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In the preceding Comment [C. A. Nicolaides, Phys. Rev. A 46, 690 (1992)], a few statements have been
made in regard to the saddle-point method developed by Chung [Phys. Rev. A 20, 1743 (1979)]. In this
Reply, statements made in the preceding Comment are further discussed to clarify any possible miscon-

ceptions.

PACS number(s): 32.80.Dz, 34.80.—1i

In the preceding Comment [1], Nicolaides questions

the originality of the saddle-point method [2]. He states
that the equation for a trial wave function
W= A(1—|1s ) (1sDYy(r;,75,73) (1)

is the equation he used in 1972 [3] and is exactly the form
used in Ref. [2]. In Ref. [3], Hartree-Fock orbitals are
used in the formulation. In the saddle-point method, the
wave function was constructed [2] with the statement,
“by assuming a one-particle orbital wave function ¢,

V=A[1=Po(rj)]U(ri,ry,..;rjscsry) ()
where
Po(r):|¢0(r)>(¢0(r)| (3)

tH

will be a trial function with the ¢, vacancy. . .

In Ref. [3], there are 47 numbered equations and a few
other equations that are not numbered. There are also
eight numbered equations in the Appendix. None of
these equations resembles Eq. (1).

Reference [3] uses a projection-operator approach that
utilizes the operators Q, P=1—0Q, and QHQ. Q and P
are the projection operators. The wave function in Eq.
(1) would imply that Q= 4(1—|1s) (1s|). Since 4 and
(1—[1s) (1s]) do not commute, Q*#Q. Q cannot be a
legitimate projection operator. Hence Eq. (1) contradicts
the approach of Ref. [3].

Equation (1) is different from Eq. (2). The ¢ in Eq. (2)
is not antisymmetrized. The particles in 3 are distin-
guishable. It is not a stand-alone wave function. The an-
tisymmetrization is carried out after the projection. This
has important consequences. One may still consider the
¥ in Eq. (2) as a wave function in the closed-channel
space, but it is no longer possible to speak of operators
such as QHQ. In the saddle-point method there is no Q
operator to operate on a physically acceptable N-particle
wave function. In Ref. [1], an operator Q is defined with
restrictive assumptions. The methods are, however, quite
different.

A more fundamental conceptual difference between the
two methods is that in Ref. [3] it is claimed that a vacan-
cy orbital in a physical system should be identical to the
particle orbital. Nicolaides has given a lengthy discus-
sion and justification of this assumption [3]. This is just
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the opposite of Eq. (2), where the vacancy orbital is
different from the particle orbital and the variational
principle in quantum mechanics is used to determine ¢y,

The saddle-point method I used is a very specific
method. It parametrizes the vacancy orbital and maxim-
izes the energy with respect to the parameters in this or-
bital. Recently I have discussed the origin of this method
[4] and its relation to the Feshbach projection-operator
formalism, which has been well developed since the 1960s
[5]. I have used this projection-operator approach exten-
sively in 1970-1972 [6] and in subsequent years. For
those who are familiar with this formalism, the use of
1—P, as a means to build a vacancy was nothing new.
Hence, I would rather not claim originality for Eq. (2).
The new feature in the saddle-point method is the param-
etrization of ¢, and the maximization of energy with
respect to these parameters. Perkins [7], Hahn [8], and
Dalgarno and Drake [9] have discussed energy maximiza-
tion in different contexts. These works are interesting
and they can also be developed into other saddle-point
methods, but their relation with the saddle-point method
in question is probably more distant than that of the pa-
pers in Ref. [5].

On the question of “proof of a theorem” (not
theorems), the proof has been given in Sec. II, not in Sec.
IV of Ref. [2]. I am not aware of any weakness in this
proof. Chung and Davis [10] also stated that “this
theorem is rigorous for one-electron systems. In order to
generalize it to many-electron systems, we must resort to
the variation principle inherent in quantum mechan-
ics....” I do not know how to make it clearer. Note
that for autoionizing states the saddle-point method can
only give an approximate solution to the Schrodinger
equation because of the absence of the open-channel seg-
ment. When using the saddle-point method one is not
trying to find an exact solution to a QHQ operator; one is
trying to find the best approximation to the Hamiltonian
within the inner-shell-vacancy picture [2,10].

