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Matrix-element calculations for hydrogenlike atoms

M. L. Sanchez, B. Moreno, and A. Lopez Pineiro
Departamento de Quimica Fisica, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain

(Received 14 May 1992)

The method of factorization, together with the hypervirial theorem, is shown to be appropriate for
calculating matrix elements of operators that are functions of r, between hydrogenic radial wave func-

tions that may belong to different atoms. Some numerical results are tabulated for matrix elements of
the form (n'I'~r" ~nl). The expressions given are valid for both diagonal- and off-diagonal matrix-

element calculations with no limitation on the values of the n and I quantum number or in the power of
the operator, which can have either positive or negative values.

PACS number(s): 31.15.+q, 32.30.—r, 32.70.—n

I. INTRODUCTION

There are many applications in atomic physics where
the calculation of matrix elements using hydrogenic wave
functions is of great importance. The first publication [1]
on the subject dates therefore from the beginnings of
quantum mechanics and it is still of interest in recent
years. Some of the applications are as follows: excitation
cross sections [2], threshold difFerential oscillator
strengths [3], Lamb shift [4—6], hydrogen recombination
spectrum [7], stopping power of inner-shell electrons
[8,9], opacity of elements [10], irregular electric mul-
tipoles [11],etc.

In principle, the calculation of these elements could be
carried out by resolving the integral analytically
[1,12—14]. It is indisputable that, when n is much
greater than l, Gordon's formula or other analytically ex-
panded formulas are not only hard to use but are of no
numerical validity for large n, due to the successive can-
cellations between positive and negative terms [11].

Several alternative methods have therefore been
developed: asymptotic expansions [2,3,15], the use of re-
lationships among the Laguerre polynomials [16—19],
algebraic methods such as the joint use of the hypervirial
theorem and sum rule [20], hypervirial and Hellmann-
Feynman theorems [21], group theory with second-
quantization formalism [22—24], and, finally, the use of
ladder operators [25,26]. None of them, however, has
solved the most complicated and general case, which is
that in which the states involved differ in the principal
quantum number: ( n 'I'~g(r) ~nl ).

The methods we have chosen to follow are the joint use
of the method of factorization [27] and the hyperviral
theorem, applied with success in other systems such as
the harmonic oscillator and the Morse oscillator [28—30]
and even in certain special cases for hydrogenic atoms
[31]. The equations that we derive are easy to manage
and serve to calculate both diagonal and off-diagonal ma-
trix elements and even matrix elements in which the
functions belong to different hydrogenic atoms (Z'WZ }
with operators that are functions of r, g(r).

II. DERIVATION OF THE RECURRENCE
RELATIONS

nl I Z d
2 2 1/2Z(n —I ) r r

(2)

n (I +1)+L. n, l =
Z[ 2 (I + I )2]1/2

Z
l+1 dr

(3)

These act on the secondary quantum number (with 1%0),
raising and lowering it by one unit, while n remains con-
stant

+L(n, 1 +1)u„t=u„ 1+, ,

L(n, 1)u„i =u„&

(4)

(5)

Using the expressions given for the ladder operators (2)
and (3) with a differentiable function g (r), in combination
with the functions ~n, l } and ( ',n~,lone obtains the
equations

(n'I'~r 'g(r)~nl ) = (n'I'~g(r)~n I+ I)
2l + 1

+ (n'I'~g (r) ~n I —1)2l+1

+ (n'I'~g(r}~nI ),l(l+ 1)

The radial Schrodinger equation for hydrogenic atoms,
in Hartree units, making u (r) = r 'R (r), has the form

d I (I +1) 2Z
u„&

— u„&+ u„i E(n)u—„&=0,
dr r

where E(n) and u„i are the eigenvalues and eigenfunc-
tions, respectively.

This is a second-order differential equation which is
factorizable according to the technique of Infeld and Hull
[27], yielding the following ladder operators [31]:

46 6908 1992 The American Physical Society



46 MATRIX-ELEMENT CALCULATIONS FOR HYDROGENLIKE ATOMS 6909

d +A
n'I' g'(r) nl = — (n'I'lg'(r}ln I+1)

dr 2
2+ I I'(I'+ 1)

Z
I+1 (n'I'lg'(r)lnl )

+ (n'I'Ig'(r}ln I —1)
2

+—,'(n'I'lr 'g'(r)lnl )

+ (n'I'lg'(r}lnl ),
I I+1 (7)

1 —I'++, + A '(n' I'+ 1 lg'(r)lnl )21'+ 1

+, A'& n' I' —1lg'(r) I«&21'+ 1

n'I' g'lrl nl) = —-'(rr I Ig tr)lnl '")'d
dT

+ &n'I'lr 'g(r)lnl)Al

2

aZ(n'—I'Ir 'g(r)lnl &

+ (n'I'Ig(r}lnl ) .hE
2

Exchanging I
n I ) for

I
n 'I' ) and ( n 'I'

I
for ( nl I, one ar-

rives at another three recurrence relations analogous to
(6), (7), (9)

