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Photon polarization in radiative recombination of bare ions
with low-energy free electrons
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The polarization of photons emitted from radiative recombination of bare ions with free electrons is
discussed in the nonrelativistic dipole approximation in the low-relative-energy limit. Within this ap-
proach an analytical expression is derived for the degree of polarization of photons from radiative
recombination of ions with fixed-energy electrons for an arbitrary (n, I ) state. For a relative-velocity dis-

tribution of the electron beam, characterized by the longitudinal kT~~ and transverse kT, electron-beam
temperatures, we found also analytical forms for the polarization rates. For a flattened distribution

(kT~~ &(kT, ) the polarization rates for different (n, l) states peak at a direction, perpendicular to the
ion-beam axis (in the moving frame), where the photons are completely linearly polarized for the s states.
The results are discussed in the context of experiments aimed to observe the photons from radiative
recombination in the electron coolers of storage rings.

PACS number(s): 34.80.Kw, 42.25.Ja

I. INTRODUCTION

In radiative recombination a free electron is captured
into a bound state of an ion with the emission of a pho-
ton. The recombination into an (n, l) state of a bare ion
with atomic number Z, where n and I are the main and
orbital quantum numbers, respectively, may be written as
follows:

where the photon energy Ez equals an initial electron ki-
netic energy E plus an electron binding energy in a final
state E„&, i.e., E~ =E+E„I. The time inverse of this pro-
cess was studied theoretically already in the 1920s [1—4],
when a quantum-mechanical description of photoiniza-
tion was developed. The cross sections for both the
radiative-recombination and photoionization processes
are related via the principle of detailed balance [5]. A
general result for the radiative-recombination cross sec-
tion in a nonrelativistic dipole approximation was given
in 1930 by Stobbe [6] for arbitrary (n, l) states Later .on,
Bethe and Salpeter [7] derived an approximate formula
for the radiative-recombination cross section for a fixed
main quantum number n. It should be noticed that both
the angular distributions and polarization of photons for
arbitrary (n, l) states have not been quantitatively dis-
cussed in the papers mentioned above, with the exception
of Stobbe*s paper [6] where a short discussion of the pho-
ton polarization for recombination into the E shell was

given.
Radiative recombination was recognized many years

ago as an important energy loss process in plasma physics
[8] and astrophysics [9]. In recent years, heavy-ion
storage rings [10—13] equipped with electron coolers
have offered new possibilities to study state-selective radi-
ative recombination for bare and few-electron ions, e.g. ,
via high-resolution spectroscopy of emitted photons
[14,15] and laser-induced radiative recombination [16].

Recently, the first experimental results from measure-
ments of total recombination rates for spontaneous
recombination [17—22] and laser-induced state-selective
recombination [23,24] have become available. Experi-
ments for detecting the radiation from the spontaneous
recombination process are in preparation. For the pur-
pose of such experiments, it is worthwhile to know not
only the radiative-recombination cross sections and rate
coeScients, but also the angular distribution and polar-
ization of the emitted radiation.

Numerical calculations of the angular distributions and
polarization of photons from radiative recombination
were published recently by Scofield [25]. In that work,
the differential cross sections and polarization of photons
in recombination of selected highly charged ions using
electrons with a few kilo-electron-volts of energy were
calculated. It was done in a relativistic treatment includ-
ing higher multipoles and further on it was demonstrated
there that a nonrelativistic dipole approximation de-
scribes very well the recombination process in a sub-
electron-volt electron energy region, which is of interest
for the present paper. A more detailed discussion of the
applicability of a nonrelativistic dipole approximation to
the description of recombination between up to highest-Z
bare ions and low-energy electrons can be found else-
where [26].

