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Intercomparison of atomic models for computing stopping parameters from the Bethe theory
Atomic hydrogen
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The stopping cross section, the straggling parameter, and three higher moments over the energy-loss
cross section have been evaluated for a moving point charge interacting with atomic hydrogen. The aim
was to estimate the accuracy of predictions based on four commonly used models for computation of
stopping parameters. The standard of reference was a straight evaluation of the Born approximation.
All considered models, i.e., the dielectric theory, the binary-encounter model, the kinetic theory, and the
harmonic-oscillator model, have been shown to be capable of providing reliable predictions within their
respective regimes of feasibility, but distinct variations show up from lower to higher moments and from
higher to lower projectile energy.

PACS number(s): 34.50.Bw, 61.80.Mk, 79.20.Nc, 32.80.Cy

I. INTRODUCTION

Here, the E„are electronic energy levels of the atoms or
molecules of the penetrated medium (n =0, 1,2, . . . ), and
the matrix elements F„o(q) are defined by

F„IQ)=ze' (e pe ' 0
J

(2)

where the sum runs over all Z electrons of the target
atom or molecule. The quantity Aq is the momentum
transfer in an individual interaction, Q =A' q /2m, and
m the electron mass.

The information contained in Eq. (1) is adequate in

principle to completely determine the mean electronic en-

ergy loss of a point charge in a slice of matter as well as
all higher moments over the energy-loss spectrum and
the spectrum itself [1—3]. However, for all targets except
atomic hydrogen [4], difficulties occur which make the
direct computation of stopping powers from Eq. (1) a for-
midable task. The main problem is providing a reliable
set of matrix elements involving sufficiently many states,
including the continuum, over a sufficiently wide range of
Q values. Even for a comparably simple system like heli-

um, a recent attempt based on Green-function techniques
[5] suggests that generalized oscillator strengths cannot
readily be computed for Q values far enough into the con-
tinuum to allow evaluation of the stopping power without
introduction of simplifying assumptions [6].

Most often, only the high-velocity limit of the Bethe
theory is considered. In that case, sum rules can be ap-

Bethe [1] established the quantum theory of stopping
for a point charge penetrating through a disordered
medium. He evaluated the mean energy loss per path
length, i.e., the stopping power, within the Born approxi-
mation, and found that it can be expressed by a sum of
integrals over the generalized oscillator strengths,

f„o(Q) = (E„Eo—) IF„O(q—) I

1

plied [1], and the mean energy loss reduces to Bethe's
well-known logarithmic expression which contains only
one material parameter in addition to Z, the mean excita-
tion energy I de6ned by

lnI = g f„ln(E„Eo),— (3)

where f„=f„o(0) denotes a dipole oscillator strength.
Similar parameters enter higher moments [2,3]. This
reduces the necessary computational effort substantially
[7]. Nevertheless, even for the best-studied systems [8],I
values extracted empirically from stopping-power mea-
surements [9] have generally been considered superior to
computed ones.

The asymptotic Bethe formula for the stopping power
needs to be supplemented by shell corrections at all but
the highest velocities [2,10]. These corrections increase
in importance with decreasing speed and increasing
atomic number of the target. They are crucial near the
stopping maximum, and for heavy target atoms they are
significant at all projectile speeds. For atomic hydrogen,
these shell corrections have been evaluated rigorously
[11]. All other existing estimates involve atomic inodels.
The models that have been designed and utilized for this
purpose differ in complexity, in their respective ranges of
applicability, and in a priori accuracy.

It is the purpose of the present paper to present a com-
parison of four frequently used atomic models with

respect to their capability of predicting stopping parame-
ters. Atomic hydrogen is the only atomic system for
which a complete set of exact generalized oscillator
strengths is available. An accurate evaluation of the

stopping cross section for a point charge is available [11].
We have reproduced this calculation and in addition
determined the straggling parameter and three higher
moments over the energy-loss cross section. This set of
stopping parameters, all based on the Born approxima-
tion, serves as the standard of reference.

The following atomic models have been considered: (i)

the dielectric theory [10,12], (ii) the harmonic-oscillator
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II. EXACT CALCULATIONS

We evaluate the first five moments over the excitation
cross section cr„,

M'"'= g (E„Eo)"o„, v—=1,2, 3,4, 5 . (4)

Here, M'" is the stopping cross section and M' ' the
straggling parameter; the moment M' ' is related to the
skewness of the energy-loss spectrum, and M' ' to the
curtosis [19].

