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Elastic scattering of hydrogen atoms at low temperatures
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The elastic scattering of two hydrogen atoms interacting at very small energies is explored numerically

using the most accurate potential-energy curves available for the X 'X~ and b X„+ states of H2. The
scattering lengths and low-temperature-averaged cross sections are determined and compared with pre-

vious calculations. The scattering lengths are 0.41ao for the singlet case and 1.91ao for the triplet. The
predicted total triplet cross section at 2 K is 5.5 X 10 "cm' but it could be lower, at 4.8 X 10 "cm',
with a different fit to the triplet potential between 12ao and 15ao. A more accurate triplet-state potential

is needed at these separations.

PACS number(s): 34.40.+n

I. INTRODUCTION

Recent developments in low-temperature physics, such
as the study of Bose gases [1,2], have renewed interest in
H-H scattering. Atomic hydrogen can be described at
low temperatures as a dilute hard-sphere Bose gas and
low-temperature scattering data provide a criterion for
finding an upper limit to the densities for which the mod-
el is valid [1]. There is also a long-standing application of
low-temperature spin-change scattering in astrophysics
[3]. In the scattering process, the atoms interact via the
potentials of the lowest single (X 'X+ ) and triplet
(b X„+) states of the hydrogen molecule. The triplet po-
tential is appropriate for the Bose-gas model. These po-
tentials have been studied in detail and incrementally im-

proved over the past three decades [4—8]. Cross sections
used in diffusion and viscosity calculations [9,10] and for
spin change have been evaluated [11,12] with the 1965
potentials of Kolos and Wolniewicz (KW65) [4]. The
scattering lengths, which enable the zero-energy limits of
the cross sections to be inferred, have been calculated [1]
for the triplet state with an analytic (Silvera) fit to the
KW65 triplet modified by the 1974 improvement (KW74)
[5]. (Note that the coefficient of the second exponential
term in the Silvera fit is printed with the wrong sign in
Ref. [1].) The low-energy limits of the cross sections are
sensitive to the potential; the inclusion of the KW74 im-

provement caused significant changes. Koyama and
Baird [13] incorporated a further improvement (KW75)
[6] to the singlet potential and then calculated scattering
lengths, effective ranges, and spin-change cross sections.
Recently there have been new calculations of the singlet

[7] and triplet [8] potentials and corrections to the singlet
potential arising from nuclear motion and relativistic
effects have been obtained [14,15]. The experimental
measurement [2] of the cross sections at low temperatures
suggests the need for a numerical reevaluation of the
theoretical predictions of low-temperature scattering
properties, to be made with the latest representations of
the potentials.

We present calculations for the scattering lengths and

give a comparison of the temperature-averaged diffusion,

viscosity, and spin-change cross sections with earlier re-
sults. For the singlet potential we used the Born-
Oppenheimer potential of Kolos, Szalewicz, and Mon-
khorst (KSM86) [7] and obtained results with and
without the nuclear motion and relativistic corrections
[14,15]. Frye, Lie, and Clementi [8] demonstrated that
although their triplet potential (FLC89) is slightly better
at long and short range than the combination of KW65
and KW74, nevertheless the Kolos-Wolniewicz potentials
are very precise. We used both to explore the effect of
the improvement FLC89.

We fitted the potentials at long range to the form given

by Kolos [16], which is reliable at internuclear distances
R greater than 15ao [16]. The tabulated potentials [5,7,8]
are given out to 12ao. The long-range part of the singlet
potential is relatively unimportant and we made the fit at
12ao by adjusting the coeScient of R . The triplet po-
tential has s shallow well starting at R =7ao with a max-

imum depth at around R =Sao and extending beyond
R = 12ao. We made a fit between 12ao and 15ao. We
found that the scattering length was quite sensitive to the
details of the fit so that there is a need for accurate calcu-
lations of the triplet potential in this range. We exam-
ined the effect of including the R " term of Chan and
Dalgarno [17] in the triplet potential.

II. THEORY

with boundary condition, at large R,

ut (R ) =R ' sin( kR —I m /2+ pi ), (2)

where p is the reduced mass, E is the energy of relative
motion, V(R) is the (asymptotically vanishing) intera-
tomic potential, k =&2pE /A is the wave number, and

gI is the phase shift that also satisfies the integral equa-

tion for the normalization (2),

The radial part ui(R) of the 1th partial wave is the
solution, finite at the origin, of the differential equation

[d /dR —t(t+1)/R +2p/fi [E—V(R)]][Ru,(R)]

=0,
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TABLE I. Quantities for Eqs. (4) and (5).

