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The influence of dephasing processes on the motion of self-localized quasiparticles in molecular chains
is studied within a density-matrix description. Applying the so-called self-trapping approximation, the
strong coupling to vibrational degrees of freedom can be taken into account by a quadratic nonlinearity
in the density-matrix equations. If dephasing is neglected, the results agree well with those of the so-
called D, ansatz in the theory of Davydov solitons. The delicate dependence of the soliton formation on
the employed particle-vibration coupling is demonstrated. Using the standard model for the exciton
motion in a-helical structures of polypeptides, it is shown that the soliton motion over more than ten
molecules in the chain requires a dephasing time below some hundred femtoseconds. Thus the soliton
mechanism of energy transport in biological systems at physiological temperatures seems very improb-
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I. INTRODUCTION

No experiment has been carried out to clarify whether
the concept of the so-called Davydov solitons [1] in a-
helical structures of polypeptides is right or wrong, but a
large amount of theoretical investigations have been pub-
lished over the last decade on this subject (see, e.g.,
[2-15]). The assumption of the coupling of high-
frequency CO stretching vibrations of the amino group
inside the polypeptide backbone (amide-I vibrations) to
longitudinal deformations of the whole a-helix has been
of central importance. The motion of the first type of vi-
brational excitations along the chain originates from a
weak resonance interaction. The second type forms lon-
gitudinal chain phonons due to a coupling of adjacent
peptide groups via the hydrogen bridges. Within a cer-
tain parameter range of the coupling strength between
both excitations, they can move together as a soliton
which combines the localized CO stretching vibration
and a local deformation of the a helix.

Beside molecular-dynamics calculations [11] which ful-
ly neglect the quantum nature of all incorporated vibra-
tions, more sophisticated descriptions based on the solu-
tion of the time-dependent Schrdodinger equation have
been published [4-10,12-15]. Following Davydov [1,3]
these approaches describe the local CO vibration as a
Frenkel exciton and incorporate the quantum nature of
the longitudinal a-helix vibrations. Usually one deals
with polymeric chains of some ten segments so that it is
impossible to construct the correct solution of the time-
dependent Schrodinger equation. Instead, different types
of an ansatz for the time-dependent wave function have
been proposed.

Beside the dynamics of the closed quantum system of
excitons and longitudinal chain phonons, the coupling to
a dissipative environment and finite-temperature effects
are of considerable physical interest. One treatment for
the soliton motion at finite temperatures has been
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presented by Davydov [3] (see also [10]). Instead of con-
sidering the motion of the soliton on a chain with zero
phonons, an ansatz is introduced for the time-dependent
wave function which contains an incoherent superposi-
tion of states with phonons excited according to a
thermal distribution. A stochastic description has been
proposed in another approach [6] where the vibrational
part of the equations of motion is generalized to a
Langevin-like equation. A density-matrix theory has also
been formulated [8,9] to study finite-temperature effects.
But explicit numerical results have not yet been presented
for the soliton motion in a dissipative environment allow-
ing phase and energy relaxation.

It is the aim of the present paper to apply such a
density-matrix description to study the motion of self-
localized excitation energy along a chain coupled to a dis-
sipative environment. Emphasis is placed on the dephas-
ing processes of the soliton wave function. The coupling
to the environment is taken into account in second-order
perturbation theory. Beside this weak coupling to envi-
ronmental degrees of freedom one has a strong coupling
of the molecular excitation to the longitudinal chain pho-
nons which is essential for the soliton formation.
Different approaches are known to consider this strong
coupling. They are based, e.g., on an expansion in ap-
propriately chosen vibrational wave functions [16].
Within a density-matrix description this approach is tedi-
ous for systems with a large number of vibrational modes
[17].

Therefore we consider the coupling to the vibrational
degrees of freedom here only within the so-called self-
trapping approximation. This approach has already been
used to study the effect of nonlinearity and dissipation for
a molecular dimer [18,19]. It results in a nonlinear equa-
tion of motion for the density matrix. Although the self-
trapping approximation is based on a classical descrip-
tion of the vibrational modes, it is sufficient to study the
influence of dephasing processes on the soliton motion.
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In particular, our approach allows a comparison with the
results of earlier calculations (see, e.g., [15]).