Within the Born approximation, a„ is given by [3]

with

2ire ie 1 dQ
2 2

n 2 E E ~ no
mv En Eo

(5)

min

(E„—Eo)

2mv
(6)

Here, e, and v are the projectile charge and speed. Ex-
pressions for f„o(Q) are well known for atomic hydrogen
[1,3], both for the discrete spectrum and the continuum.

The moments specified in Eq. (4) have been evaluated
numerically. The integration over Q was performed with
an upper limit equal to at least twice the Bethe ridge.
When necessary, the integration interval was extended to
ensure an error below 0.1'7o. The sum over the discrete
portion of the spectrum was truncated after 400 terms,

model [13], (iii) the kinetic theory [14], and (iv) the
binary-encounter model [15]. These models have all been
described in detail in the literature. The survey that fol-
lows below (Sec. III) serves mainly to specify the distinct
features that enter the computations.

Stopping parameters have frequently been determined
on the basis of Eq. (1) by insertion of hydrogenlike atomic
wave functions [4,6,16,17]. Testing the validity of this
procedure obviously requires to go beyond atomic hydro-
gen and is, therefore, outside the scope of the present pa-
per.

The restriction to atomic hydrogen has a double ad-
vantage: Not only can exact moments be computed
within the Born approximation, but accurate and reliable
input is also available for all parameters required in the
model calculations. Therefore, possible conclusions re-
garding the quality of the atomic models are not likely to
be blurred by inadequate input.

On the other hand, atomic hydrogen is a one-electron

system, and penetrating particles may excite collective
degrees of freedom [12]. Therefore, some caution is indi-
cated in the generalization of our conclusions to higher-Z
atoms or molecules.

One major limitation inherent in the Bethe theory is
the neglect of higher terms in the Born series in powers of
the projectile charge. That aspect is a topic in its own
right which involves an assessment of the accuracy of
"exact" evaluations [18] and detailed consideration of
how the various models can be generalized such as to ac-
count for higher-order Born corrections. That aspect will
be left out of consideration here.

TABLE I. Comparison of numerical evaluation of the stop-

ping cross section of atomic hydrogen. The quantity tabulated
is the stopping number L =(mu /4me)e )M"', and R =13.6
eV.

2mv2/R

0.4
4
40

Ref. [11]

0.012 53
0.834 5
3.480

Present work

0.012 51
0.832 9
3.477

and the integration over the continuum portion was
transformed into an integration over a finite interval. A
numerical accuracy of about 0.1% was aimed at for all
moments.

The results for the first moment have been compared
with those of Ref. [11]. It is seen from Table I that there
is agreement to better than 0.2%.

III. ATOMIC MODELS

A. Dielectric theory

The stopping power of a homogeneous electron gas for
a penetrating point charge is given by [12]

dE 4
2 pL, (fivF /e, 2mv /fico& ), (7)

dX mv

where p is the electron density, co =(4irpe /m)' the
plasma frequency, VF the Fermi speed, and L, a function
that can be expressed as an integral over the inverse
dielectric function. In the high-velocity limit, L, be-
comes independent of the ratio fivF/e and approaches
the asymptotic Bethe expression L, = ln(2mv /iricop!.

Within the local-density approximation, the stopping
cross section of an atom or molecule can be tentatively
connected to the electron density p=p(r) by the relation

4me, e 2mvS= fd r p(r)L, A'vF(r)/e, , (8)
mv irlco& r

where co& =cor{p(r)) and vF(r) =vF(p(r))
From the high-speed limit of Eq. (8) one finds the mean

excitation energy I in this approximation:

lnI= f d r p(r) 1n[fico~(r)] . (9)

In Ref. [10], an additional factor &2 was inserted under
the logarithm on the right-hand side of Eq. (9) to qualita-
tively account for atomic binding forces. Including this
factor more generally in Eq. (8) would aff'ect also the be-
havior of S at low projectile speed, where such a correc-
tion is not indicated. In Ref. [20], this problem was han-
dled by use of a low-speed and a high-speed representa-
tion of L„ the former being uncorrected and the latter
corrected. In order to illustrate the difference, Eq. (8)
was evaluated both as it stands and in the version out-
lined in Ref. [20].

