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Electron-pair analysis for doubly excited ridge states
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The two-electron Schrédinger equation is analyzed in hyperspherical coordinates, with the electrons
described throughout as a pair. In contrast to the current adiabatic hyperspherical method, which re-
verts at large distances to a description in terms of individual electrons, the pair aspect is preserved also
asymptotically. Whereas the adiabatic potential wells converge to single-ionization limits, we develop
potential wells converging to the double-ionization limit of the system, and doubly excited states are
then viewed as eigenstates of the pair in these wells. At the simplest level, we get series converging to
the double-ionization limit which are described analytically by the “pair-Rydberg” formula, with an
effective charge that increases logarithmically with the principal quantum number.

PACS number(s): 31.50.+w, 31.10.+z

I. INTRODUCTION

Doubly excited states of atoms (or ions) display the
effects of correlations between the two excited electrons.
Particularly with high excitation of both electrons, their
increasing liberation from the dominant central field of
the positive ion enhances the importance of the correla-
tions between them. The description of very high doubly
excited states calls, therefore, for alternatives to
independent-particle bases which become inadequate in
the face of these strong correlations. The aim of this pa-
per is to provide one such description.

We begin by defining the particular subset of states
that is of interest to us, and the philosophy and method
of our approach to calculating them, contrasting it with
other theoretical approaches to doubly excited states. It
is now clear from many experimental and theoretical
studies that doubly excited states fall broadly into two
classes [1,2], distinguished by the way the excitation ener-
gy is partitioned between the two electrons. The two
electrons may either have comparable or disparate excita-
tion. The corresponding states have been named “ridge”
and ‘“valley,” respectively. This paper deals with the
ridge states. Given the complete symmetry and
equivalence of both electrons of the pair relative to the
residual “‘grandparental ion” [3], the effective potential
wells holding the pairs should converge to the double-
ionization limit that denotes a state of the grandparent
plus the pair at infinity.

These symmetrically excited ridge states have been an-
alyzed in different ways. Rau [4], Read [3], and Wang [5]
proposed phenomenologically a Rydberg formula for
high excitation. Their fits to available data were extend-
ed by Molina [6]. Rost and Briggs [7] presented a diabat-
ic molecular description for these states. Configuration-
interaction and adiabatic hyperspherical methods do not
separate the two classes. Of several calculations involv-
ing single-electron configurations [8], the most accurate
are those of Ho [9] using complex rotation techniques,
while Nicolaides and co-workers [10] using a judiciously
selected symmetrical basis have somewhat more extensive
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results on ridge states. The best adiabatic hyperspherical
results for ridge states are those of Matsuzawa and co-
workers [11], Lin and Chen [12], and Sadeghpour and
Greene [13], with earlier results found by Klar and Klar
[14] and Macek [15]. Other studies of ridge states are
based on analytical approximations of the electron-
electron interaction [16—18], and semiclassical quantiza-
tion schemes [19,20].

The names ridge and valley arise from the shape of the
potential in this (ion+e +e) system, which, in the case of
a bare ion (that is, a point charge), takes the form (in
atomic units)

1.1
r r;

+-L (1)

V(rl,r2)= _Z
12

This potential displays deep valleys when either r, or 7,
is close to zero, and a ridge when r, =r, as discussed fur-
ther below. States whose wave functions lie mainly in the
valleys or around the ridge form two distinct types, dis-
tinguished in the nature of the radial correlation between
the electrons. It is in the ridge states that the two elec-
trons are on par in all aspects including specifically in
their radial excitation. It is also these states that form
natural partners below the double-ionization threshold to
the double-escape continuum states just above that
threshold, because it has long been argued that a dynami-
cal instability arising from the mutual screening of the
electrons disfavors the escape of both unless they main-
tain equal excitation for most of the escape [21-23].
These ideas that emphasize the viewing of both electrons
together, and on par, in terms of a single entity, the
“pair,” underlie our approach.

As on previous occasions [21,24] when the three-body
character was of the essence for the phenomena under in-
vestigation, we use collective “pair” coordinates in place
of the independent-electron ones r; and r,. One set,
called hyperspherical coordinates, that has proved useful,
and which we adopt, defines (R, a,6,,) through
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R=(ri+r3)"?,

r

r

a=arctan , (2)

6,,=arccos(?,-?,) .

