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Calculation of a linear Stark efFect on the 254-nm line of Hg
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An externally applied static electric field, by mixing opposite-parity states, can add electric-
quadrupole and magnetic-dipole transition amplitudes to an allowed electric-dipole transition. The re-

sulting interference among the amplitudes causes the absorption of resonance radiation to depend linear-

ly on the static field and on the atomic polarization state. We present a calculation of this effect for the
254-nm line of Hg where the atomic polarization is specified by the ground-state nuclear spin, and the
excited-state hyperfine structure is resolved. Possible experiments to measure this effect are pointed out.

PACS number(s): 32.60.+i, 31.20.—d, 42.25.Hz

I. INTRODUCTION

It is well known that a type of Stark interference
occurs when an Ml (magnetic-dipole) optical transition
between levels of the same parity acquires an E1
(electric-dipole) component in the presence of a static
electric field [1—4]. An analogous effect should occur
when a static electric field induces M 1 and E2 (electric-
quadrupole) transitions in an allowed E 1 transition [5].
This latter case has already been considered in detail for
the Rb D lines in Ref. [5], where the vector structure of
the interference effect is fully discussed, and it is shown
that the fractional change in the absorptivity of the
J=

—,
' ~J=

—,
' allowed E1 transition is of the form

5a
=(aE2+aM, )(e Es)(kXe) o,a

where age, aM, are of the order 2X10 (kV/cm) ' for
Rb, e is the electric-field direction of the incident radia-
tion, k is the propagation direction of the incident radia-
tion, Es is the static electric field, and o represents the
atomic (electron-spin) polarization of the ground state.

We have now performed a similar calculation for the
254-nm absorption line of Hg, which is of interest be-
cause an interference term depending linearly on an ap-
plied electric field could be significant in the experimental
search for a permanent electric dipole moment (PEDM)
of the ' Hg atom [6). There are some important
differences between Rb and Hg. For Rb, the ground-
state polarization is specified by the electron-spin direc-
tion. For Hg, which has a 'Sp ground-state electron
configuration, the ground-state polarization is specified
by the nuclear spin. The interference effect can then exist
only if the excited-state hyperfine structure is resolved.
Furthermore, the 254-nm line is an "intercombination
line, " requiring one to use intermediate coupling to de-
scribe the Hg wave functions. Finally, the Hg ground-
state polarization (for nuclear spin )—,') has a tensorial
character which can lead to more complicated angular
dependencies of the interference effect than are implied
by Eq. (1).

We are specifically interested in the case of ' Hg,
which has nuclear spin I=—,', and in the F=—,

' to F=—,
'

transition, which is the optical transition used in the
PEDM experiment mentioned above. The vector struc-
ture of this transition is the same as in Eq. (1) provided tr
represents the ground-state nuclear spin rather than the
electron spin. With minor modifications to the PEDM
apparatus, an experimental measurement of this interfer-
ence effect might be possible which would provide a cali-
bration of the PEDM experiment as well as an interesting
and useful test of atomic theory.

II. ELECTROMAGNETIC INTERACTION
OPERATORS

Hz, =er.E=eyEpcosNt,

Haiti= (L+2S).B= (I.,+2S, )Eocoscot,
e eA

2mc 2mce, ~Ei e~Hzz= —(3x,x 5;Jr ) —= xyEosincot,
Bxj 2C

(3)

where the charge of the electron is —e, and the field and
gradients are evaluated at the center of the atom (x =0).
For the static field Es, the interaction is given by

s =er-Es =«sy
The transition amplitude is determined by the matrix

element connecting the initial (i) and final (f) states:

(Pf (t) I (HF, +Hzz+Hsti) IP; (t) ) =(6,+Sf.,+6z)e

where P denotes the spin and space variables and includes

We choose a simple geometry for the calculation which
maximizes the effect in Eq. (1). The incident radiation
propagates along x with its electric-field vector along y:

E(x, t ) =Eocos(kx cot )y .—

The static electric field lies along y also. We choose z as
the quantization axis (the radiation magnetic field lies
along this axis).