Type

total
diffusion

viscosity

spin change

21+ 1

I+1
I + 1)(1+2)

(21 +3)
21+1

91

II + 1 II

I l +2 gl

91 Il

gi
t f

gl + I gl

71+2 gl

co& (I even)

3
32

co2 (I even) co& (I odd) co2 (I odd) p

3
16

sinriI = f R j,(kR)V(R)ur(R)dR, (3)

where ji(kR) denotes the regular spherical Bessel func-
tion. We solved Eq. (1) by Numerov's method [18] and
Eq. (3) provided a useful check. The singlet and triplet
potentials produce phase shifts on which the cross sec-
tions depend [9,10].

The total, diffusion, and viscosity cross-section formu-
las [10] require modification to include nuclear symmetry
effects because the colliding atoms are identical; the
necessary changes are detailed for general spin by Hirsch-
felder, Curtiss, and Bird [9]. The cross section for spin
change has been given by Dalgarno [19] and modified to
include nuclear symmetry by Smith [20]. The cross sec-
tions can be summarized by

o = g f(l)(co,sin 8, +co2sin 82),
4m 2 2

k
(4)

the subscript indicating the spin-change cross section.
We evaluated the integrals (5) by the generalized Gauss-
Laguerre quadrature formula [18],described in more de-
tail in the Appendix. At small energies or wave numbers

where the quantities to be summed are given in Table I.
Of interest are the cross sections averaged over a
Maxwellian distribution at temperature T,

(cr(T)) =(kT) "+"f "o(E)E exp( ElkT)dE—, (5)
0

where the values of p are shown in Table I and k is
Boltzmann's constant. The diffusion and viscosity in-
tegrals are proportional to the collision integrals of trans-
port theory [9]. The rate coefficient for the change of
hyperfine-state quantum number F from 1 to 0 is given by
[12,20]

' 1/2

R(1—0)= —,
'

7TP

the phase shifts are given by effective range expansions
[10] and the 1 =0 contribution dominates the cross sec-
tions. Hence the low-energy scattering is described by
the I =0 scattering length a and the effective range r and
cotgo may be expanded in the form

1 1
k cot'go —+—rk +

0 2

We determined these parameters by numerically fitting
the phase shifts at small k to Eq. (7).

III. RESULTS AND DISCUSSION

The temperature-averaged cross sections for diffusion
and viscosity, calculated using the potentials described
earlier (KSM86, including the relativistic and nuclear-
motion correction for the singlet, and FLC89 for the trip-
let) are shown in Table II. Comparison with previous re-
sults of Allison and Smith [11] shows that use of the
present potentials has a slightly larger effect on the
diffusion than on the viscosity cross sections. The previ-
ous results [11] did not include the relativistic and nu-
clear motion corrections, but in a separate calculation,
we found that these corrections changed the cross sec-
tions by less than 0.25% over the range of temperatures
quoted. We found also, in a comparison with calcula-
tions using the KW65 and KW74 triplet potentials, that
the improvement FLC89 increases these cross sections by
about 10%%uo at the lower temperatures but has little effect
above 6 K. We see below that there is a more substantial
change to the low-energy limits of the cross sections.

The rate coefficients %(1-0) for spin change are shown
in Table III. We found in separate calculations that the
improvement FLC89 increases these cross sections sub-
stantially (by a factor of 3) at 1 and 2 K, makes little
difference at 6 K, and reduces the cross sections by about
8% at 8 K. We also found in separate calculations in-
creases of around 18% due to the relativistic and

TABLE II. Temperature-averaged cross sections (10 ' cm ).

Temperature (K)

'Reference [11].

Diffusion

94.5
98.3
90.2
83.6
80.5

Diffusion'

89.8
97.0
90.56
84.15
80.45

Viscosity

199
224
211
196
188

Viscosity'

186.7
220.7
212.5
197.3
191.5
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Temperature (K)
A(1-0)

(10' cm' s ')
A(1-0)

(10' cm' s ')'

TABLE III. Rate coefficients for spin change. TABLE V. Scattering lengths and effective ranges in units of
ao for various interaction potentials for (a) singlets and (b) trip-
lets.

'Reference [12].