A single radial distance R indexes the size of the system,
whereas the two angles, a (0<a=<w/2) and 6,
(0=0,,<27), describe radial and angular correlations,
respectively. In terms of them, the system’s potential in
(1) becomes

Cla,6),)
V(rlyrz)z_ﬁﬁ_—_—_% V4 V4

cosa

sina

1
(1—sin2acosf,,)
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(3)

R has becomes a scale variable and the essential part of V'
a potential surface C(a,0,,) which has valleys along
a=0, 7w/2, and a ridge along the a=m/4 line as 0,,
varies (see figures in Ref. [1]). In particular, (a=7/4,
6,,=0) marks the peak of the potential surface (the
infinite repulsion when r,=r,) and a=w/4, 6,,= a sad-
dle point corresponding to the configuration r{= —r,.
The ridge states of interest to us are those whose wave
functions are concentrated around this saddle point.

The above coordinates were used 40 years ago for the
analysis of threshold double escape [21], and in the last
20 years have been used extensively for the study of dou-
bly excited states [11-15]. These latter studies have em-
ployed a so-called adiabatic approximation, which, in
analogy to the Born-Oppenheimer method, treats R as an
adiabatic fixed variable while solving the angular part of
the Schrodinger equation. This method has successfully
described low-lying doubly excited states and given in-
sight into the nature of correlations. However, it has also
been clear that to proceed to higher excitation will re-
quire abandoning the adiabatic separation because the re-
lated continuum problem just above threshold demands
handling all three variables, R and the angles, on the
same footing. Also, the adiabatic method, while handling
the three-body problem in the collective coordinates for
small and intermediate R, departs from them at large R
to return to the independent-electron coordinates for the
asymptotic region. Thereby doubly excited states are
viewed as successive groups that converge to individual
ionization thresholds of a ‘‘parental” ion formed by
(ion+e). Having one electron remain bound, say in a
principal quantum number N, while the other runs
through successive values of n=(N,N +1,..., ) for
the group of doubly excited states below this Nth single-
ionization threshold means that asymptotically the
description is suited to the valleys of the potential sur-
face: r,/r;—0, or «, thatis,a—0or 7/2,as R — «.

For the very-high doubly excited ridge states that are
of interest to us, we depart from the above in keeping the
collective, pair description throughout, including when
R — . No reference to individual electrons is made, no
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single-ionization thresholds or single-electron quantum
numbers invoked. The only relevant ionization limit is
the one of double ionization when the ‘“‘grandparental
ion” (in our case, the bare nucleus) and the pair of elec-
trons mutually separate to infinity (R — ). In the
adiabatic-hyperspherical method, it has been recognized
that the successive potential wells in R that converge to
successive single-ionization thresholds show avoided
crossings with each other. An important sequence of
crossings has a locus in R which tracks the ridge line of
the potential in (2). Couplings between potential curves
along this locus have been recognized as providing an
“excitation ladder” to high excitation [1]. A diabatic
tracing of the potential along this locus would also pro-
vide a single potential well that converges finally to the
double-ionization limit. Such a procedure of arriving at
this well through first calculating adiabatic potential
wells and then including nonadiabatic couplings between
them seems, however, hopelessly cumbersome and im-
practical, particularly when we are interested in high-
lying states. As with all Coulomb problems, the various
thresholds N pile up closer and closer together and the
number of adiabatic potentials and couplings grows ex-
plosively large. A more direct approach to calculating
potentials that converge to the double-ionization limit is
desirable and this is what we address.

Finally, before developing our method in Sec. II, we
make a few remarks about other theoretical calculations
of doubly excited states. Standard techniques of atomic
physics such as the close-coupling method or
configuration interaction have also long been used, and
very successfully, for the calculation of low-lying doubly
excited states. Since they involve basis functions that are
products of one-electron functions, correlations mix these
basis states. Strong two-electron correlations lead to
large mixings and, given the diverging number of
Coulomb states with increasing excitation, these calcula-
tions become impractical for the high doubly excited
states. Judicious choice of basis states can extend calcu-
lations but will also fail for the high reaches of the spec-
trum near the double-ionization limit. Stated in terms of
quantum numbers, angular correlations mix different
values of (/,/,), and radial correlations of (N, n), of the
two electrons. In the limit of extreme correlation, these
labels lose meaning and call for a more appropriate set of
pair quantum numbers and a corresponding basis. Given
the I-degeneracy of the Coulomb problem, this feature be-
comes important for the angular variables already for the
low doubly excited states, whether of valley or ridge type.
It can be analyzed by considering a fixed (N, n) manifold
and the mixing of different (/,,l,) states contained in it
[25]. Models based on the O(4) group symmetry of this
restricted problem have been successful in describing this
mixing and in providing alternative pair quantum num-
bers [26]. At low excitation, the labels N and n still re-
tain meaning, since states of different (N, n) are separated
in energy. It is now customary to label doubly excited
states by these one-electron principal quantum numbers
together with the O(4) quantum numbers [12]. On the
other hand, at higher excitation, when different (N,n)
also lie close in energy and radial correlations mix them,
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all single-electron labels become deficient. This is partic-
ularly so for the high ridge states. The words ‘“‘intra-
shell” and “intershell” have come into vogue for describ-
ing (N,n) when N=n and N+n, respectively. For low
doubly excited states, the former correspond to ridge and
the latter to valley states. The latter have also been
called “planetary” [27], in analogy with celestial mechan-
ics where individual planets have their own distinct or-
bits. For the very high doubly excited states, however,
the description in terms of “intra” and “inter” is no
longer appropriate given the large mixing of nearly de-
generate (N,n) states with both N and n large, whether
equal or unequal.