The interaction of the radiation field with the atom is
described by the following E1,M1, and E2 operators:
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the mixing due to Hs, and we have used the rotating-
wave approximation Acof, ((co, where

fW —W;
ACOf .

with Wf; the energies of the states (Wf ) W;). Denoting
the (time-independent) atomic states in the absence of the
external field by P, we may write the following expres-
sions for the multipole amplitudes in Eq. (7):

(12)

xy i( & )1/2(T2 T2 ) (13)

pf,. ~ lg&+Jg&+@zl2= lg&I2+2Re[(JR&+62)6& ]+

It is straightforward to work out the interference
effect. The transition probability is proportional to the
square of the total amplitude in Eq. (7), which to first or-
der in AL, and @2 can be written

e'EsEo
4mc (14)

Thus, the fractional change in absorbtivity due to the
presence of the (small) JR, and 62 amplitudes is

2 Re[(At)+ 62)8f ] ~)+ g2=2 Rea

We will evaluate these amplitudes using a central-field
model of the Hg atom.

ie NEsEp

4c

(10)

T(k)
q

4m.

2k +1

in terms of which the operators in Eqs. (8), (9), and (10)
can be written

Note that W = W to this order in Es and Ep ~ In the
bracketed expressions above, the first and second terms
give the perturbations by the static field of the final and
initial states, respectively.

It will be convenient later to introduce the irreducible
multipole operator

1/2

III. Hg WAVE FUNCTIONS

The Hg 254-nm line connects the energy levels labeled
6 P, and 6'Sp. In the case of pure LS states, such a
transition would be a highly forbidden intercombination
electric-dipole line. However, for heavy atoms, LS cou-
pling begins to fail and the angular-momentum states are
no longer pure LS states. For the Hg excited state which
is a 6s6p electron configuration, we have the following
spectroscopic states with the experimentally observed en-
ergies

'P2(5. 43 eV), P, (4.86 eV),

'P, (6.67 eV), Po(4 64 eV) . .

The intermediate coupling states are of definite J=L +S;
therefore, what we call 'P, and P, are really an admix-

ture of the LS states. This admixture can be readily
determined by diagonalizing the LS plus electrostatic ma-

trix [7]:

3p

P2
'
2g+Fo G, —

P 1
1p

1
3p

P 1
'g+ Fo G, —— —
2

1p Fo+ G1

3p 0+Fo Gi— —

where g is the LS coupling strength and Fo, G, determine
the electrostatic interaction. These constants can be
determined from the observed energies (eigenvalues} for
the four spectroscopic terms. It is evident that only the
'P, and P1 states are mixed. After determining the vari-
ous constants in the above matrix, the eigenvectors are
readily determined. We find

'P, =a 'P, PP, , —

P, =a P, +P'P, ,

(15)

(16)

where, as above, the bar indicates the spectroscopic LS
states, a=0.98, and p=0. 20. As for the d states and
those states with principal quantum number greater than
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6, they are pure LS states to a very good approximation.
The radial wave functions were determined by use of a

relativistic Hartree-Fock-Dirac (RHFD) numerical algo-
rithm which uses the central-field approximation [8] or
by numerical solution of the ordinary Schrodinger equa-
tion (SE) with a shielded Coulomb potential from the
RHFD solution to the Hg+ ion ground state. We are in-
terested primarily in the 6s, 6p, and nd radial functions.

The RHFD wave functions for the 6p electron are
different for the two j states, that is, for the 6p1/2 and

6p3/p states. As expected, the large part of the RHFD
p 3/2 and SE solutions are nearly equal. As a comparison,
the expectation values of r for the 6p, /2 state and for the

6p3/2 state are (in atomic units}

(6p, /fir 16p)/q) =29.41,

&6p3/2lr 16p3/p) =35.99 .

Thus, to achieve the desired level of accuracy (about
30%%uo), it will make little difference which radial wave

functions we use. It should be noted that in general, the
LS states of the sp configuration are linear combinations
of the p»2 and p3/2 states. It is straightforward to show

through projection onto the various angular momentum
states (see Table 1 [9] in Ref. [7)}that, for example,

v'2 1
1 & P3/2 ~ P1/2~3 &3

The 6s wave function and eigenvalue from the RHFD
algorithm are quite different from the SE solution; we
therefore use the RHFD 6s state in our calculation. The
eigenvalue for the 6p state differs by 30% between the
two methods. In general, as the principal quantum num-
ber and angular momentum increase, the results of the
two methods become similar. To achieve the required
level of accuracy, for all radial functions other than the
6s and 6p states, we can use the L states of the ordinary
Schrodinger equation.

The calculations are greatly facilitated by use of the
Wigner-Eckart theorem [10]:

ment is modified by dilution with the nuclear spin. For
example [12],

(n'F'L'III T"llnFLI )

=( —1) +"+ + v'(2L'+1)(2L+1)

L F I
X 'F, L, k

'(n'L'IIT"llnL), (19)

where the matrix is a 6-j symbol and it is understood that
T"operates only on the orbital angular momentum.