In a storage ring, the energy spread of cooling elec-
trons in the ion frame is typically 0.2 eV or less, which is

much smaller than the electron binding energy in low-

(n, l) states, being on the order of some kilo-electron-volts
for medium- and high-Z ions. Guided by this fact we

have shown recently [26] that, within the so-called low-

energy approximation (E ((E„t), most of the relations

for the radiative-recombination process (recombination
cross sections and rate coeKcients) can be given in closed
analytical forms for an arbitrary (n, l) state and an arbi-

trary electron-beam-velocity distribution, characterized

by the longitudinal (kT~~) and transverse (kT~) beam
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temperatures. For typical cooling conditions of an ion
beam [27], we found in Ref. [26] that the low-energy ap-
proximation is valid up to quite high-n states, namely, for
n & Z. In this context, our previous paper [26] can be re-
garded as an introduction to the low-energy approxima-
tion for radiative recombination. Within this approxima-
tion we derive in the present paper analytical expressions
for the degree of polarization of photons from radiative
recombination.

Here, as well as in the previous paper [26], we discuss
radiative recombination between bare ions and low-energy
free electrons, however, we want to point out that the re-
sults can be applied to any system of structureless
Coulomb-interacting particles, for instance, such as in the
formation of antihydrogen (e+p ) [16] or protonium (pp )

[28] via radiative recombination. Other references relat-
ed to these interesting aspects can be found elsewhere
[26].

The paper is organized as follows. In Sec. II we
present the differential cross sections and the polarization
of photons in radiative recombination for a fixed electron
energy in the low-energy limit. In Sec. III we give the
main results for the polarization averaged over the
electron-beam-velocity distribution, which we call polar-
ization rates. The polarization of photons observed in

I

the laboratory system, in possible future experiments, is
discussed in Sec. IV. Conclusions are made in Sec. V.

II. PHOTON ANGULAR DISTRIBUTION
AND POLARIZATION

IN THE LOW-ENERGY LIMIT

der„t a „t(E)(v)=
dQ 4w

P„t(E)1+ [3(e u )1—1]
2 P

Here E is the kinetic energy of an electron with velocity v
in the moving frame; e and u are unit vectors along pho-
ton electric vector and electron momentum p, respective-
ly. In the low-energy limit (E «E„I) the anisotropy pa-
rameter p„t becomes energy independent and can be ex-
pressed as follows [26]:

The differential radiative-recombination cross section
into an (n, 1) state, [d a.„t/d Q](v), can be expressed in a
nonrelativistic dipole approximation in terms of the
recombination cross section o „t(E)and an anisotropy pa-
rameter p„t(E), describing the angular distribution of
photoelectrons emitted in photoionization process, as fol-
lows [26,29,30]:

(i +2)(l + 1)ct+
&
(n, 1)+1(l—1)c&,(n, 1) 6i (I—+ 1)ct+,(n, l)ct, (n, I)

(2l +1)[(l+1)ct+, (n, l)+1ct ((n, i)]
(2)

where the energy-independent reduced dipole matrix ele-
ments ct+,(n, i) are defined in Ref. [26], where also a fur-
ther discussion of the anisotropy P„& parameter can be
found. In that article we also show that, within the non-
relativistic dipole approximation, p„t can be determined
in the lou-energy regime quite accurately even for
highest-Z bare ions.

Equation (1) shows that the angular distribution of
photons depends only on an angle P (see Fig. 1) between e
and p (or u~), i.e., cosP=e u . Taking into account that
cosP =sin8 cosy, where y is the angle between e and the
plane defined by p and k as shown in Fig. 1, the
differential radiative-recombination cross section can be
written in the following form:

I

electric vector in and perpendicular to the (p, k) plane, re-
spectively. Since I((1(8)-do „t(8,y)/dQ of Eq. (3) set-
ting y =0' and 90', respectively, one obtains

3pnls111 ~
P„,(a)=

2(2—P„&)+3P„tain 8

In Fig. 2 the dependence of the photon polarization

do'nl trnl(E)
(v)=

dQ 4m
1+ (3sin icos y —1)

2
(3)

I (8) I1(8)—
I(((8)+I (4)

where I(( J(8) means a photon Aux at angle 8 with an

A flux of photons observed at an angle 8 with a fixed po-
larization (i.e., e vector orientation) as described by an
angle y, is proportional to [do„tldQ](v, g). Conse-
quently, one can calculate the polarization of emitted ra-
diation in terms of the differential recombination cross
section given in Eq. (3). The degree of polarization
P„t(8) of radiation from recombination into an (n, 1) state
observed at an angle 8 is defined as follows:

X

FIG. 1. Radiative-recombination process in the xyz coordi-
nate system. The p vector denotes the electron momentum the
photon k vector points along the z axis, and a unit vector e
along the photon electric vector is chosen along the x axis. In
this coordinate system the following relation between P, 8, and

y angles exists: cosP=sin8 cosy.
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III. POLARIZATION RATES

As it was discussed in the preceding section, the polar-
ization of photons from radiative recombination (for a
fixed momentum of the electron) can be expressed in
terms of the differential recombination cross section
do„&(8,y)/dQ given in Eq. (3). In the experimental con-
dition of an electron beam merged with an ion beam, e.g. ,
in the electron cooler of a storage ring, the relative
electron-beam velocity v=(vii, u~) has generally asym-
metric, Maxwellian distribution [27,31]:

FIG. 2. Polarization P„I(6)of photons from radiative recom-
bination into (n, l) states with n 3, vs an angle 8 between the
photon wave vector k and electron momentum p. Note that for
s states the photons are completely linearly polarized at any an-
gle 8.

f(v)= 2'
3/2

1
exp

kT~(kTII )i/2

mUg
2

2kT~

mU

nl
nl 4+p (6)

In Fig. 3 the depend|:nce of P„l on the orbital quantum
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FIG. 3. Dependence of the maximum degree of polarization
P„l(8=90') on the orbital quantum number l for n =30. The
polarization reaches the asymptotic value —,

' (dashed line) in a
limit of high-I values.

P„&(8) on the angle 8 is shown for selected low-(n, l)
states. As the most interesting feature we point out that
for recombination into s states, where p„o=2 [26] the
photons are completely linearly polarized with an electric
vector in the (p, k) plane. Such a result was given for the
first time by Stobbe [6] for recombination into the K
shell. With Eq. (5) we find that for higher-(n, 1) states the
photons are no longer completely linearly polarized and
the polarization is strongest for 8=90'. The maximum
degree of polarization P„& =P„&(8=90') can be expressed
in terms of P„& as follows:

where the angular integration should be performed over
all possible orientations of the electron velocity v with
the differential recombination cross section der'„'& (v)/dQ
defined as follows:

d crrii on!(E)'
(v)=

d 0 4m.
1+ (3 sin icos gii ~

—1)
p„!

(9)

Here
g~~ ~ denotes the value of the angle y for which the

where m denotes the electron mass, k the Boltzmann con-
stant, and k T~~ and k T~ are the effective longitudinal and
transverse electron-beam temperatures (in eV), respec-
tively. Under such conditions one has to introduce the
rac iative-recombination rate coefficient, being the
radiative-recombination cross section folded with the
electron-beam-velocity distribution. In a previous paper
[26] we derived the analytical expressions for the double-
differential [d a„&/dE~d Q](E,O), angle-differential
[du„& /d Q](8), and total (a„& ) recombination rate
coefficients in the low-energy approximation.

Since the Aux of photons from radiative recombination
in the electron cooler is proportional to the correspond-
ing recombination rate coefficient, we can introduce so-
called polarization rates using in the definition of the
polarization [Eq. (4)] the rate coefficients
[d rzil! /dE dQ](E ()) or [d (&II! /dQ](Q) with a fixed
orientation (

~~
or l) of a photon electric vector with

respect to the (p, k) plane, similarly to the way it was
defined for the photon fiuxes Iii and I~ in Eq. (4). We
note that in terms of the ~ angle in Fig. 4, this corre-
sponds to set a =90' and 0' for the (~~) and (j.) cases, re-
spectively. The double-differential rate coefficients with a
fixed orientation of the electric vector can be expressed as
follows (see also Refs. [32,26]):

d a„"'! 2(E E„!) der'„) (v)—

"y m I'
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d 2~Ii a(nl) '
» ni~" i

n(2nm)' kTi(kT~[)
(E,O) =

1 — fo(a)