23.6
23.6
24.9
42.0
93.3

2.2
4.2

18
51

120

Potentials

KW65, 74 [4,5]

KSM86' [7]
KSM86 [7]

Scattering length

(a) Singlet
0.32 [22]
0.595 [13]
0.5425
0.4109

Effective range

1820
2300
4120

nuclear-motion corrections at the lower temperatures,
but the differences fell rapidly with increasing tempera-
ture.

A variety of cross sections occurs in the analysis of
spin-exchange frequency shifts in hydrogen rnasers
[21,22]. It may be valuable to present our values for
them, though only graphical values are available, so a
useful comparison is not possible. In what Koelman
et al. [22] call the degenerate internal-states approxima-
tion, the cross sections are

KW65, 74 [4,5]

FLC89

(b) Triplet
1.36' [1]
1.370' [24]
1.335 [24]
1.36' [22]
1.339 [25]
1.34 [26]
1.34 [13]
1.91

323 [24]

327 [25]

302 [13]
120

'Without relativistic and adiabatic corrections.
With relativistic and adiabatic corrections.

'Silvera analytic fit.
Based on FLC89 (with the smooth fit of Fig. 1) from Ref. [8].

g (21+1)sin(2gi —2gi ),
evenl

(8)

o, = g (
—)'(21+1)sin (g'I gt), —

I

(9)

o2=
z g (21+1)sin (q'I —gl) . (10)

We present the thermally averaged cross sections corre-
sponding to p =1 in Eq. (5) for temperatures up to 6 K in
Table IV. Allison [23] reported a value of —27. 3X 10
cm at 10 K for a quantity A, +, equivalent to —4A,D of Eq.
(8). Our corresponding value is —14.4X 10 ' cm .

There have been many previous calculations of scatter-
ing lengths and effective ranges for the l =0 partial
waves. Table V(a) lists the results of Friend and Etters
[1], Koelman et al. [22], Koyama and Baird [3], and
those we obtained. The inclusion of the nuclear-motion
and relativistic corrections has a substantial effect. To-
gether with the small improvement in the adiabatic in-
teraction potential in KSM86 the corrections change the
singlet scattering length from 0.595ao to 0.4109ao and
the effective range from 1820ao to 4120ao.

Table V(b) lists the results of Friend and Etters [1],
Uang and Stwalley [24], Gutierrez, de Llano, and Stwal-

ley [25], Lhuiller [26], Koelman et al. [22], and those we
obtained. The triplet interaction potential has to be fitted
in the region between the tabulated points of 12ao and
15a0. Beyond 15ao the asymptotic long-range form
VI (R) [16,17] is adequate. Uang and Stwalley [24] noted
that the KW74 potential fits the long-range form of
Hirschfelder and Meath [27] at 12ao and they used this
long-range potential for all interatomic separations
exceeding 12ao. The FLC89 potential differs consider-
ably from the KW74 potential at 12ao and cannot be
matched to any of the long-range forms [16,17,27]. We
made a fit with a continuous derivative by modifying the
cubic-spline approximation between 12ao and 15ao. This
smooth potential is illustrated in Fig 1, is tabulated in
Table VI, and was used in our results presented in the
various tables. In the absence of data on the potential be-
tween 12ao and 15ao it is possible to construct other
plausible smooth-looking fits. We also tried a fit for all
interatomic separations greater than 12ao with the ex-
pression

TABLE VI. Smooth fit triplet potential.
TABLE IV. Thermally averaged cross sections (10 ' cm )

defined in Eqs. (8)—(10) as functions of temperature T. Interatomic distance (ao) Potential (10 a.u. )

T (K) Xo

—102
—54.1
—14.9

7.61

19.7
8.08
5.00
2.89
2.17

0
0.370
0.503
0.653
1.51

12.0
12.5
13.0
13.5
14.0
14.5
15.0

—1.77
—1.34
—1.14
—0.980
—0.852
—0.726
—0.624
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TABLE VII. Accumulated scattering length (in ao) for the
triplet potential from Eq. (3)

4
5

6
7

10
12
15
20
30
40
50
60

Smooth
(Fig. 1)

0.31
3.02
7.01
8.30
5.07
3.85
3.02
2.38
2.05
1.96
1.93
1.92

(j =0
(Fig. 2)

0.32
3.07
7.12
8.44
5.16
3.91
2.85
2.20
1.87
1.78
1.76
1.74

d=2
(Fig. 2)