Additionally, our approach extends previously pub-
lished calculations discussing effects of static disorder
along the chain on the mobility of the solitons. In [15] a
random distribution of the site energies as well as of the
intersite coupling strength has been used. Then the soli-
ton formation could be studied by solving the corre-
sponding equations of motion which follow from a partic-
ular ansatz for the time-dependent wave function. We
will study dynamic disorder using the density-matrix ap-
proach which yields the dynamics of the quasiparticle
phonon system of the chain averaged with respect to a
thermal ensemble of environmental states.

The paper is organized as follows. In the next section
we introduce a general model for the quasiparticle
motion in a molecular system. By dividing the whole set
of vibrational degrees of freedom into a class coupling
strongly to the quasiparticle and in a remaining set one
naturally introduces the concept of a thermal environ-
ment (or heat bath). The corresponding contributions to
the density-matrix equations are discussed. Section III
deals with the application of the general approach to the
single-chain standard model of soliton motion in a-helical
polypeptide structures. Numerical results will be
presented in the fourth section.

II. DENSITY-MATRIX EQUATIONS

A. General model

The motion of a single quasiparticle (e.g., Frenkel exci-
ton) can be described by the following general expression
of the Hamiltonian for the vibronic states of the quasi-
particle in the site representation:

H=3 h,,((P,X;})A} 4, . (1
m,n

Here, the quantities 4 ,L and A, define the creation and
annihilation operators of the quasiparticles at molecular
sites m and n, respectively. Their definite statistics de-
pend on the actual type of the considered quasiparticle.
The matrix elements 4, of the Hamiltonian are func-
tions of all vibrational momenta P; and vibrational coor-
dinates X;. They read in detail

hmn({PJ’Xj})=6mnT({PJ})+Wmn([Xj]) 2)

T is the kinetic-energy operator of the vibrational coordi-
nates. The diagonal parts of the potential W, , comprise
the various potential-energy surfaces U,, in the diabatic
representation of the particle-vibration system (neglecting
any dynamic coupling). The interaction potentials be-
tween different sites of the molecular system are con-
tained in the off-diagonal parts, i.e.,

Wmn({Xj})=6anm({Xj})+(1—6mn)an({Xj})‘ 3)

In order to describe the quasiparticle motion the reduced
one-particle density matrix (RDM)

P (D) =tr(D () A} 4,) 4)

is of interest. It contains the time-dependent statistical
operator @(t) of the considered system. The time-
dependent occupation probabilities P, (¢) for the local
quasiparticle states are given by the diagonal elements of
the RDM. One easily verifies the following equations of
motion for the RDM:

52, (0= 3 (DO W (X)) 4} 4)
k

—tr(D(1) Wy, ([ X;}) A A,)] . (5)

The right-hand side comprises higher-order mixed
particle-vibration density matrices. The restriction to a
single quasiparticle (¥, AJA,, =1) avoids the appearance
of the vibrational kinetic energy.

The further treatment of the density-matrix equations
essentially depends on the strength of the coupling of the
quasiparticle to the various vibrational modes. There-
fore, we provide a separation of the modes into two
different classes corresponding to strong and weak cou-
pling strength, respectively. The first class comprises the
modes {Q;} and the second class the modes {g,}.

To give a precise definition of what is a strong and a
weak coupling we compare the so-called reorganization
energies for a transition of the quasiparticle from site m
to site n. Generally, these quantities are defined as the
energetic value of the diabatic potential surface U, at the
position of the minimum of the potential surface U,,.
Therefore, our classification requires the validity of the
following inequality:

U, (1)}, (" ) > U, (1)), [g¢™ ) (6)

where Q"™ and ¢¢™ (Q;” and ¢;") are the minimum
coordinates of the diabatic potential surface U,, (U,)

with respect to the modes Q; and g..