As an additional check, we can compare the radial ma-
trix element and a and P as determined from the mea-
sured lifetimes of the P& (115 ns) and 'P, (1.31 ns) excit-
ed states with the results of our calculations. We find

lal =0.18 and IPI =0.98 from the excited-state lifetimes,
which compares well with the values determined by di-

agonalizing the LS plus electrostatic interaction matrix.
The radial matrix elements for the electric dipole transi-
tion are

3. 1 calculated
I& pl I )I — 26 from hfetimes

which are also in reasonable agreement.
Finally, we note that while it is important to take into

account the LS mixing in calculating transition ampli-
tudes, the effect on energies is smaller and may be ig-
nored for our accuracy. Hence we will assume that the
energies of a spectroscopic P state and its corresponding
pure LS state are the same.

IV. MAGNETIC-DIPOLE INTERFERENCE

The M1 amplitude is the easiest to calculate. The
operators L, and S, cannot change the principal quan-

tum number n, nor can they change L, S, ML, M&, or
M~ =m, but they can change F. Equation (9) reduces to

L k L'
(n'L'M'IT~ 'InLM) =( —1) +"+

q M q
—M'

X ( n'L'll T"llnL ), (17)

where the matrix is a 3-j symbol and T' ' is the rnultipole
operator of Eq. (11). The reduced matrix element, in
terms of the radial wave function, is [11]

L k L'
(n'L'll T"IlnL ) =( —1) "t/'L + lv L'+1

X drr +R„*.L. rRL r
0

(18)

where R is the radial part of the wave function. Later,
the integral will be written as (n'L'Ir" InL ).

We are interested in matrix elements between states of
F=I+J when there is no coupling of the radiation field
to the nuclear spin. In this case, the reduced matrix ele-

e EZE0R
g (6 P(Fml(L, +2S, )

mC F' m'

I6 P,F'm')(6 P)F'm'I

I

I6 'P, F'm') (6 'P, F'm'I
—W

1

Xy I6'SOIp), (20)

where we reference the excited-state energies to the
ground state and denote the angular rnomenturn of the
final state by F and m and of the initial state by the nu-
clear spin I and its projection p.

Introducing the multipole operator from Eq. (12) and
the LS states from Eqs. (15) and (16), we obtain
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e'&ESEo
JR, = —i

4v'2mc F,

a'p + p'
—8'6 1P

—8'63P
1 l

& 6 'P, Fm lI., l6 'P, F'm '
&

a2p

1

ap
—8',

1

&6 P, Fm l(L, +2S, )l6 PiF'm')

X &6 'PiF'm'l(Ti + T'
i )l6 'SOIp) . (21)

For the singlet state, L, =J„while for the triplet state, L, =
—,
' J, . The matrix elements for J, can be readily deter-

mined:

I 1 F I 1

&FmlJ, IF'm') =fi,(2F+1)'"(2F'+1)'" y m, m; mJ m m; mJi™J
Using Eq. (19), we find

F'

e AEs+0 a2p
A, )

"=—i
4&2mc

1

(2F+1)' (2F'+1)'
28

1

I 1 F I 1 F'
X m

m m —m m m —m'
m. m i J i J

i' J

Similarly, we find the electric dipole amplitude from Eq. (8):

I 1

( 1 )I+ 1+m

p
&FllT'l

v'2 (22)

I 1 F &FllT llI)
e —m

gmP P ( 1)I+1+mEo
2 p

(23)

The fractional change in absorptivity due to the Ml amplitude is obtained by substituting Eqs. (22) and (23) into Eq.
(14). Neglecting the term in p,

5a

M1

eh'
2 1

Es a
2mc 8'

&

1

(2F+ 1) (2F'+ 1)

I 1 F I 1 F' I 1 F
'2

m, m, , mJ, e
X

m; mJ —m m; mJ —m p E —m

I 1 F
p e —m

(24)

The factor multiplying the angular momentum terms is

equi 2 1
BM1ES ES a

2mc
l

= —[8.65X10 (kV/crn) ']Es . (25)

M1

+0 9017. . .BM1ES (26)

Thus, from the M1 part of the interference, we can ex-
pect a fractional change in absorptivity of order 10 for
a static Geld of 10 kV/cm.