II. PAIR ANALYSIS OF TWO-ELECTRON STATES
A. The Schrodinger equation

The two-electron Schrodinger equation in hyperspheri-
cal coordinates is well known and we record it here for
completeness. For general values of the total angular
momentum L (=1, +1,), we have [1]

_ar  AHR
dR? R?

C(a, 912)
R

=ER’?WY(R,Q), (4a)

% [RS2W(R,Q)]

where () represents collectively the five angular variables,
a, ?, and ?,. The operator A?, called the grand angular
momentum in these variables, is given by

A’=—(sina cosoz)_2i sina cosa—d— }
da da
+ i I% (4b)
cos’a  sin’a ’

where I? and I3 are the squared orbital-angular-
momentum operators for the two electrons.

The squared grand-angular-momentum operator [1]
describes collective rotations of the two electrons on the
surface of a six-dimensional hypersphere. Its eigenvalues
and eigenstates are

N®, 1, Q=AA+P, 1 (5a)
A=1,+1,+2nge=0,1,2,... , (5b)
1,+1

q’nRCllIZLM(Q)=C[¢,,RC1112LM(Q)+(—1) !
X Gngetyt,eu( Q)]

(5¢)

2~ L+S+nge

if 1,1,

o= (5d)
if 1,=1,

-

N =
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Bl lyLM =Nopcly1,(c0sa) (sina) Y, ,m(P1,7;)

XoF | (—nge,nge+1+1,+2,0,+3 ;sina),
(Se)

YIXIZLM(?I’?Z)z 2 (lllzLM“lml,lzmz)

ml,mz
XY (PY, (Py) . (5

Here Y is the familiar coupled spherical harmonic which
includes a Clebsch-Gordan coefficient, ,F, is a hyper-
geometric function, which, for the integer values of the
radial correlation quantum number nyc of interest, is
proportional to a Jacobi polynomial (28], ngc labels the
nodal structure of the hyperspherical coordinate harmon-
ics in the range 0 <a < /2, and N,,RC,I,2 is a normaliza-

tion coefficient. The effective charge operator C(a,6,,)
in (4a) is given by (3) and only depends on a and 6,,,
while being independent of the radial size.

The different scaling in R of the angular kinetic energy
and the potential in (4a) makes the two-electron equation
nonseparable in hyperspherical coordinates just as it is in
independent-particle coordinates. The adiabatic-hyper-
spherical method proceeds by seeking eigenstates of
A’+RC at each R. Typically, a basis of products of
one-electron functions is employed, and to speed conver-
gence at large R this product is chosen so as to converge
to single-ionization thresholds. Instead, we proceed as
follows. Each A manifold (except for A=0) is degenerate,
this degeneracy increasing with A. We diagonalize
C(a,0,,) within each A manifold. The eigenvectors are
simultaneously eigenstates of A? and C(a,6,,). They
provide at each R a basis for expansion of the full wave
function W(R, ), with radial functions F(R) as the ex-
pansion coefficients. The eigenvalues of A% and C(a,8,,)
provide diagonal potential terms (wells) in the resulting
radial equations for F(R). These potential wells converge
to E =0 as R — 0, that is, to the double-ionization limit.

In this paper we restrict ourselves to L =0. Although
algebraically more involved, the extension to other L
values is straightforward and we will return to it later.
The L =0 case has the merit of making our procedure
and the form of its results more transparent. In this case,
we have /; =[, =1, and Q reduces to just the two angular
pair coordinates a and 6,,, with ¥ becoming

21 +1

2
. P](Coselz) . (6)

YL =p=0=(—1)

The functions ® and ¢ become identical, and in
A=2(I+ngc), ngc takes even (odd) values for S =0 (1);
correspondingly, A /2 is even (odd) for I/ +S even (odd).
The normalized eigenfunctions of A2 for L =0 are, there-
fore,

@, i(@,0)=(—1 )'N,,RC,sin’acos’aP,(cos9,2)