According to Ref. [10], the binding correction should
actually become much smaller than V2 for light target
materials. This is easily seen to be true for helium but
not so for atomic hydrogen.
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For the direct evaluation of Eq. (8), L, has been evalu-
ated by straight numerical integration on the basis of the
dielectric function given in Ref. [12]. The results agree
well with previous numerical evaluations [12,21]. Equa-
tion (8) was then integrated numerically by insertion of
the electron density of atomic hydrogen in the ground
state.

In the evaluation of the corrected stopping power we
followed exactly the procedure described in Ref. [20].

The expression given in Ref. [12] for the straggling pa-
rameter of a free electron gas was evaluated similarly,
with no binding correction. The local-density approxi-
mation has previously been applied to straggling in Refs.
[22,23]. Higher-order moments were treated correspond-
ingly.

The dielectric theory is the most frequently used model
for the computation of stopping cross sections. Early ex-
perience [20,24] indicated that the model is more success-
ful in the evaluation of shell corrections than in the eval-
uation of I values.

B. Harmonic-oscillator model

Within the Born approximation, the stopping section
of a spherical harmonic oscillator can be written in the
form

4me e
S„,= L„,(2mv /iricoo),

mu
(10)

This was evaluated in Ref. [13] for atomic hydrogen.
Those results were accurately reproduced in the present
computations.

The corresponding expression for straggling was also
suggested in Ref. [13],and the values obtained for atomic
hydrogen were confirmed in our computations. Higher-
order rnornents were evaluated correspondingly.

The expression (11) goes over into the asymptotic
Bethe formula at high projectile speed, i.e., the mean ex-
citation energy I takes on the exact value given by Eq. (3)
in this model. Application of the proper sum rule shows
that also the leading term in the shell-correction expan-
sion agrees with the exact value for any target, and for
the specific case of atomic hydrogen, the same was found
to be true for the second term in the shell-correction ex-
pansion in powers of u [13]. Moreover, the depen-
dence of the mean energy loss on impact parameter that
is implied by the oscillator model agrees asymptotically
with Bloch s exact result in the dipole limit [25,26]. The
oscillator model has also been shown to correctly de-
scribe the asymptotic behavior of the straggling pararne-
ter at high velocities in the two leading terms [13].

where duo is the classical resonance frequency and L„,(g)
a function that has been computed accurately [13]. In
the high-speed limit, that function approaches the Bethe
logarithm L„,(g)-1 gn.

It was proposed in Ref. [13] to determine the stopping
cross section of an atom from the expression

4me e 2mu

I

S= J d'v f(v )" " ", So(Iv —v I),
ulv —v'I

(12)

where So(v) is the stopping cross section in the high-

speed limit, i.e., the asymptotic Bethe formula. Here,
f (v') is the velocity spectrum of the target electrons
which is determined via Fourier transformation of the
wave function. For a ground-state atom, the velocity
spectrum is isotropic, f(v')—:f(u'), so that Eq. (12)
reduces to a one-dimensional integral. In this model, the
mean excitation energy I enters as an input parameter,
i.e., the kinetic theory is primarily a scheme to determine
shell corrections.

Equation (12) has been evaluated on the basis of the ex-
act I value and the velocity spectrum of atomic hydrogen
in the ground state. The integration includes only target
velocities for which So is positive. The corresponding ex-

pression for straggling was also suggested in Ref. [14] and
has been evaluated along the same line.

The validity of this model rests on the assumption that
major deviations from the asymptotic Bethe formula are
of a kinematic nature: with decreasing projectile speed,
the fact that u becomes comparable to the electron speed
v' is considered more important than the fact that 2mv

becomes comparable with electron binding energies. It
was demonstrated Ref. [14] that this model correctly pre-
dicts the first term in the shell-correction expansion of
the stopping cross section as well as that of the straggling
parameter.

D. Classical binary-encounter model

The classical binary-encounter model operates on the
basis of free Coulomb scattering between moving parti-
cles and an effective binding energy which can be treated
as an adjustable parameter [15]. The stopping cross sec-

tion arising from this model is a factor of 2 too small in

the limit of high velocities [27]. In the straggling param-

eter, binding forces become significant beyond the leading
order in v [28]. Higher moments are known to be less

sensitive to binding forces [19].
In order to avoid ambiguities we have only computed

third- to fifth-order moments from this model. These re-

sults complement the first and second moment computed
from the kinetic theory. The same electron velocity spec-

tra have been utilized in the two types of computation.