+ 'P„&[—f i(a) —2f2(a)sin 8] (15)

and

CX a(n l) (E —E„I)—lkTi

dE»dQ "' n(2mm)' kTi(kTl )'
(E,O) =

FIG. 4. The coordinate system used to calculate the rate
coefficients when an orientation of the photon electric vector
(shown by unit vector e) is fixed relative to the (k, z) plane. The
ion-beam axis is set along the z axis and the electron momentum

p is fixed in the yz plane. A photon wave vector k points into
direction (8,y) and the angle between k and p vectors is denot-
ed by 8. The vectors ek~ and ek, are defined in the text.

angle ir is fixed, namely, yl p(K 90') and yi=y(&=0').
To perform the angular integration of Eq. (8) we express
cos g~~ i in Eq. (9) by other angles, which define the direc-
tions of p and k vectors as shown in Fig. 4. This leads to
the following expressions (see Appendix):

X 1 — fo(a)+ ,'p„i,—(16)0

3P„/f2(a)sin 8

2(2 Pnr)f—o(a)+3Pni[f i(a) f2(a)»n'8]
(17)

where both the reduced radiative-recombination cross
sections cr(n, l) and the functions f;(a), with
a =(E» E„i)(k—T~~ kTi)l—kT~~~kTi, are defined in our
previous paper [26].

With Eqs. (15) and (16) and using the general definition
of polarization [Eq. (4)], one can calculate the polariza-
tion rates n.„&(E»,8) for recombination into (n, l) states
for a fixed photon energy E~ as follows:

n„,(E», 8)

2 cos icos ycos+ =
sin'a

(10)

z (sinai sinO —cosf cosO sing)
cos py=

sin 8

By inserting these in Eq. (9), the differential recombina-
tion cross section can be expressed by

do „'~'I o „i(E)
dQ 4m

1 — + ,'P„,F„,(O, f, q )- (12)

where the Fl i(O, f,y) functions have the forms

Fi(O, g, p)=cos icos y,

Fi(8, g, q&) = (sing sinO —cosg cosO sing& )

(13)

(14}

With Eqs. (12—14) the integral in Eq. (8) is of the same
type discussed previously [see Eq. (23) in Ref. [26], and
Ref. [31]] calculating the double-differential rate
coefficient [d a„iIdE»d Q](E», 8) for a case when the
polarization of radiation is not detected. After a rather
lengthy, but straightforward angular integration in Eq.
(8) (see Fig. 4 and also Ref. [31]) the double-differential
rate coefficients [d a„'& /dE„d Q](E,O) can be expressed
as follows:

3P„&sin 8
(E &8}

2(4+P„I ) —3P„&sin 8
(18)

We will discuss the angular dependence of the polariza-
tion rates mfi(E, O) for different (n, l) states later on after
we show that Eq. (18) corresponds exactly to the photon-
energy-integrated polarization rate m„&(8) derived from
the angle-differential [da„'i /dQ](8) rate coefficients, as
obtained from [d a„'& IdE»d Q](E,O) [Eqs. (15) and
(16)] after integration over the photon energy E . In the
same way we calculated the angle-differential recombina-
tion rate coefficient [da„ildQ](8) for a polarization-
insensitive experiment [see Eq. (30) in Ref. [26]]we write

One can notice here that due to the sin 8 factor in Eq.
(17) the photons cannot be polarized in the ion-beam
direction (8=0'). For a Maxwellian electron-beam-
velocity distribution (kTl =kTi) or for a photon energy
E =E„& (i.e., when a =0), keeping in mind that
fo(0)=1, fi(0)=—'„and f2(0)=0 [26], it turns out from
Eq. (17) that n„l(E», 8)=0. .This means that no polariza-
tion is expected for an isotropic Maxwellian electron ve-
locity distribution or for a photon energy near the edge
E~=E„I. On the other hand, for a flattened electron-
beam-velocity distribution (kT~~ ((kTi), when addition-
ally E» E„i»kT~~ (a &&1)—which implies that
fo(a)/f, (a)=1 and f2(a)/f, (a)= —,