The second part of the Comment [1] deals with the ex-
istence of the He™ 2s2p? 2D resonance. In 1980 [11], I
carried out a saddle-point calculation for the 2s2p2 2D
state of He . In this work I failed to find a solution that
lies below the He 2s2p *P° threshold. The dominant
configuration of this 2D is [(2s2p )3P,np ]*D. The spin of
this np electron is antiparallel to both target electrons
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and the corresponding exchange energy is positive. In
the absence of a net Coulomb potential, this exchange in-
teraction becomes very important. As the np electron ap-
proaches the 2s2p 3P° target, the positive exchange ener-
gy raises the total energy above the 2s2p 3p° threshold.
It is not an “unconverged solution.” The energy con-
verges nicely to the 2s2p 3P° threshold (from above) if we
allow the np electron to be farther and farther away from
the nucleus. It should be pointed out that my calculation
only ruled out the possibility that this 2D structure is a
Feshbach resonance lying below the 2s2p *P° threshold.

In Ref. [1] it is stated that “a converged
multiconfiguration Hartree-Fock solution means that at
the particular energy of the continuous spectrum this
solution has the largest coefficient in the full expansion of
the wave function.” If I understand correctly, this means
that at the particular energy, Nicolaides finds a solution
that generates this energy. He then looks at the expan-
sion coefficient in the expanded wave function. In the
case of this 2D state, he finds that the 2s2p? configuration
has the largest coefficient in his wave function. He uses a
predetermined 3d bound orbital; this orbital contains
some ed, but it is different from ed. By including this
2523d and 2p23d, he obtains the desired energy for the
wave function. Thus “the optimized 2s23d and 2p?3d
configurations simply contribute to the localized ¥,.” In
his wave function, no other 2s’nd and 2p*nd were includ-
ed.

This definition of a “converged solution” is different
from what I have used in the past. My interpretation of
the converged solution in the quantum-mechanical calcu-
lation is that within the accepted constraints of a particu-
lar problem, we should try to include any and all possible
basis functions (or orbitals) into the wave function. If the
energy result remains constant, then the solution is a con-
verged and meaningful solution; otherwise it is not. The
reason that we do not include certain basis functions in
the wave functions is because we believe they will not
affect our result.

My question about Nicolaides’s 2s2p® 2D calculation
is: why not include the other 2s’nd and 2p2nd orbitals

with n =4,5,6,...7 Do these orbitals in some way
conflict with the “state-specified theory” whereas 3d does
not? If we do include these nd orbitals into the wave
function, the lowest root of the energy will fall towards
the 252 [more precisely, (2s2+2p?)'S] threshold. There-
fore, the solution Nicolaides obtained was the result of an
incomplete calculation.

In his conclusion Nicolaides states that
“He™ 2s2p? D is real, regardless of whether it is above
or below the He 2s2p 3P° threshold.” When we use a
Feshbach-formalism approach and obtain a resonance
above the closed channel, then this channel is no longer a
closed channel to the resonance. One must redefine the
closed-channel projection operator Q and redo the calcu-
lation. I do not dispute the reality of the 2D structure in
the experiment. My contention is that we have not
proved that it is 2 Feshbach resonance theoretically.

The last part of the preceding Comment deals with the
originality of the saddle-point complex-rotation method
[12]. In this reference we stated “the method we used
here bears some similarity with that used by Junker and
Huang [13] except that we propose the use of an opti-
mized closed-channel basis set with the proper vacancy
built in, and a different type of basis function is used for
the outgoing partial wave.” In other words, the basic ap-
proach has already been developed and used by Junker
and Huang [13]. The only thing different is how this
basic approach is implemented. The use of a saddle-point
solution in the closed-channel segment helps the conver-
gence of the complex eigenvalue. From the point of view
of theoretical foundations, there was nothing new in Ref.
[12]. Most of the theoretical discussion in Ref. [12] had
been given before in Junker and Huang [13]; Rescigno,
McCurdy, and Orel [14]; and others [15], including
Nicolaides and Beck [16]. The paper by Nicolaides and
Beck [16] is one of the papers in Ref. [2] of Chung and
Davis [12].
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