For the F=
—,
' to F=—,

' transition (for ' Hg), the angu-

lar momentum sum gives
+1/2

M1

+0.793 66. . . , p =+—'

BM1ES + & =+ &—T p —r

It is evident that the interference depends both on the di-

pole and (weakly) on the octupole components of the
ground-state polarization. In fact, the presence of the
factor mJ in the sum in Eq. (24) can in general make the
interference proportional to all odd-order polarization
multipole moments. We include the F=—', to F=

—,
' result

only to demonstrate the possible sensitivity to higher mo-

ments of the polarization; we will only consider the F=—,
'

to F=
—,
' transition throughout the rest of this paper. For

this transition, the M 1 coefficient in Eq. (1) is found from
Eqs. (25) and (26) to be

In the case of the F=
—,
' to F= ,' transition (for 'Hg—), a~, =7.80X 10 (kV/cm) (27)
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V. "P-CHANNEL" ELECTRIC-QUADRUPOLE
INTERFERENCE

To evaluate the E2 amplitude in Eq. (10), we first con-
sider the second term in brackets, in which the static field
mixes the P, states with the ground state (the P channel).
In Sec. VI we will consider the first term in the brackets,
in which the 'Dz states are mixed with the P, state (the
D channel).

A major difference between the M1 and E2 interfer-
ence calculations is that the E2 operator can mix states
of different principal quantum number; we thus have to
consider an infinite sum over intermediate states. How-
ever, the angular momentum construction of each of
these states is identical; the sum over principal quantum
number can be easily carried out, as will be demonstrated
shortly, leaving a radial integral to be evaluated.

Including just the P channel, Eq. (10) may be written

ie kEzEO ~n P,F'm')(n P&F' m'~ ~n 'PiF'm')(n 'P, F'm'~
2p — g (6 P,Fm (T2 —T z) +

4 3 „F. 6iS n3P
0 1

6'S n'P
0 1

X( T,'+ T', )i6 'SOIp), (28}

where k is the wave number of the incident radiation and where we have inserted the multipole operators from Eqs. (12)
and (13). Using Eqs. (15) and (16) to transform to the LS basis and ignoring terms of order P, we obtain

[P(6)a (n)(6'P, Fm ~eTz, ~n 'P Ft' m')+ a(6) a(n)P(n)h (3n)(6 P&Fm ~Tz, ~n P,F'm')]
4 3 n, F', m' n, n'=+1

(n 'P~F'm'~Ti&~6'S&Ip)
X

W1 —8'1 (29}

where

8'
3

—8'1
b3(n) —=

6 so n pl1 3

In Eq. (29) we have written a and P as functions of the principal quantum number with the definition P=P(6). To a
very good approximation, P(n A6) =0 and a(n ) = 1. We thus have an infinite sum over the a(n ) terms and a single term
for P(n) =P(6).

By direct computation, it is straightforward to show that

(6 P&Fm ~T+2 ~n P, F'm') = ——'(6 'P&Fm (T+2(n 'PiF'm'),

which may be used together with Eqs. (17) and (19}to reduce Eq. (29) to the form

@2,p=

where

iekEsE& ~ ~ &6 F 2 F I 1 F' 1 F' I 0 I I~ 3&3(—1)' + + —K~, e4+3, , Q5 ~ m' 2e —m p e' rn' —F 1 2 F' 1 1, ' (30)

v'5, 5(n, 6), (6P [~
T'[[nP ) (nP ][T'[[6S)

2 8'6s —8'
1

(31)

Using Eq. (18),

(6P//T //nP)(nP//T'f/6S) = —(6P/r fnP)( nP/r/ 6S) .
5

Therefore,

(32)

K = —
—,
' 6'( 6 }( 6P

~
r

~
6P ) ( 6P

~
r

~
6S ) + y

6S
—~ 1,n PI

(33)

The first term can be calculated directly from the 6S and 6P wave functions and energies. By a standard technique [13),
the second term can be transformed into a single matrix element (6P ~r ~+p ), where the new function ~'Pp ) is defined
by the inhomogeneous differential equation

(0 8' )
~
+ ) = ~6Sr—) . —

We define another function
~ Vp ) =P(r) Ir, and also ~6S ) = U6z(r) Ir, to obtain the differential equation

(34)
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d2

dr

L (L +1) +2( W6z —V (r) ) P(r) =2U6z(r),
T

(35)

where L =1 and we have taken the shielded Coulomb potential of the Hg+ ion as V(r) W. e have the boundary condi-
tions that P(r)=0 at r =0 and infinity. The equation was solved by use of a second-order Runge-Kutta integration
[14]. The value of P'(0) to give the proper boundary conditions was determined by iteration. U6z and W6z were ob-
tained using the RHFD method. Using the RHFD radial functions and eigenvalues, we find (in atomic units)

K=82+(6Plr Ig ) =390 .