B. Self-trapping approximation

This approximation aims at an effective description for
the strong interaction between a large number of vibra-
tional degrees of freedom and the quasiparticle motion.
First of all it provides the neglection of quantum fluctua-
tions in decoupling the higher-order functions in Eq. (5)
with respect to the vibrational part and the quasiparticle
contribution, i.e.,

52 ()= 3 W (X))o (1)
at =

= Wim ({X; )i (1)] - 7

Furthermore it assumes that the characteristic velocity of
the vibrational modes is much larger than the corre-
sponding velocity of the quasiparticle motion. Then the
vibrational modes can react instantaneously on the parti-
cle motion and we can drop corresponding time deriva-
tives. The actual values of the vibrational coordinates are
determined by the following algebraic equations:

oW,
an Pmn

(£)=0. (8)

>

m,n
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If these equations allow a definite solution with respect to
the vibrational coordinates, namely, X; =X,(p,,,), we can
insert these solutions into Egs. (7) to obtain a closed set of
nonlinear RDM equations. The corresponding non-
linearities describe the self-trapping process as the gain of
quasiparticle energy due to the localization of the wave
function in the molecular system.

Although the combination of the assumption of high
frequencies for the vibrational modes together with its
classical description is questionable, the used approach
provides an effective description of the mutual particle-
vibration coupling for large molecular systems.

We note in passing that the assumed relation between
the vibrational motion and the particle motion is typical
for nonadiabatic transfer phenomena. However, in the
standard treatment of nonadiabatic transfer the single
transfer event occurs from a totally thermalized initial
state.

Let us finally relate the above approach to a somewhat
more general density-matrix description (see, e.g., [18]).
If one tries by standard methods to formulate a perturba-
tion expansion of the exciton-vibration coupling within
the equations of motion for the density matrix one ends
up with correlation functions for the vibrational coordi-
nates Q; of any order. By restricting these to (Qj(t)),
solving the corresponding equation of motion, and insert-
ing the result into the equation of the density matrix, one
obtains the non-Markovian version of the self-trapping
approximation. The next order correlation function
(Qj(t )Q;(¢") ) —<« Q;(1) )(er(t’) ) describes by defin-
ition fluctuations around the expectation value of Q;.
Therefore it has been argued [8,9] that the restriction to
density-matrix equations with both of these correlation
functions is appropriate to incorporate finite temperature
effects. But as illustrated by the considerations in this
section, such an approach leads to a classical description
of the vibrational motion and is equivalent to the self-
trapping approximation. For the full quantum-
mechanical description of the vibrational motion at finite
J

d
atpmn(t) ]

particle-bath

The generalized damping functions y are defined by the
second-order correlation functions of the environmental
coordinates q,. (The assumption of weak coupling and
thermal equilibrium prevents the separate consideration
of the expectation values of g,.)

Since no particular model for the coupling to dissipa-
tive modes in a-helices is known, it is sufficient to restrict
the right-hand side of Eq. (10) to the dephasing contribu-
tions

)
37 Prmn(t)

1
J =—(1=98,, ) —Pma(t) . (1D
particle-bath Tmn
Tmn defines the characteristic time for the dephasing pro-

cess of the quasiparticle wave function with respect to the
sites m and n. One can imagine that the dephasing times
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temperatures all types of correlation functions have to
summed. A corresponding density-matrix approach has
been recently published for the case of a molecular dimer
[17].

C. Dephasing mechanism

Let us continue by considering the vibrational modes
{g¢} showing a small reorganization energy. In this sec-
tion we only discuss the general structure of the corre-
sponding contributions to the density-matrix equations.
It is not our intention to present here an environmental
model adequate to, e.g., the exciton motion in polypep-
tides.

Because of the weak coupling of the vibrational modes
{g¢} to the quasiparticle motion we assume thermal equi-
librium for these modes considering them as a heat bath
with a given temperature. Supposing additionally para-
bolic potential surfaces of the same curvature for all
molecular sites m, the corresponding contribution to the
potential W, , reads

&

The off-diagonal contributions in the coupling function
g¢(m,n) stem from an expansion of the intersite potential
Vun With respect to the vibrational coordinates g,. (The
generalized coordinates g, have been introduced for the
molecular system in its ground state, and thus the expan-
sion starts with a linear contribution in g;.)