' [31,26], the photons
are polarized. Under these conditions, the polarization
rate of Eq. (17) becomes independent of the photon ener-
gy E~, and can be written as
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With the help of Eqs. (15) and (16), using the definition of
the functions f;(a) from Ref. [26], these integrals can be
expressed as follows:

da"'t E«rJ(n, l) (t +1)~/2
(8)=

~(2~m )1/2 (kT )1/2

X f dx[wv'(8) —w('(8)x']
0

X f dw exp[ —(1+tx )w],
0

where t =(kT& kT~~)lkT~~ denotes the electron-beam
asymmetry parameter and the functions wI' (8) are
defined as follows:

(20)

the expressions for the longitudinal and transverse angle-
differential rate coefficients as

dell d2 II, i
(19)

w, ( 8)= 1+—,'P„( —,'P—„,sin 8,
w z ( 8)= —,'P„((1—3 sin 8),
w I ( 8)= 1+—,'P„(,
w/l(8) = 3P

(21)

(22)

(23)

(24)

w(' —(8)&t ] . (25)

Using this in the definition of the polarization [Eq. (4)],
the photon-energy-integrated polarization rate m„&(8)
reads as follows:

The double integration in Eq. (20) can be performed in a
closed analytical form (see Ref. [26]), so, finally, we have

da ' E„&o(n, l)(8)= (t+1)' 't
~(2~m)'/ (kT~)'

X [[wI' (8)t + w(' (8)]arctan(&t )

[(w I
—w, )t + (w J

—w 2 ) ]arctan(&t ) —( w j'

—w 2 )&t
~„((8)=

[(wI+w, )t +(w/+w2)]arctan(&t ) —(w/+wz )&t
(26)

3P„(sin 8
~f, (8)=

2(4+P«) —3P«sin 8
(27)

This is a general result for the total polarization rate for
recombination into an (n, l) state and for an arbitrary
electron-beam asymmetry, characterized by the parame-
ter t =(kT~ —kT~~)lkT~~. As before, for a Maxwellian
distribution (t =0) the photons are not polarized
[P&(8)=0]. For a flattened electron-beam-velocity dis-
tribution (t~ oo ) we find that n«(8)~rr«(8)=(wI
—wt)/(wI+w

&
) which with Eqs. (21) and (23) gives the

result found already above [Eq. (18)]:

These results are plotted in Fig. 5 versus the photon ob-
servation angle 8 in an ionic frame for different low-(n, I)
states (n 3) for the flattened electron-beam-velocity dis-
tribution. The polarization rates peak at 0=90' and the
degree of polarization reaches unity for recombination
into s states. It means that photons are completely
linearly polarized in a plane perpendicular to the ion-
beam direction. A dependence of the polarization rate
for s states on the electron-beam asymmetry parameter t,
given in Eq. (26), is shown in Fig. 6. From this figure
one sees that for a typical electron-beam temperature
krj =0.2 eV and kTII =0.002 eV corresponding to
t = 100, the degree of polarization is about 0.8 for s states.
For recombination into final states with 1@0 the polar-
ization rates no longer reach unity and the maximum de-

1,0

( n, l ): (1,0)
1.2

0.8 1.0

0.4

0.8 '-
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0.6 I-
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6=90
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FIG. 5. Dependence of the polarization rate n/I(8) [Eq. (27)]
on the observation angle 0 (in a moving frame) with respect to a

beam direction for selected n ~ 3 states for a flattened electron-
beam-velocity distribution (kTII &&kT&). Note that for 0=90
the photons from recombination into s states are completely

linearly polarized.

10 102

t=T, //T —1

10
I I IJJJJ

10

FIG. 6. Dependence of the polarization rate m„o(0=90, t ) of
Eq. (26) on an electron-beam asymmetry parameter
t = ( k T, —k TII ) Ik TII for recombination into s states.
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TABLE I. Anisotropy parameters P„& of Eq. (2), the max-

imum polarization P„I=P„I(8=90') of Eq. (6), and the max-
imum polarization rates m„i =m„I(8=90 ) of Eq. (28) for a flat-

tened electron-beam-velocity distribution (kTII (&kT~) as de-
rived in the low-energy approximation for different (n, l) states
with n ~5.