XP,E;:“/Z”’H1/2”(c0s2a) , (7a)
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TABLE 1. Eigenvalues of effective charge operator Cy for 'S states of He with A <20.
\Q 0 1 2 3 4 5
A
0 —5.5902
2 —4.6995
4 —4.3895 —8.4413
6 —4.2075 —6.5593
8 —4.0823 —5.8672 —9.7461
10 —3.9856 —5.4866 —7.5756
12 —3.9077 —5.2413 —6.7084 —10.6039
14 —3.8416 —5.0663 —6.2114 —8.2981
16 —3.7848 —4.9339 —5.8832 —7.3343 —11.2443
18 —3.7344 —4.8288 —5.6466 —6.7657 —8.8603
20 —3.6894 —4.7427 —5.4667 —6.3825 —7.8355 —11.7555
N =Rt (nge+1) are plotted in Fig. 1 for H™ (Z =1). In each of these
nre! (2nge+20+1) presentations, the eigenvalues divide into two groups as A
runs through alternate even integers and, corresponding-
X[2(2I+ Dngclnge+21+1) ly, I +S is alternately even and odd. The eigenvalues are
labeled by Q=0,1,2,...; the maximum value of Q is
1/2 sy 4y &y ’
Xlnge+1+ D], (7b) (A—2)/4 for odd values of A/2, whereas it is A /4 for 'S

where P,(,‘IB) is a Jacobi polynomial (equivalently, a
Gegenbauer or ultraspherical polynomial [28]) and P, is a
Legendre polynomial.

B. Diagonalization at fixed A

With the eigenfunctions in (7) for a degenerate mani-
fold A=2(/+ngc), we diagonalize the effective charge
operator C(a,0,,). The required matrix elements are

(nRC1|C(a,912)|ni{C1')
zfﬂ/z sin’a cos’ad a
0

X fo sin,d 01, @, (P, ,Cla,0) . (@)

The matrix elements can be calculated numerically. The
eigenvalues C, , of this matrix are tabulated for IS and 3§
states of He [Z=2 in (3)] in Tables I and II, respectively,
for A <20, and a representative sample of 'S eigenvalues

and (A —4) /4 for S for even values of A /2.

The eigenvalues have been plotted in Fig. 1 as continu-
ous curves, although Q only takes discrete integer values,
in order to show the shape of their distribution at each A.
In particular, these plots are strikingly similar to other
diagonalizations when an external perturbation mixes
states of degenerate atomic manifolds [29]. As in those
examples, the extreme eigenvectors have special features,
and this is shown in Figs. 2 and 3, which plot their distri-
bution in (a,8,,) space. The lowest eigenvector of
C(a,0,,), that is, the deepest potential and therefore
strongest binding, shows (Fig. 2) a concentration around
a=m/2 and O while being substantially independent of
0,, for even A/2 [Fig. 2(a)], whereas for odd A/2 [Fig.
2(b)] a concentration around 6,,~0 and 7 and a=0 and
w/2. On the other hand, the highest eigenvalue of
C(a,0,,) exhibits [Figs. 3(a) and 3(b)] a concentration
around a=m/4 and 6,,~7 and 0, the distribution of the
eigenvector being symmetric around 6,,~m/2 for even
A /2 and antisymmetric for odd A /2.

TABLE II. Eigenvalues of effective charge operator C,, for 3S states of He with A <20.

0 0 1 2 3 4
8

2 —7.4392

4 —5.8854

6 —5.3460 —9.1863

8 —5.0529 —17.1350

10 —4.8632 —6.3421 —10.2152

12 —4.7264 —5.8958 —17.9703

14 —4.6212 —5.6040 —7.0499 —10.9465

16 —4.5364 —5.3949 —6.5138 —8.5992

18 —4.4658 —5.2363 —6.1556 —7.6028 —11.5142
20 —4.4054 —5.1107 —5.8956 —7.00845 —9.1039
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FIG. 1. Results of numerical diagonalization of (8) are shown
as continuous curves, dashed (solid) for A /2 even (odd). Crosses
give the maximum eigenvalue as given by the approximate
analytical expressions in (10) and (13).

L
16 18 20

FIG. 2. The lowest eigenvector distribution in (a,8,,) space
with A=20 (a) and 18 (b).
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FIG. 3. The highest eigenvector distribution in (a,6,,) space
with A=20 (a) and 18 (b).