The consideration of this coupling up to second order
is standard and has already been discussed for the coordi-
nates Q; in the previous section. The details of the
derivation of the corresponding terms in the density-
matrix equations have been described at length in the
literature (see, e.g., [18]). Here we only quote the result.
The contributions to the equations of motion for the den-
sity matrix have the following general form:

== 3 [V kPt O Y tkkmPin (1) =2Y ppimpPi ()] - (10)
!

|
are caused by environmental modes modulating the site
energies as well as the intercenter coupling.

Furthermore, the description used allows to interpret
the dephasing times also as due to the second-order
correlation functions of the first class of vibrational coor-
dinates Q; within the improved self-trapping approxima-
tion mentioned at the end of the previous section.

III. SOLITON MOTION IN A MOLECULAR CHAIN

To enable a comparison with the various calculations
of the motion of Davydov solitons in a-helical polypep-
tide structures we specify our general equations accord-
ing to the widely used standard model for these systems
(see, e.g., [15]). This standard model reduces the three
spines of hydrogen-bonded chains in the a helix to a sin-
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gle one. The localized high-frequency CO stretching vi-
brations (amide-I vibration, #w=0.5 eV) define the single
quasiparticles of Frenkel-exciton type whereas the vibra-
tions along the hydrogen-bonded chain constitute the set
{Q;} of longitudinal vibrational modes. All remaining
vibrational degrees of freedom of the polymer form the
dissipative environment.

Starting from our general Hamiltonian (1) for the case
of a chain of N identical sites (amino groups in the
hydrogen-bonded chain) with parabolic potential-energy
surfaces we end up with the standard model introduced
above for the description of Davydov solitons

Un(1Q,}) Eo+2 "qu+2gq m)t. (12

E, defines the identical site energies and g counts the lon-
gitudinal normal modes of the molecular chain. To
remain sufficiently simple they can be defined by assum-
ing periodic boundary conditions (¢ = —/a +2wL /aN,
L=1,...,N, ais the lattice constant). The dimension-
less normal-mode coordinates of the longitudinal chain
phonons are related to the usual annihilation and
creation operators ¢, and ch according to @, =c, +ct .
The dimensionless exciton-vibration coupling reads

gq(m) *——lg‘—(l—e

(2Nﬁ,ua) 7 ~iaq)giaqm (13)

It stems from the dependence E,+ A(u,, _) of the
amide-I vibration on the hydrogen bond length where u,,
are the local distortions. The dispersion law has the stan-
dard form

=4isin2(qa /2), (14)

where « is the spring constant of the chain defined by the
hydrogen bridges between the different peptide groups.
One usually neglects the possible dependence of the po-
tential V,,, on the vibrational degrees of freedom. It is
simply given by the resonance interaction J,, between
adjacent sites in the chain. In the present case the reso-
nance interaction can be reduced to a nearest-neighbor

coupling
Jon =B 41,0 F0m 1.0 M - (15)

The approximate form of the equations of motion for the
normal-mode coordinates reads

—_2 2 gq pmm (16)

and in final form the RDM equations are obtained as

%pmn<t>=—(l—am>;7‘n~pm,,<r>—mwm,,pm(t>
2 nkpmk(t kapkn(t)] . an

The self-trapping contribution results in a shift of the
transition frequencies which depends on the site occupa-
tion probability p,, according to

A(")mn = 2 Zzwq Re([gq(m )—gq(n

k q

)18 (k)pg (1)

(18)

The shift of the transition frequencies can be further
simplified using the explicit form of the exciton-vibration
coupling (13). We obtain a local expression with respect
to the site occupation probabilities

2
Awm“:%[pmm(t)—pnn(t)] . (19)

The local character of this expression depends essentially
on the difference u,, —u,, _, in the exciton-vibration cou-
pling. For example, if one considers a model with the
symmetric expression u,, ,,—u,, ,; the nonlinear self-
trapping contribution remains nonlocal with respect to
the site occupation probabilities.