1 . 2

.of

0.8— 0.5 0. 1 kT, = 02 eV

(n, l)

1 0
20
2 I
3 0
3 1

3 2
40
4 1

42
4 3
5 0
5 1

5 2
5 3
5 4

2.000
2.000
1.455
2.000
1.579
1.182
2.000
1.662
1.290
1.027
2.000
1.719
1.378
1.110
0.929

1.000
1.000
0.800
1.000
0.849
0.684
1.000
0.881
0.732
0.613
1.000
0.902
0.769
0.652
0.565

1.000
1.000
0.667
1.000
0.734
0.520
1.000
0.787
0.577
0.442
1.000
0.821
0.624
0.483
0.394

0.6—

& 0.4—
CL

o.2 L

30 90 120

LAB ANGLE (deg)

150 180

cos8iqb Pcos8=
1 —Pcos8„b

' (29)

FIG. 7. Polarization rates m„0(8~,b), tranformed into the labo-
ratory system, for different values of P= v;,„/c vs the laboratory
observation angle 8&,b for typical electron-beam temperatures
kT, =0.2 eV and kTII 0'002

gree of polarization ~„I as observed for 0=90' is

nl
'trnt

8 —p
(28)

For extreme values of the anisotropy parameter
( —,

' &P„t &2) we find that mft varies between unity (for s
states for which p„t=2) and —,

' for the lowest value of
p„t = —,

' for high-I states [26]. Numerical values of the an-

isotropy parameter P„t and the maximal polarizations,
both P„t of Eq. (6) and oft of Eq. (28), of the final states
with n & 5 are summarized in Table I.

IV. DISCUSSION

In the previous section we derived, in the low-energy
approximation, analytical expressions for the degree of
polarization of photons in radiative recombination, both
for a fixed electron energy and for typical electron-beam-
velocity distributions existing in the electron cooler of a
storage ring. As the most interesting result of our study
we find that the photons emitted from recombination into
s states are completely linearly polarized at any observa-
tion angle relative to the incoming electron velocity.
Moreover, in a realistic experimental condition, where
one has to average the intensity of the observed photon
flux with respect to the electron velocity distribution in
the electron cooler, the photons from recombination into
s states are still completely linearly polarized at angle
8=90 (in a moving frame) for a flattened electron-beam-
velocity distribution (kTl «kTj ). For higher-1 states
the degree of polarization generally decreases with in-
creasing l values.

The results above are valid in the moving frame of an
ion. The transformation of degree of polarization from
this frame to the laboratory system can be done using a
relation between the angles in both systems [31]:

where index lab denotes angle in the laboratory system
and p measures the ion velocity v;,„relative to the speed
of light c, i.e., p= v;o„/c. The polarization rate in the lab-
oratory system versus observation angle 8&,b for recom-
bination into s states for typical electron-beam tempera-
tures kT~ =0.2 eV and kTII =0.002 eV are shown in Fig.
7 for different values of the ion velocity parameter p. In
this figure we find that the highest degree of polarization
in the laboratory system moves towards forward angles
with increasing values of the p parameter. For high-
energy storage rings, such as, for instance, the Experi-
mental Storage Ring (ESR) at GSI, Darmstadt [ll],
where ions will have p=0. 8, the radiation emitted in for-
ward direction (8 30') can be strongly polarized. That
can be particularly important when a crystal spectrome-
ter is used to detect the photons. This result seems to be
even more important in the context of planned relativistic
(p=1) electron-cooling storage rings [33] where for the
case of recombination into s states the photon flux could
be strongly linearly polarized for very small angles rela-
tive to the ion-beam direction. Another interesting as-
pect of polarization of photons in radiative recombina-
tion appears in the study of state-selective laser-induced
recombination [16]. Such experiments are being per-
formed [23] and are planned at different storage-ring fa-
cilities [32]. A measurement of a degree of polarization
of photons from the electron cooler, due to its depen-
dence on the electron-beam asymmetry parameter t [see
Eq. (26)], can also be used as a diagnostic tool probing the
electron-beam-velocity distribution.