C. Analytical results for the extreme eigenvalues

Simple but quite accurate analytical expressions for the
extreme eigenvalues follow upon observing that the ma-
trix elements of C in (8) are dominated by the diagonal
terms. Table III documents this for a representative A.
It follows that the extreme eigenvalues are well approxi-
mated by the diagonal matrix elements in (8) with highest
and lowest values of / (correspondingly, the lowest and
highest values of ngc). Indeed, the symmetries noted in
the previous paragraph and in Figs. 2 and 3 of the ex-
treme eigenvectors reflect the symmetries of the function
® in (7) with highest and lowest allowed /. In either of
these cases, @ in (7) takes a simple form and the matrix
element can be evaluated analytically. Since it is of less
interest, we do not record here the largest eigenvalue
(least ngc) which corresponds to least attraction. But
the most attractive potentials can be obtained as follows.

Considering 'S symmetry, when A /2 is even, the lowest

TABLE III. Matrix elements of C(a,6,,) in A=12 subspace.

|600) [422) [244) |066)
[600) —10.5964 —0.1575 0.7466 —0.5910
[422) —0.1575 —6.6764 —0.2239 0.1488
[244) 0.7466 —0.2239 —5.1992 —0.2915
|066) —0.5910 0.148 85 —0.2915 —3.9892
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eigenvalue of C is approximated by the matrix element in
(8) with /=0, ngc=A/2. The wave function in (7)
reduces to

(D:\/msin()dd)a ©)
sin2a )
This gives
Cio=1/4=(3A,0[C|1A,0)
A+2 5 A+2 (_1y\[k/2)
S YA S W V273 (—D2T
T = 2k —1 T 2 2k—1

(10)

where [k /2] is the integer part of k /2. This value in
(10), which can be thought of as an effective charge, can
be simplified further, particularly for large A:

Cinss=—(4/m){Z[y +In(4A+10)]—V2(0.62)} , (11)

where ¥ =0.577 21 is Euler’s constant.

For an odd A /2, the lowest eigenvalue of C is approxi-
mated by the matrix elements in (8) with [ =1,
ngrc =(A—2)/4. The wave function in (7) reduces to

cosf,
2a

o=—4 [(nge+3)sin2(nge+ Da

sin
—(ngc+1sin2(ngc+3)al, (12)

where 4=(V'6/8)[(ngc+3)(ngc+1)]7172. We obtain
a similar but somewhat more complicated expression
than (10) involving analytical sums for

Coi-nms={IA—11[C[1A—1,1), (13)

which we do not display here. For large A, we have
analogous to (11)

cky(,y_wz—%gzh/ Fn(4A+10)]—(Z+ 1)} . (1)

These values provided by the simple analytical expres-
sions in (10) and (13) are marked by crosses in Fig. 1 to
show that they provide an excellent approximation to the
most negative eigenvalue.

D. An analytical pair-Rydberg formula

A first approximation to radial equations for the pair
of electrons is provided by inserting the lowest eigenvalue
of C for each A into (4a). This provides potential wells,

A+3)(A+2
yr)= 2T 15)
2R? R

with the effective charge C drawn from (10)-(14). As
sketched in Fig. 4, these potential wells converge to the
double-ionization limit. Each well describes a six-
dimensional Coulomb problem and supports an infinity of
discrete states. Singling out the lowest of these in each
well provides a sequence of pair states described by the
Rydberg expression

0 T

-5k | //
LY
i | ‘\u/
/ﬁ
@ /
-1.50 ” ! 1 — —
2 4 6 8 10
VR
FIG. 4. Potential wells U(R)=[(A+3)(A+3)/2R?]

+(Cyi4/R), with A=0, 4, 8, 12, 16, 20, 24, 28, and 32 and
Z =2,

C2
E,=——7— 16
2+ 1o

where the  in the denominator is characteristic of the six
dimensions of the pair’s hyperspherical space. For
A=0,4,8,..., the Rydberg formula provides the ap-
proximation for what could be loosely described as the
Ns? configuration, and for A=2,6,10,... for the sz
configuration.

In Table IV we compare the results obtained from this
simple analytical expression with those from other
theoretical calculations for the lowest ridge states in H™
and He. The results of Ho [9] represent the best available
from large numerical calculations with a basis of
independent-electron functions, whereas those of Rost
and Briggs [7] represent the only calculation other than
ours which also has a potential well converging to the
double-ionization limit (they obtain this curve through
scaling from the molecular H," potential). Our results
are not as accurate as those obtained by these other au-
thors for the low-lying states. Our method is really
adapted to describe the very highest states and we com-
pare with the low ones only because they are the only

TABLE IV. Eigenvalues (in a.u.) calculated by Eq. (16) for
helium.