IV. NUMERICAL RESULTS

To have clear evidence for the effect of the dephasing
of the wave function we consider a homopolymeric chain
[regular chain with identical site energies, exciton-
vibration coupling (13) and resonance interaction (15)].
Providing also a homogeneous environment all dephasing
times 7,,, reduce to a single value 7,. For the numerical
solution of the density-matrix equations it is useful to re-
scale all energies with respect to the resonance interac-
tion J and all time arguments with respect to #/J. The
rescaled dephasing time reads 6, =7,J /# and the dimen-
sionless self-trapping constant follows as Y =«A2/J. The
dynamics in the regular chain are controlled by these two
parameters.

As the initial condition for all calculations we take the
excitation of an exciton at the first site, i.e.,
Pmm(0)=35,,6,.,. The RDM equations are solved for a
chain of 20 molecules as well as a chain of 50 molecules.
Such a chain length is sufficient to determine the velocity
of the motion of the excitation energy and to reduce the
influence of boundary effects of the chain. To visualize
certain details of the soliton motion the case of a chain of
20 molecules is especially useful.

First of all let us consider for reference the motion of a
self-localized exciton on a chain of 20 molecules for the
case of a relative large self-trapping constant Y =3 so that
the energy gain by the exciton localization amounts to
three times the magnitude of the resonance interaction.
Figure 1(a) shows the soliton motion for infinite dephas-
ing time, whereas Fig. 1(b) corresponds to the case of
finite dephasing time 6, =10. The large value of y pro-
duces complex patterns after reflection of the soliton at
the end of the chain which are absent for smaller values
of x (see below). These patterns together with localiza-
tion of the excitation energy vanish already for the
moderate dephasing time assumed in Fig. 1(b). A homo-
geneously distributed occupation probability over the
whole chain is reached for a rescaled time of approxi-
mately 26,.

The influence of the dephasing mechanism on soliton
formation and soliton pinning is studied more systemati-
cally in Fig. 2. It shows the occupation probability P, of
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the first chain element (of a chain of 20 sites) for various
values of y. In Fig. 2(a) the dephasing effect is neglected
(6;= o). We observe how the time dependence of P,
changes if y is increased. The localized structure for
x =0 at the rescaled time of about 20 indicates the re-
currence of the still localized occupation probability.
Even without the mechanism of self-localization the ini-
tially prepared exciton wave packet remains rather local-
ized. This is demonstrated once again by the localized
structure at the rescaled time of about 42. At this time
the wave packet has already been reflected 3 times at the
chain ends.

The shift of the localized structure in the P, curves to
larger times for increasing ) indicates the well-known
effect of decreasing soliton velocity with increasing non-
linearity. The localized structure does not reappear for
X =3 in accordance with Fig. 1(a). The oscillations of P,
in the eighth and ninth curves of Fig. 2(a) indicate the
transition to an immobile soliton. For y=3.5 it remains
confined to a few sites at the beginning of the chain with
a complex oscillating motion (compare Fig. 3). For
X=4.5 and 5 the occupation probability remains pinned
nearly completely at the first site of the chain. This result
coincides with the estimation that soliton pinning should
occur if the localization energy xA? of an exciton in a

(a)
Z 4
= T o~
AN
-8 TN /
a
o 3 — /ﬁ g
N —
o g\/ﬂ; Y
(CJ L S -~
—X v
= \VN —/
3 AV,
3 1 VN 7
o %N
W 7
ot 7
(6] 50
rescaled time
(b)
Z 4
8 /=
S 3} 4
o 7
s
.‘g 2t , —/
§- /
o 1 /
o . 7
\VAV —_/
v, A
o Lee— 7
(0] 50

rescaled time

FIG. 1. Occupation probability P,, of the mth site of a chain
of 20 molecules vs rescaled time (sites are counted from the
front panel backwards) for a rescaled self-trapping constant
X =3 and (a) infinite dephasing time (6, = «), (b) 8, =10.
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FIG. 2. Occupation probability P, of the first site of a chain
of 20 molecules vs rescaled time; the rescaled self-trapping con-
stant Y is increased from O to 5 in steps of 0.5 (from the front
panel backwards). (a) Infinite dephasing time (6,= «); (b)
9d =10.

nTol|ecu1ar chain overcomes the delocalization energy
2\J1.