IV. RESULTS

A. The stopping cross section

Figure 1 shows the first moment, i.e., the stopping
cross section. It is seen that within the Born approxima-

tion, the stopping cross section is quite accurately repro-
duced by the harmonic-oscillator model at projectile
speeds down to 2mv /R —3, where R =13.6 eV. The
agreement is quantitative in the energy range above the

stopping maximum. The error near the maxirnurn is

C. Kinetic theory

In Ref. [14], one of us suggested evaluating the stop-
ping cross section of an atom from the expression
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—
l%%uo. At lower velocities, the oscillator model leads to a

slight overestimate of the stopping cross section except
near threshold where it crosses the exact result. Note
that at those low projectile speeds, higher-order Born
terms overshadow these discrepancies [29,30].

The agreement found here between the oscillator mod-
el and the exact result is better than reported in Ref. [13].
The reason for this is that in Ref. [13],comparison was
made with a stopping cross section computed by Turner
[4] and reported in Ref. [2]. The comparison suggested
that a single harmonic oscillator should provide a better
estimate for the stopping cross section of atomic hydro-
gen that the ensemble specified by Eq. (11). This finding
was highly implausible. A subsequent reevaluation of the
"exact" result revealed a slight inaccuracy in the latter
[11].

The dielectric theory yields good agreement with the
exact result down to 2mu /R —10, i.e., almost down to
the stopping maximum. Inclusion of a factor —I/&2 in
L„Eq. (8), appears indeed essential in this regime.
Below the stopping maximum, the dielectric theory pre-
dicts the well-known velocity-proportional stopping cross
section that is characteristic of the free-electron gas. This
behavior is very different from that predicted by the
Bethe theory.

The kinetic theory has been tailored to yield the exact
asymptotic behavior at high projectile speed. Figure 1

shows that down to the stopping maximum, this model
yields results that are intermediate between those ob-
tained from the corrected dielectric theory and the oscil-
lator model. At low velocities, the prediction of the ki-
netic theory is intermediate between the uncorrected
dielectric theory and the straight Born result.
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FIG. 2. Straggling parameter of a point charge in atomic hy-
drogen. The quantity plotted is the ratio between the computed
second moment M' ', Eq. (4), and Bohr's result, Mo ' =4m.e&e .
Notation as in Fig. l.

B. Straggling

Figure 2 shows second moments. All curves approach
Bohr's result [28] at high velocities, and a Bethe-
Livingston-type maximum [31] is observed at intermedi-
ate velocities. All models yield good overall agreement
with the straight Born result. However, the prediction of
the kinetic theory is consistently high. The result from
the dielectric theory is high around the maximum as well
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FIG. 1. Stopping cross section S—:M'" of a point charge in
atomic hydrogen. Solid line: Born approximation, direct in-
tegration; short-dashed line: dielectric theory, uncorrected [Eq.
(g)]; long-dashed line: dielectric theory, corrected for binding
according to Ref. [20]; dotted line: kinetic theory; dash-dotted
line: oscillator model. 8 = 13.6 eV; ao =0.529 A.

2 IT)V

FIG. 3. Third moment over the energy-loss spectrum, nor-
malized to the free-Coulomb value for stationary target elec-
trons, Mo ' =4' le mv . Notation as in Fig. 1, except that the
dotted line refers to the binary encounter model.
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binding energy [19], is seen to yield very satisfactory re-
sults except at the lowest velocities.

Discrepancies increase in the fourth and fifth moment
(Figs. 4 and 5). Note the logarithmic scale in the ordi-
nate. Down to somewhat below 2mU /R —1, the oscilla-
tor model is seen to show excellent agreement with the
straight Born integrals while the dielectric theory is con-
sistently low for 2mu /R ~ 10, with the error increasing
with decreasing energy. Drastic errors show up in the
predictions of the oscillator model for 2mU /R (0.2.
This is not unexpected. More surprising appears the fact
that such discrepancies do not show up at considerably
higher projectile velocities.

V. DISCUSSION
0.1 10 100

2 ITlv

FIG. 4. Same as Fig. 3 for the fourth moment, with~"'=4~e'e'(2~ ')'/3

as at very low velocities. The oscillator model shows very
good agreement ( —1%) with the straight Bethe result
down to 2mU /R -2, and acceptable agreement down to
2mu /R -0.3.