N Present Ref. [7]

1 —2.5000 —2.890 65
2 —0.841 35 —0.773 05
3 —0.43006 —0.35290
4 —0.2670 —0.2013

5 —0.18447 —0.12995
6 —0.13633 —0.09075
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available (experimental data is even more sparse). Also,
in the next section we will improve on our results in
Table IV by coupling multiple values of A, but the specific
distinction of the present results is the analytical Rydberg
expression in (16). It is noteworthy that the dependence
on the quantum number A is not just in the Bohr-
Rydberg A ™2 form but also through the dependence of
the charge on A as given in (11) and (14). This slow loga-
rithmic enhancement of the binding over the standard
Rydberg value can be seen as a pointer to the overlapping
of manifolds that has been observed in experiment
[30-33] and in theoretical calculations [13] which group
states below successive parental ionization thresholds (the
parental threshold energies follow a standard Rydberg
trend).

E. Coupled potential wells

Retaining only the lowest eigenvalue at each A and
considering each independently to give the potential in
(16) is, of course, only a gross first approximation, and
not expected to be accurate because of all the couplings
that have been ignored. We proceed now to the next
stage of off-diagonal coupling in A. To take full account
of this coupling we would have to consider several A
manifolds and all the eigenvectors in each, and evaluate
matrix elements of C(a,8,,) between them. But, as in the
adiabatic hyperspherical method, where the lowest poten-
tial wells seem to play a dominant role [11-15], we will
also continue to retain only the lowest eigenvalue for
each A. But we will now calculate the off-diagonal matrix
elements C,;. between them. With the wave functions
given in (9), these off-diagonal terms can also be evalu-
ated analytically to give an expression analogous to (10),

6939
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FIG. 5. Potential curves by diagonalizing the matrix given by
(17) with the same A values as in Fig. 4 mutually coupled togeth-
er.

— 87 (1/2(+1)+2 1
W= T —
T k=(1/2)|A—A]+1 2k —1

k

(1/2)(A+1)+2 (_1)[?]

A i et Y (17)
T k=(1/2)A=N]+1 2k —1
47 A+A+S
~— T 1
7 P AT+ 18

Similarly with the wave function given in (13), we can get
the off-diagonal terms for odd A /2; these are not record-
ed here. Here (18) entails a further approximation for

TABLE V. Eigenvalues (in a.u.) calculated by Eq. (20), upon coupling even values of A/2 up to

Amax = 120.
He H™
N Present Ref. [7] Present Ref. [11]
1 —2.905 82 —2.89065 —0.52374 —0.5259
2 —0.75335 —0.77305 —0.13068 —0.14879
3 —0.33894 —0.35290 —0.057 86 —0.069 6
4 —0.190 37 —0.2013 —0.03218 —0.039925
5 —0.12030 —0.12995 —0.02019 —0.0260
6 —0.08170 —0.09075 —0.013 65 —0.018 205
7 —0.058 30 —0.066 95 —0.009 71
8 —0.04320 —0.0514 —0.007 18
9 —0.03295 —0.04073 —0.00546
10 —0.02570 —0.03306 —0.004 26
11 —0.02036 —0.027 37 —0.00379
12 —0.01655 —0.02303 —0.00272
13 —0.01350 —0.01695 —0.002 17
14 —0.01087 —0.01478 —0.00178
15 —0.008 46 —0.0128 —0.00146
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TABLE VI. Eigenvalues (in a.u.) calculated by Eq. (20), upon coupling odd values of A/2 up to

Amax = 120.
He H™

N Present Ref. [11] Present Ref. [11]
2 —0.644 70 —0.6053 —0.12343
3 —0.305 62 —0.307 185 —0.05425 —0.0558

4 —0.17572 —0.18327 —0.029 61
5 —0.113 60 —0.12103 —0.018 81 —0.02317
6 —0.07920 —0.085715 —0.01204 —0.016 61
7 —0.05094 —0.008 94 —0.012 505
8 —0.04301 —0.006 52 —0.009 745
9 —0.03417 —0.004 90 —0.0078

10 —0.02594 —0.003 76

large A and A’ as before (a further small correction may
be included if |[A—A’| is not large).

Proceeding in this manner, by retaining A values from
0 to some A, and diagonalizing the matrix given by (10)
and (17) at each R, gives potential wells Uy(R) as shown
in Fig. 5 for A_,,=120. These calculations, which re-
quire diagonalization of 31 X 31 matrices, are numerically
straightforward because the matrix elements themselves
are calculated analytically. In Fig. 5, a mesh for R with
1600 points was chosen and the calculation took only a
few min on an IBM 3090 computer. To solve for the ei-
genvalues of doubly excited states, the eigenvectors ob-
tained above at each R provide a basis ¥5(R ;Q) for ex-
pansion of the full wave function in (4):

W(R,Q)= 3 Fy(R)y(R;Q) . (19)
N

Inserting this into the Schrodinger equation in (4a) leads
as usual, and as in the adiabatic hyperspherical scheme,
to coupled equations for F(R). The coupling between
different N is provided by the matrix elements
(¢Yyld/dR |y ) and {¥y|d?/dR?|¢y.). In this paper,
we drop all these couplings off diagonal in N, in which
case the eigenvalue problem reduces to that of calculating
the states in each potential well in Fig. 5 independently:

TABLE VII. Eigenvalues (in a.u.) calculated by Eq. (20), with
even values of A/2 and A,,,=320 and A, =480.