The results of Fig. 2(a) drastically change if we take a
value of 8, =10. Figure 2(b) displays the central result of
our paper. The recurrence behavior of the occupation
probability for smaller values of y is nearly totally re-
moved and the pinned state of the soliton has been des-
troyed in a time comparable to 8,;. There is no stabiliza-
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FIG. 3. Same as Fig. 1(a) (6, = «) but for y=3.5.
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tion of the soliton achievable by increasing the nonlinear-
ity. In all cases the dephasing distributes the initially lo-
calized occupation probability over the whole chain al-
though this process takes somewhat longer for large
values of y. From our calculations of the transfer dy-
namics in a molecular dimer [17] we estimate that the
time at which the pinned soliton has been destroyed is
proportional to 6,eX. More details will be published in a
forthcoming paper.

Now let us specify the calculations for the parameters
typical for the standard model of a-helical polypeptides.
Using the elasticity constant of the hydrogen bridges
k=13 N/m, the coupling constant of the high-frequency
excitation with the longitudinal chain deformation A =62
pN, and the resonance interaction J =0.967 meV, we ob-
tain the self-trapping constant Yy =1.91. The upper limit
of the chain phonons lies near 10 meV. Hence, the static
solution of the equations of motion for the chain vibra-
tions is justified, and we expect that it coincides with the
results of the D, ansatz.

The results of the corresponding numerical calcula-
tions are displayed in Fig. 4. The range of the rescaled
time shown corresponds to 34 ps. A comparison of the
results of Fig. 4(a) with those of, e.g., [15] shows satisfac-
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FIG. 4. Occupation probability P,, of the mth site of a chain
of 50 molecules vs rescaled time (sites are counted from the
front panel backwards) for a rescaled self-trapping constant
x=1.901 according to the standard model of an a-helical
polypeptide chain and for (a) infinite dephasing time (6, = ),
(b) 6, =10.
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tory coincidence. However, the soliton pictured in Fig.
4(a) does not survive the decrease of the dephasing time
from infinity to the finite value 6,=10. Figure 4(b)
shows the quickly attained equipartition of the originally
self-localized occupation probability. If the dephasing
time becomes comparable to the time which the exciton
needs to move through the chain we cannot expect the
arrival of a strongly localized wave packet. 6;=10 cor-
responds to a dephasing time of slightly less than 2 ps
and is therefore in the upper range of typical values for
molecular systems. Thus the concept of self-localized en-
ergy transport in polypeptides appears very questionable.

On the other hand, studying the exciton motion
without the soliton mechanism (Y =0) one obtains curves
with overall features which deviate only slightly from
those of Fig. 4(a). In particular, the excitation moves
once through the chain without any effect of dispersion.
Of course, this coincidence is destroyed if one introduces
disorder into the chain (compare [15]).

As discussed in Sec. II, dephasing results from the cou-
pling to the environment and from finite-temperature
fluctuations of the longitudinal chain modes. If the tem-
perature is increased the dephasing time decreases. At
the same time the soliton wave function of the exciton-
vibration system and thus the phase coherence of the ex-
citon over different sites of the chain is destroyed. The
resulting tendency towards equipartition of the occupa-
tion probability strongly diminishes the self-localization.