V. CONCLUSIONS

We found that photons emitted from radiative recom-
bination of bare ions with free electrons, as happens in
the electron cooler of a storage ring, are generally polar-
ized. Under a condition of the low-energy approximation
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(E «E„t ) the polarization of photons is completely de-
scribed by an energy-independent anisotropy parameter
)t3„& [Eq. (2)]. For recombination into s states the photons
are linearly polarized in the (p, k) plane.

The polarization rates, introduced to describe the pho-
ton polarization after averaging over, generally asym-
metric (kT~~ &kT~}, Maxwellian electron-beam-velocity
distribution in the cooler, can be expressed by a closed
analytical formula in terms of an electron-beam asym-
metry parameter t =(kTt kT—

~

)/kT~~. For a symmetric
distribution (kTl =kT~) the polarization rate averages
out [~ t(9)=0], but for a typical in the electron-cooler
flattened distribution (kT~ &&kT~) the strongest polar-
ization is observed at 9=90' (in the moving frame). The
polarization rate, transformed to the laboratory system,
peaks increasingly in the forward direction with increas-
ing ion velocity. The present results on polarization of
photons from radiative recombination have to be taken
into account in experiments using crystal spectrometers
to perform high-resolution spectroscopy. On the other
hand, a measurement of polarization can be used as a di-
agnostic method of the electron beam in the cooler.

The present paper discussing the polarization of pho-
tons in radiative recombination, together with our previ-
ous paper [26) presenting the results for polarization-
insensitive experiment, summarize our results on descrip-
tion of the radiative-recombination process between bare
ions and free electrons in the low-energy limit E &&E„I,
i.e., in an approximation which is perfectly fulfilled for
low-n states (n & Z) in the electron cooler of a heavy-ion
storage ring.

angles g~~ ~ are defined as follows: y~~=y(a=90 ) and

gt =g(tr =0'). With the Cartesian xyz coordinate system
chosen in such a way that p lies in the yz plane (see Fig.
4), the unit vectors along k and p vectors, uk and u,
respectively, have the following coordinates:
uk = (sin9 cosy, sin9 sing&, cos9) and uz =(0,cosg, sinIir).
With this one can write the unit vectors ek and ek, as
follows:

ek~ =( I /sinter)u~ cot—t'Iuk,

ek, = (1/sin9}z —cot9uk,

(A 1)

(A2)

sinter
—costi cos9

cos(X K) =
sin8sin8

(A3)

For the two particular cases we are interested in, namely,
for

y~~
=y(tc=90') and y~=y(tc=0'), we find

cos P —cos 8—cos 9+2 sin/cost) cos9
cos g

sin csin 0

2 (sing —cost) cos9)
cos +y=

sin csin 0
(A5)

These expressions can be further simplified taking into
account that

where z is the unit vector along the z axis. These expres-
sions were obtained from the conditions that ek~ and ek,
vectors can be expressed as the normalized linear com-
binations of uk and u, and, respectively, z and uj, unit
vectors. From this, since ek ek, =cos(y —tc) (see Fig. 4)
we find

APPENDIX
cos6 =costi sin9 sing+ cos9 sing (A6)

In this appendix we find the relations between cos g~~ j
and the angles 8, P, and y, for a fixed angle 9 between a
photon observation direction k and ion-beam axis z,
where

g~~ ~ are the angle between electric unit vector e
and a plane (k, p) (see Fig. 4), when e is perpendicular or
lies in (k, z) plane.

Introducing the unit vectors ek and ek„both being
perpendicular to the photon wave vector k, which lie in

(k, p) and (k, z) planes, respectively, the angle y is just an
angle between ek~ and ek, vectors. Similarly, the angle K

(see Fig. 4) is an angle between e and ek, . With these the

which can be easily obtained from u uk=cos8. With
this we get the final expressions for cos

y~~ j as

cos icos gcos+ =
sin 8

z (sing sin9 —cosg cos9 sint))
cos +g=

sin 8

(A7)

(A8)

These are used in Eq. (9) in Sec. III to calculate the
double-differential recombination rate coefficient
d a„"'t (Er, 9)/dErdQ for a fixed orientation of the pho-
ton electric vector with respect to the (k, z) plane.
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