N Amax =320 Amax =480
1 —2.905 948 —2.905 948
2 —0.75379 —0.753 81
3 —0.3401 —0.34016
4 —0.1925 —0.192 69
5 —0.1235 —0.12374
6 —0.0857 —0.08604
7 —0.0627 —0.06318
8 —0.0477 —0.048 27
9 —0.0374 —0.038

10 —0.030 —0.03063

1 d’ 572

5 4R> (20)

Eigenvalues obtained in this manner for H™ and He
are shown in Table V for even A /2 and Table VI for odd
A/2, and they represent improvements over the similar
numbers in Table IV. The coupling of different A con-
verges quickly, as shown in Tables VII and VIII which
contrast results for A ,, =320 and 480. As expected, the
lower states reach stable values more quickly, and remain
unaffected as the calculation embraces larger A. A fur-
ther slight shift takes place in the eigenvalues upon cou-
pling all values of A /2 together, even and odd. These are
displayed in Table IX, indexed by the pair principal
quantum number N and the pair quantum number v,
which describes angular correlations [2,12].

III. DISCUSSION

This paper has presented the first steps in a well-
defined program for calculating doubly excited states
through analysis of the Schrodinger equation in pair (hy-
perspherical) coordinates. Diagonalizing the interaction
at fixed values of A, the grand angular momentum in the

TABLE VIII. Eigenvalues (in a.u.) calculated by Eq. (20),
with odd values of A/2 and A,,, =320 and A, =480.

N Ammax =320 Armax =480
2 —0.644 705 —0.644 705
3 —0.305 623 —0.305 624
4 —0.175749 —0.175753
5 —0.113695 —0.113703
6 —0.079 446 —0.079 463
7 —0.058 588 —0.058 622
8 —0.04492 —0.044 984
9 —0.0355 —0.035613
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TABLE IX. Eigenvalues (in a.u.) calculated by coupling even
and odd values of A /2 together for He with A_,,=120.

N v Present

1 0 —2.926 88
2 0 —0.81327
2 1 —0.604 47
3 0 —0.37117
3 1 —0.27919
4 0 —0.209 68
4 1 —0.01587

problem, provides potential wells and angular basis func-
tions, described throughout in pair coordinates. In par-
ticular, each of these potential wells converges at large R
to the grandparental or double-ionization limit. The di-

agonalization at fixed A can be carried out once and for
all and even simple analytical expressions derived for the
dominant eigenvalues. Extension to nondiagonal cou-
plings in A is also almost as straightforward. We have
presented evidence that the resulting potential wells
Uy(R) and basis functions ¢, (R ;) already give a good
accounting of the organization of doubly excited states
into sequences converging to the double-ionization limit,
along with their energy positions. The next step of the
program will be to consider the major couplings that
have been left out, namely those arising from derivative
terms d /dR and d?/dR? between the 1 basis states.
We will return to this in a later paper but note that the
numerical procedure to handle coupled equations in a
single variable R is now standard. We will also extend
the calculations to states of symmetry other than the 'S
we have considered in this paper.

[1] U. Fano and A. R. P. Rau, Atomic Collisions and Spectra
(Academic, Orlando, 1986), Chap. 10.

[2] A. R. P. Rau, in Atomic Physics, edited by R. S. VanDyck,
Jr. and E. N. Fortson (World Scientific, Singapore, 1989),
Vol. 9, p. 491.

[3]1 F. H. Read, J. Phys. B 16, L449 (1977); Aust. J. Phys. 35,
475 (1982); J. Phys. B 23, 951 (1990).

[4] A. R. P. Rau, J. Phys. B 16, L699 (1983).

[5] H. Wang, J. Phys. B 19, 3401 (1986).

[6] Q. Molina, Phys. Rev. A 39, 3298 (1989).

[7]73. M. Rost and J. S. Briggs, J. Phys. B 21, L233 (1988); 22,
3587 (1989).

[8] M. Aymar, J. Phys. B 22, 2359 (1989).