It should be noted that our result for the destruction of
solitons by the dephasing mechanism is different to the
finite temperature results within the so-called D, ansatz
for the time-dependent wave function. In that case the
self-localization of the excitation energy is supported by
the decreasing of the resonance interaction and thus a de-
creasing of the exciton mobility by a Huang-Rhys-type
factor. However, this result seems questionable although
it is correct in the D, approach. Investigating the exci-
ton transfer in a simple dimer model one obtains a con-
trasting picture. If temperature and the nuclear tunnel-
ing rate are sufficiently small, the excitation energy which
shall be initially localized, say at the first monomer,
remains localized at the minimum of this diabatic poten-

zaf
=z
g 7
o 3
o
S
S 2..
©
Q
3 -y
3 — =7
O -y
e
hv “/
0 Y
0 50

rescaled time

FIG. 5. Same as Fig. 4(a) (6, = o, y=1.901), but for 20 mol-
ecules and a self-trapping contribution according to the sym-
metric exciton-vibration coupling u,, 4+ — U, —1.
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tial surface. However, if the temperature is increased
higher vibrational states are occupied and the transfer to
the other monomer becomes easier. This phenomenon is
known as the change from the nuclear tunneling region
to the activated transfer. As discussed in [17] this result
holds true also for transfer scenarios beyond the in-
coherent (hoppinglike) region.

If the self-trapping contribution, Eq. (18), does not in-
clude the occupation probabilities in a nonlocal manner
as introduced in the general form in this equation, then
soliton formation does not appear. Figure 5 demon-
strates the result of a corresponding calculation taking
the local exciton-vibration coupling proportional to
U, 41— U, — instead of u,, —u,, _,.

V. CONCLUSIONS

The density-matrix theory has been utilized to study
the influence of dephasing effects on the time-dependent
wave function of self-localized exciton-vibration states in
a molecular chain. The self-localization mechanism has
been incorporated in the density-matrix description in a
manner equivalent to the so-called D, ansatz in the
theory of Davydov solitons. The physical background of
this approach corresponds to a classical description of
the vibrational modes together with the assumption of
their instantaneous reaction to the exciton motion. This
last assumption is equivalent to the high-frequency limit
of the vibrational modes compared with the exciton ve-
locity. For the standard model of a-helical polypeptides
the corresponding ratio of a mean vibrational frequency
and the resonance interaction #iw/J amounts to a value
much larger than unity. The comparison of our numeri-
cal results (for the case of infinite dephasing time) with
those obtained by a direct use of the D, ansatz justifies
this reasoning.

However, the self-trapped motion is drastically
influenced by finite dephasing times as one has to expect
from general physical arguments. In the discussed model
there does not occur any long-time stabilization against
dephasing of the soliton wave packet by the nonlinear
coupling mechanism. Hence, our approach produces a
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strong argument against soliton formation and self-
localized energy transport by the a-helical parts of pro-
teins at physiological temperatures.

Although the coupling to a dissipative environment
has been included into the density-matrix equations only
by dephasing rates we believe that a complete description
does not alter the present results. Corresponding calcula-
tions are in progress.

Finally it is necessary to mention that, in view of the
specific aim of the present calculations, the basic concep-
tual problem of the correct description of the motion of
self-localized excitation energy has not been touched
here. But to indicate a possible way to solve this problem
we refer to our density-matrix theory of electron transfer
dynamics [17]. In that approach we used the density-
matrix theory for the (diabatic) representation of the cou-
pled electron-vibration states of the single monomers of a
molecular dimer embedded in a dissipative environment.
Taking into account all vibrational states this representa-
tion gives an exact description of the electron-vibration
states of the corresponding monomer. With respect to a
numerical solution of the density-matrix equations for the
case of a single vibrational mode one reaches a (numeri-
cally) correct description by considering a sufficiently
large number of excited vibrational states. The coupling
of the monomers in the dimer via the transfer integral
does not introduce any further complication for the nu-
merical solution.

In the present case of the coupled states of localized ex-
citons and longitudinal vibrations of a molecular chain
the density matrix in the representation of coupled
exciton-vibration states reads p(m, {M,};n,{N,}) where
m and n are the site indices and M, and N, the vibration-
al quantum numbers of the mode q. Clearly, the problem
is too complex for any numerical solution. The large
number of density-matrix elements expands the dimen-
sion of the corresponding dynamic system too rapidly.
But one can try to reduce the number of longitudinal vi-
brational modes to one or two effective modes. Then the
problem becomes tractable and one can hope to reach
some new insight into the exciton-vibrational dynamics in
molecular chains. Corresponding systems are presently
being studied.
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