Thus,

3+3 F' 2 F I 1 F' 1 F' I 0 I I"=i —e2kg g RK W (
—1) + +

m' 2e m p e —m' F 1 2 F' 1 1F',', m', E, E'

We next need the E 1 amplitude. Using Eq. (23) with Eqs. (17), (18), and (19),

(36)

(37}

I 1 F 0 I I
iP — ( —1) +'+ g ' '(6Plrl6S &

2 v'2 p e —m F 1 1
(38)

From integration of the wave functions, ( 6P lr I6S ) = —3. l. Using Eq. (13), for I=
—,
' to F=

—,',

+ 1/2
ekEs

+ K =+ [0.96X10 ' (kV/cm) ']Fz, (39)

which, using Eq. (1},yields

az2 p
= —0.96 X 10 (kV/cm) (40)

VI. "D-CHANNEL" ELECTRIC-QUADRUPOLE INTERFERENCE

(41)

Using Eqs. (17), (18), and (19),

(Fm
I T,' I

Fn' m)( nF'm 'I e'7 ~; I
Ip, &

2 F' I 0 I I F' 1 F I 2 F'
1 )4I+ 2F'+ m'+ m

~ (6P Ir lnD &(nD lr'l6S & . (42)F 1 1 F' 2 2 m' e —m p 2e' —m'

The D-channel calculation proceeds similarly to the P channel with the exception that the n D2 states are pure LS.
Referring to Eqs. (10) and (16), we now have

kEsEo &6'P)Fml7", ln 'DpF'm'&&n 'D2F'm'le'7 ~p, I6'Solp)
@zD= — — & X X4v 3 p. . . +) W63p W

Again, we have to sum over states; referring to Eqs.
(30}—(33),

K' = ('Pd
I
r I6S ) =49.2 . (45)

(6PlrlnD )(nDlr I6S) (43)

Using Eqs. (13), (38), (42), and (45), we obtain

As before, the sum can be transformed into a differential
equation,

E2,D

2&2K 'ekFs

(6Plr I6S) e400

=+[2.2X10 (kV/cm) ']Ez, (46)
d L(L+1) +2(W 3

—V(r)) D(r)=2U6p(r),
dr r 1

(44)

with L =2. Solving as before, we find

or, from Eq. (1),

a~2 D=2.2X10 (kV/cm)

which is much smaller than the P-channel result.

(47)
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VII. COMBINED EFFECT AND PROPOSALS
FOR EXPERIMENTAL VERIFICATION

Combining the results [Eqs. (27), (40), and (47)], we find

a = —6.6X 10 (kV/cm) (48)

We estimate the error to be +30%, which is due to un-
certainty in the radial wave functions and the simple LS
coupling scheme used. The magnitude of the interference
in Hg is thus nearly five times as large as the effect in Rb.

With minor modifications, the Hg PEDM apparatus
[6] would be quite suitable to measure this effect. Nu-
clear spin polarization is created by optical pumping in
mercury vapor cells within which 10-kV/cm electric
fields can be applied. A major source of error in the
PEDM measurement itself, stray magnetic fields, would
have little effect on the interference measurement. Not
only would the noise be smaller, but larger electric fields
and faster field-reversal rates could be used since the lim-
iting voltage is determined by electrical breakdown in the
cell, not by leakage-current-induced magnetic fields as in
the PEDM experiment. Measuring a change in absorp-

tion of the size predicted in Eq. (48) should then be feasi-
ble.

VIII. CONCLUSION

We have calculated a linear Stark interference effect in

Hg and have concentrated on the effect in ' Hg ~here
the nuclear spin I=—,'. The result is about five times

greater in magnitude over a similar calculation for the Rb
D lines for which this effect was originally suggested.
The important differences between Hg and Rb are that
for Hg the hyperfine structure is resolved, the atomic po-
larization is defined by the nuclear spin, and the 254-nm
line of interest is an intercombination line. The effect is
large enough to be measured (in a quite reasonable
averaging time) with a modified version of the Hg
permanent-electric-dipole-moment apparatus.
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