0.33
3.15
7.31
8.66
5.30
4.01
2.80
1.87
1.47
1.39
1.36
1.35

CO

EO

Cl
T

CO
~~
cI
0

CL
-2—

w3

11
I

12
I

13
I

14
I

15 16

interatomic Distance (units of a )0

V(R)= Vz(R)+ [ VT(12)—VL (R)]exp[ (R —1—2)/d], FIG. 1. The adopted 'X„+ potential between 12ao and 15ao.

where V, (12) denotes the tabulated value and d is an ar-
bitrary damping constant. We included in VL (R) the
R " term of Chan and Dalgarno [17], but its effect is
negligible. We illustrate in Fig. 2 the interaction poten-
tials (11) for values of damping constant ranging from
Oao to 3ao. The potential with no damping is discontinu-
ous at 12az. The fit (11) ensures that for any positive
damping there is no discontinuity and the long-range
form is correct; however, the derivative is discontinuous
at 12ao. The scattering length is very sensitive to the po-
tential. With the smooth fit it is 1.91ao and with the fit

(11) it changes from 1.73ao to 0.667ao as the damping
constant d varies from Oao to 3ao. For d =2ao the
scattering length is 1.33ao with effective range 305ao in

good, but misleading, agreement with the published
values quoted in Table V(b). There is a need for an accu-
rate potential between 12ao and 15ao.

The sensitivity of the scattering length and the corre-
sponding low-energy cross sections to the triplet potential
arises from the presence of the shallow well. In Table
VII we show the incremental contributions to the triplet
scattering length a, by using the integral formula (3) for

o i
= (2l + 1)sin„

4m.
(12)

for singlet and triplet scattering at low energies E. With
increasing E the I =0 cross sections grow rapidly as do
the cross sections for the higher partial waves. The
agreement of the singlet and triplet cross sections for
I =2 is fortuitous.

Table IX presents the thermally averaged values of the
total scattering cross sections

kao =10, and the FLC89 potential with the smooth fit
and also with the fit (11) for d =Oac and 2ao. The contri-
bution is largest around R =7ao, where the integrand
changes sign corresponding to the left-hand side of the
well. Cancellation makes the scattering length ill-
conditioned toward small changes in the potential and
enhances the importance of the integrand at long range.

A measurement of the total triplet scattering cross sec-
tion has been carried out by Hershcovitch [2] at 2 K. We
present in Table VIII the partial cross sections

TABLE VIII. Partial cross sections or(E) (10 ' cm ) for singlet and triplet scattering as functions
of relative energy E.

0.59
2.83
5.35
7.93

10.4
12.8
15.1
17.2
19.1

Singlet
1

0.00
0.30
0.84
1.37
1.80
2.10
2.26
2.31
2.25

0.00
0.00
0.01
0.02
0.05
0.08
0.12
0.17
0.23

12.6
17.3
20.8
23.8
26.5
28.7
30.8
32.5
34.1

Triplet
1

0.00
0.21
0.54
0.84
1.05
1.16
1.19
1.15
1.05

0.00
0.00
0.01
0.02
0.05
0.08
0.12
0.17
0.23
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is less well known than the ordinary Gauss-Laguerre for-
mula. It allows exactly for the exponentials and the
power terms of the integrands and can be used when
there are no important regions where the cross sections

CI
40
Cl
1

lO
~~
I
C

CL
-2—

/

/

/

/

d=O a
d=2 a
d=3 a.

-3
10 12

I i I i I

14 16 18

Interatomic Distance (units of e )0

I

20 22

FIG. 2. The 'X„+ potential between 10ao and 20ao using the
fit in Eq. (11) with d =0, 2ao, and 3ao.

o, =— g (21+1)sin rl&

1 4m 2

evenl

+— g (2t +1)sin ri&,
3 4m

2 k'
addi

rJ, = —
z g (21+1)sin r)&

3 4m 2

+ — g (21+1)sin g&,
1 4n

k'
OddI

(14)

as functions of temperature. The cross sections at T
=2K are considerably larger than the zero-temperature
limits.

With the smooth potential of Fig. 1 at 2 K the triplet
cross section is 5. 5 X 10 " cm . With the fit (11) and a
damping factor d of 2ao the cross section is 5.0X 10
cm . For d =Oao, the cross section is 5.3X10 ' cm
and for d =3ao it is 4.8X10 ' cm . The measured
value is probably close to but below 1 X 10 ' cm [2].
The agreement is acceptable. A more accurate triplet po-
tential is needed to limit the theoretical uncertainty.

