered. For example, magnetic assisted
Sisyphus cooling [28] also leads to a periodic modulation
of the light shifts. Bound states may be obtained in such
potentials and Raman transitions between different levels
may be observed on a probe transmission spectrum. The
case where cooling below the recoil limit is achieved [29]
may also be interesting to consider.

We have considered in this paper only the probe
transmission and the four-wave mixing generation be-
cause these are quantities that have been experimentally
observed in our group [3,16]. Other possibilities such as
the study of the fluorescence spectrum are also of interest
and deserves some theoretical investigation. Even if one
does not expect significant differences between the infor-
mation that can be obtained from these various methods,
there are, however, some subtle differences such as, for
example, the occurrence of a purely elastic line in the
fluorescence spectrum that should be studied.

Finally, even if it appears that the present study made
for a J =

—,
' ~J, =—', atomic transition is in satisfactory

agreement with the experiments of [3] and [16]performed
on a J =4~J, =5 atomic transition, one can wonder
whether there are some interesting specific effects for a
transition starting from a ground state having an angular
momentum larger than —,'. For example, the fact that the
eigenstates of the Hamiltonian associated with the light
shifts are tensorial products of an internal state (~g, —)
or ~g, + ) } and an external state is something peculiar to
a Jg =

—,
' ground state. For J ) —,', this is no longer true

and that may have some consequences on the line shapes.
Another interest of this study would be of course to
achieve a quantitative comparison between experiment
and theory.

pt= (P,J,+iP2I J„J+JyJ„])
+ (PP —2Pz [J.e~ ] )e

with

(A lb)

(2J, +1) 1 1 0

&6 +2J +1
+ —,

' Jg(J~+1)(2J,+1)

15(2J —2)!

(2J +3}1 Jg Jg J,
r

v'3 (2J, +1) 1 1 1

2 QJ (Jg+ 1)(2Jg+ 1)

15(2J —2)! 1 1 2

(2J +3)!

(A2a)

(A2b)

(A2c)

(a) Pi i(arb. units)/
/

l

l

l

I
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I

l

I

l

I
l I

where the quantities inside curly brackets are 6-J sym-
bols. I is the identity operator which accounts for atomic
density effects and J, is the angular momentum along Oz,
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APPENDIX: COMMENTS
ABOUT ATOMIC TRANSITIONS STARTING

FROM A Jg )
~

STATE

I

-10

Pi i(arb. units)

h5/E„

Pii
= (pol —2p2[ J.e, ]'}

+(P,J, +iP, [J„J+J J„])e (Ala)

We want here to sketch some ideas about the way to
derive probe transmission (or phase-conjugate reliection)
spectra for J ~J, atomic transitions with J ) —,'. The
transmission spectrum of the probe beam depends on the
mean value of operator p „calculated from the
modification of the density matrix cr'". As in the case of
a J~= —,'~J, =—', transition, it is convenient to express
this operator by means of quantities having a well-defined
physical interpretation. One finds

FIG. 12. Central resonance of the probe transmission spec-
trum in the R=

~~
polarization case for a Js =4~J, = 5 atomic

transition. The spectrum was obtained by taking into account
the first 40 band states with Bloch index q =0, 1 for a detuning
5= —101 and fi~!b, ~sa/Ett =1200. (a) The contribution of the
magnetization, the alignment and the index effects are, respec-
tively, represented by a dashed, a solid, and a gray line. This
figure clearly shows that both alignment and index effects are
negligible in the case of deep optical potential wells. (b) The
sum of these contributions gives a dispersionlike resonance in
reasonable quantitative agreement with the experiment of [3].
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which stands for polarization rotation due to magnetiza-
tion gratings. In addition to these contributions, which
were already present in the case of a J =

—,
' ~J,=—,

' tran-
sition, one has to consider two additional contributions:

[J.e ] is the square of the angular momentum along the
probe polarization which accounts for index effects on
the propagation of the pump having the same polariza-
tion as the probe and (J„J+J~J„)corresponds to an
alignment of the atomic medium and stands for the
effects due to the probe-induced birefringence of the
atomic sample. The terms depending on e '" account
for effects due to the backscattering of the pump wave

which counterpropagates with the probe, whereas the
terms independent on z represent contributions due to the
copropagating pump beam.

One can wonder whether the additional contribution of
the index effects and of the alignment leads to probe
transmission spectra qualitatively different from those ob-
tained in the case of a Jg= —,'~J, =

—,
' transition. It is

possible to estimate the order of magnitude of these con-
tributions (which are both weighted by P2) by comparison
with the one of the orientation (weighted by P& ) through
the calculation of the ratio P, /Pz. The value of this ratio
is reported in the following table:

13' F2

J —+J =J —1g e g

2J —1

Jg ~J, =Jg Jg —+J, =Jg + 1

—1 —(2J +3)

which shows that the index and alignment effects become
negligible compared to the orientation effects in the limit
of large ground-state angular momenta both for a
J ~J, =J —1 and a Jg ~J, =Jg + 1 atomic transition,
which is the case of the J =4~J, =5 transition of cesi-
um used in [3]. Note, however, that in the case of small
potential depths, the spatial extension of the wave func-
tions will affect selectively the physical processes involv-
ing backscattering. For example, in the R=ii polariza-
tion configuration, the orientation contribution will be
signi6cantly lowered and become as important as the in-
dex and alignment contributions. In contrast,

Jg ~J Jg atomic transitions for which al 1 the contribu-
tions to (Al) have the same order of magnitude could
lead to probe transmission spectra qualitatively different
from those reported in this paper. We show in Fig. 12
the different contributions to the Rayleigh resonance of a
probe transmission spectrum for a Jg =4~J, =5 transi-
tion in the R=ii polarization case. This spectrum is in
reasonable quantitative agreement with the experimental
observation of [3] and clearly shows that most of the sig-
nal is due to the orientation contribution which was the
unique contribution in the case of a Jg 2~J 2

atom-
ic transition.
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