[9] Y. K. Ho, Phys. Rev. A 35, 2035 (1987); 41, 1492 (1990).

[10] Y. Komninos and C. A. Nicolaides, J. Phys. B 19, 1701
(1986); C. A. Nicolaides and Y. Komninos, Phys. Rev. A
35, 999 (1987); M. Chrysos, Y. Komninos, Th. Mercouris,
and C. A. Nicolaides, ibid. 42,2634 (1990).

[11] H. Fukuda, N. Koyama, and M. Matsuzawa, J. Phys. B
20, 2959 (1987); N. Koyama, A. Takofuji, and M.
Matsuzawa, ibid. 22, 553 (1989).

[12] C. D. Lin, Adv. Mol. Phys. 22, 77 (1986); Z. Chen and C.
D. Lin, Phys. Rev. A 42, 18 (1990).

[13] H. R. Sadeghpour and C. H. Greene, Phys. Rev. Lett. 65,
313 (1990); Phys. Rev. A 39, 115 (1989); H. R. Sadegh-
pour, ibid. 43,5821 (1991).

[14] H. Klar and M. Klar, J. Phys. B 13, 1057 (1980).

[15] J. H. Macek, J. Phys. B 1, 831 (1968).

[16] I. K. Dmitrieva and G. I. Plindov, J. Phys. B 22, 1297
(1989).

[17] E. de Prunele, Phys. Rev. A 45, 2070 (1992).

[18] M. Crance and L. Armstrong, Jr., Phys. Rev. A 26, 694
(1982); A. R. P. Rau, Pramana 23, 297 (1989); C. D. Lin
and S. Watanabe, Phys. Rev. A 35, 4499 (1987).

[19] J. Muller, J. Burgdérfer, and D. Noid, Phys. Rev. A 45,
1471 (1992).

[20] G. Ezra, K. Richter, G. Tanner, and D. Wintgen, J. Phys.

B 24,1413 (1991).

[21] G. H. Wannier, Phys. Rev. 90, 817 (1953).

[22] A. R. P. Rau, Phys. Rev. A 4, 207 (1971); J. Phys. (Paris)
Collog. Suppl. 43, C2-221 (1982).

[23] U. Fano, Phys. Rev. A 22, 2660 (1980); 24, 2402 (1981);
Rep. Prog. Phys. 46, 97 (1983).

[24] J. H. Bartlett, Phys. Rev. 51, 661 (1937); V. A. Fock, Izv.
Akad. Nauk. SSR,; Ser. Fiz. 18, 161 (1954); K. Norsk
Vidensk. Selsk. Forh. 31, 138 (1958).

[25] A. R. P. Rau and Q. Molina, J. Phys. B 22, 189 (1987); A.
R. P. Rau, in Aspects of Electron-Molecule Scattering and
Photoionization (New Haven, CT, 1989), edited by A. Her-
zenberg, AIP Conf. Proc. No. 204 (AIP New York, 1989),
p. 24.

[26] D. R. Herrick, Adv. Chem. Phys. 52, 1 (1983).

[27]1. C. Percival, Proc. R. Soc. London Ser. A 353, 289
(1977).

[28] Handbook of Mathematical Functions, edited by M.
Abramowitz and I. A. Stegun (Dover, New York, 1965),
Chaps. 15 and 22.

[29] U. Fano, F. Robicheaux, and A. R. P. Rau, Phys. Rev. A
37, 3665 (1988); A. P. R. Rau and L. Zhang, ibid. 42, 6342
(1990).

[30] S. J. Buckman and D. S. Newman, J. Phys. B 20, L711
(1987).

[31]M. Domke, C. Hue, A. Puschmann, T. Mandel, E. Hud-
son, D. A. Shirley, G. Kaindl, C. H. Greene, H. R.
Sadeghpour, and H. Peterson, Phys. Rev. Lett. 66, 1306
(1991).

[32] P. G. Harris, H. C. Bryant, A. H. Mohagheghi, R. A.
Reeder, H. Sharifian, C. Y. Tang, H. Tootoonchi, J. B.
Donahue, C. R. Quick, D. C. Rislove, W. W. Smith, and J.
E. Stewart, Phys. Rev. Lett. 65, 309 (1990).

[33]P. G. Harris, H. C. Bryant, A. H. Mohagheghi, R. A.
Reeder, C. Y. Tang, J. B. Donahue, and C. R. Quick,
Phys. Rev. A 42, 6443 (1990).



FIG. 2. The lowest eigenvector distribution in (a,,,) space
with A=20 (a) and 18 (b).
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FIG. 3. The highest eigenvector distribution in (a,8,,) space

with A

20 (a) and 18 (b).