C. Higher moments
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FIG. 5. Same as Fig. 3 for the fifth moment, with

Mo '=47Te e (2mU ) /4

Figure 3, which shows third-order moments, does not
indicate major changes in comparison to the behavior of
the second moments. The errors of both the oscillator
model and the dielectric theory have become only slightly
larger. Predictions of the kinetic theory have not been
included, but even the straight binary-encounter model,
assuming free-Coulomb scattering and neglecting any

As a main conclusion, one may note that three of the
considered models, the dielectric theory, the oscillator
model, and the kinetic theory, all provide reasonable esti-
mates of the stopping cross section almost down to the
stopping maximum. For the dielectric theory, this re-
quires inclusion of a binding correction of the order of
&2 even for an atomic hydrogen target. The harmonic-
oscillator model shows more accurate agreement with the
straight Born result in this velocity range than the other
two approximations. At velocities below the stopping
maximum, major differences occur. Here, surprisingly
close agreement is found between the prediction of the
oscillator model and the straight Born result.

The oscillator model has been designed to correctly de-
scribe soft interactions. Discrepancies must be expected
under conditions where mostly violent interactions con-
tribute, i.e, for higher moments and, generally, for all mo-
ments at velocities approaching the threshold for excita-
tion. Figure 1 demonstrates that this breakdown occurs
at much lower velocities than could have been anticipat-
ed. Similar conclusions emerge from considering the be-
havior of the higher moments which increasingly hinge
on low-impact-parameter collisions. Moreover, the
zeroth moment, i.e., the total cross section, is exclusively
determined by soft interactions and, therefore, very accu-
rately approximated by the harmonic-oscillator model.
For most practical purposes, these six moments charac-
terize the overall behavior of the differential cross section
very well.

The dielectric theory was designed with the aim of es-

timating stopping parameters for many-electron atoms.
While the model appears intuitively appealing, no limit-

ing case is known where it is exact. An illuminating dis-

cussion [32] gave no clues on the range of validity of the
model. It is well established that for the homogeneous
electron gas, about half the stopping power goes into col-
lective excitations in the high-speed limit. Applying such
a model to a one-electron atom could be expected to lead

to artifacts. Indeed, there is a noticeable error in its pre-
dicted impact-parameter dependence of the electronic en-

ergy loss [33]. In consideration of these features, the ob-

served deviations of the predicted moments from the
straight Born approximation are surprisingly small. The
biggest disparities are actually observed in the first mo-

ment, i.e, the stopping power, where the necessity of in-
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FIG. 6. Same as Fig. 1 for helium target. Full drawn curve
from Ref. [6]. Experimental data: Semrad and Golser [34]; see
also Ref. [36].

eluding a binding correction at high velocities, and omit-
ting it at lower velocities, has long been a cause of consid-
erable concern.

Predictions of the kinetic theory have been included
only for the first and second moment. These predictions
are known to compare favorably with more accurate cal-
culations at not too low projectile speeds. For higher
moments, only straight binary-encounter expressions
have been evaluated, i.e., expressions that do not contain
the mean excitation energy. Its predictions become
exceedingly accurate with increasing order of the mo-

ments, as is seen by inspection of Figs. 3—5.
In view of recent stopping measurements on hydrogen

and helium gas at very low energies [34], a comparison
with some of the present results is of interest. The stop-
ping cross section of helium for a penetrating point
charge was evaluated similarly to the case of hydrogen,
yet with approximate input. The results of Ref. [6]
served as a reference standard. Dipole oscillator
strengths needed in the oscillator model were taken from
Ref. [7], and electronic charge densities and velocity
spectra were found from hydrogenic wave functions with
standard parameters [35]. A comparison of the theoreti-
cal stopping cross sections shown in Fig. 6 shows a quali-
tatively similar behavior as atomic hydrogen. There is
very good agreement between the results of Ref. [6] and
the oscillator model. No correction was applied to the
dielectric theory, in accordance with what has been said
above. The behavior of the curves predicted by the kinet-
ic and the dielectric theory is very similar to what was
found for hydrogen.

A number of experimental results were included in ad-
dition to the data reported in Ref. [34]. There is striking-
ly good agreement with the results of Ref. [6] as well as
the oscillator model at energies well above and well below
the maximum. Also the position of the maximum is well
predicted, but the height is slightly underestimated.
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