Singlet

0.297
9.71

14.0
21.1

29.0
37.5

Triplet

18.8
44.8
54.6
60.6
60.6
59.1

Mean

14.2
36.0
44.4
50.7
52.7
53 ~ 7

APPENDIX: GENERAI, IZED GAUSS-LAGUERRE
QUADRATURE

We summarize the generalized Gauss-Laguerre quad-
rature, which we used to evaluate integrals (5), because it

TABLE IX. Thermally averaged total singlet and triplet
cross section (10 ' cm ) as functions of temperature.

TABLE X. Weights
Laguerre quadrature.

Weight

0.588 681 48
0.391 21606
0.020 102 46
0.446 870 59
0.477 635 77
0.074 177 78
0.001 315 85
0.348 014 54
0.502 280 67
0.140 915 92
0.008 719 89
0.000 068 97
0.277 650 14
0.493 91058
0.203 004 30
0.024 668 82
0.000 763 04
0.000 003 12
1.037 494 96
0.905 750 00
0.056 755 03
0.725 525 00
1.063 424 29
0.206 696 13
0.004 354 58
0.520 91740
1.066 705 93
0.383 549 72
0.028 564 23
0.000 262 71
0.384 353 81
0.997 127 47
0.536 086 20
0.079 539 53
0.002 879 55
0.000 013 45
2.836 328 20
2.951 294 31
0.212 377 48
1.860 334 07
3.356 891 02
0.764 453 97
0.018 320 93
1.250 983 61
3.238 557 19
1.390 185 24
0.119041 17
0.001 232 78
0.865 31349
2.901 275 13
1.893 145 31
0.326 801 88
0.013 394 41
0.000 069 77

Pivot

0.93S 822 23
3.305 407 29
7.758 770 48
0.743 291 93
2.571 635 01
5.731 178 75

10.953 894 31
0.617030 85
2.112965 96
4.610 833 15
8.399 066 97

14.260 103 07
0.527 668 12
1.796 299 81
3.876 641 52
6.918 816 57

11.234 61043
17.645 963 55
1.517 387 08
4.311 583 13
9.171 029 79
1.226 763 26
3.412 507 36
6.902 692 61

12.458 036 77
1.031 109 14
2.837 212 82
5.620 294 27
9.682 909 84

15.828 473 92
0.889 941 02
2.433 144 23
4.766 203 58
8.048 254 75

12.600 413 87
19.262 042 55
2.141 216 28
5.315 517 13

10.S43 266 60
1.755 521 65
4.265 605 87
8.057 940 68

13.920 931 80
1.490 554 95
3.581 333 81
6.626 996 30

10.944 418 00
17.356 696 94
1.296 419 20
3.093 988 38
5.661 285 22
9.167 097 27

13.941 345 37
20.839 854 55

and pivots for generalized Gauss-
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are very oscillatory. It is

oo n

f f(x)x exp( —x)dx= g H I(a. ),
j=l

(A 1)

where the pivots a. are the zeros of the associated
Laguerre polynomial

(n +p)!n!(—x)JLPx =
o (n —j)!(P+j)j!!'

and the weights H are given by

(n +p)!n!
1 [LPI(a )]2

(A2)

(A3)

where in the notation of Kopal [18],Lp'(a~ ) denotes the
polynomial evaluated at a after the factor (x —a. ) has
been removed. The error is proportional to the (2n)th
derivative off (x) evaluated at some point in the range of
integration. Fletcher et al. [28] cited sources of the
weights and pivots from Burnett [29] for p =2, 3,4 and
n =2, 3 (with few decimal places) and Rabinowitz and
Weiss [30] for p =1,2, 3,4, 5 and n =4, 8, 12, 16. At the
low temperatures we considered, the cross sections at en-

ergies where the integrands are important vary slowly.
Use of small values of n avoids need for cross sections at
higher energies where oscillations occur (see for example
the spin-change cross sections of Ref. [12]). We calculat-
ed weights and pivots for p =1,2, 3 and n =3,4, 5,6, the
pivots being found by repeated bisection and the
Newton-Raphson method with a tolerance of 10 '; the
data were checked against those of Rabinowitz and Weiss
for n =4. We used six pivots in the temperature averages
given in the various tables, but quote our calculated data
in Table X as they are not readily available elsewhere.
We note that this quadrature method is unsuitable at
higher temperatures where the cross sections oscillate in
regions that make significant contributions to the in-
teg rais.
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