A suitable combination of these six equations, (6), (7),
(9), and their analogs, allows some terms to be eliminated
and leads to two recurrence relations of great utility,

Z
1(l + 1)

Z'
1'+ 1

& n'I'lg'(r) lnl )

where + A and A are coefficients coming from +L and
L, respectively, and depend on n, 1, and Z.
Defining H' and H as two hydrogenic Hamiltonians,

which in the most general case may belong to two
different atomic species, one can write the following ex-
pression, which can be considered a generalization of the
hypervirial theorem to the two-center case:

(n'I'IH'g(r) —g(r)Hlnl ) =bE(n'I'lg(r)ln! ) . (8)

Expanding the left-hand side, one obtains the following
recursion relations:

—+ A (n'I'Ig'(r}ln I+1)+ (n'I'Ig "(r)lnl ) =0 .

These equations relate matrix elements with secon-
dary quantum numbers differing by one unit. Using
them alternately, one can evaluate all the
matrix elements ( n 'I'

I
g'( r }I

nl ) . Firstly, knowing
(n'n' —llg'(r)ln n —1), which is calculated straightfor-
wardly as indicated in the Appendix, one calculates with
Eq. (10) the terms with fixed I' (initially I'=n' —1) and I
running from n —1 to 0 (row of the matrix). Then, with

Eq. (11), one calculates the elements with fixed I (initially
I=n —1) and I' with values running from n' —1 to 0
(column of matrix). For the remaining rows and columns
one will go on using Eqs. (10) and (11) alternately, calcu-
lating first the rows and then the columns from the terms
calculated previously.

It must be noted that the strategy in the implementa-
tion of these equations is very important. At the begin-
ning, the idea was to program using Eq. (10) to calculate
all the elements of the last row of the matrix from the
same initial element indicated above. Then, with these
terms and Eq. (11), we could simply calculate the rest of
the terms columnwise. In principle, this form of program
is simpler, but the numerical results that it gave were
wrong for the case of high quantum numbers n

' and n.

I' —1+ + A (n'I'Ig'(r)I«+1&
21+ 1 III. SOME CASES OF PARTICULAR OPERATORS

+ A (n'I'Ig'(r)lnl —1)
21 +1

—+ A'(n' I'+ 1lg'(r)lnl ) + (n'I'lg "(r)lnl ) =0,
(10}

I

Some particular cases of r-dependent operators are of
special interest, such as exponentials (e'"), powers (r"),
and combinations of them with the derivative (d "/dr").
The recurrence relations presented above reduce in these
cases to the following expressions:

(2+I'+ k ) l(l +1)
I I+. &'I Ir"""ln»+ A &'I I.".-I.I+»21+1

1' 1+ A & n'I'Ir "e"I«—1& —+ A '( n' I'+ 1 lr "e'"I«)=0, (12)21+ 1

I I —1'+ k(2+I+k), ,
— +~ (n'I'lr "e'"lnl &+ + A'(n'I'+ 1 lr"e'"lnl &I'(I'+1) I+1 21'+ 1

I+ A'(n' I' l
l

" '"I I ) —+ A ( 'I'I " '"I —1+1)=021'+ 1
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d" +Al, k „d"n'l' r e'" nl n'l' r e" n l+1dr" 2l+1 dr"

+
—~ (1+1)

21+ 1 d»" ' 1(1+1) d»"
(14)

A. Expectaction values (nl ~» "~nl )

Comparison of our results with those derived by other
procedures [18,32] shows that Eqs. (12) and (13) work
well. From the generalized expression of the hypervirial
theorem, one may deduce the expression

(k —I )
——(k —2)+21(1+1)

k
2

X (»'-') „,—2Z(2k —1)(»"-') „,

+2E(n)k(»" ') „I=0 . (15)

This will yield the expectation values of powers of r as
long as one known a priori at least one of them which
may be calculated by means of the Hellmann-Feynman
theorem

(»
n

(16)

To calculate matrix elements when the operate is r or
e'", one needs to use Eqs. (12) and (13), as we explained in
Sec. II, alternately and starting from the matrix element
where the secondary quantum numbers are greatest,
n

' —1 and n —1, respectively. Morales, Pena, and
Lopez-Bonilla [19] recently obtained expressions very
similar to Eqs. (12) and (13) when the exponential terms
vanishes (s =0). These are their Eqs. (41) and (43). Nev-
ertheless, they coincide only for the cases which are diag-
onal in n. In the same reference, another two recurrence
relations are deduced, (34) and (35), where the secondary
quantum numbers are fixed while n' and n vary by one
unit. Nonetheless, we do not believe that either these
equations or (40) and (42) of the same work represent any
novelty or improvement on those referred to earlier as
(41) and (43). There must also exist misprints in all of
them since the results they yield are inadequate.

In the case of terms with the derivative d"/dr', one
works analogously for the calculation of the initial matrix
element required in Eq. (14), by means of which one can
obtain the rest of the elements which involve the deriva-
tive.

The numerical stability of the recurrence relations ob-
tained may be tested by verifying that the orthonormality
conditions do not deteriorate numerically, and also by
comparing our results with those obtained by other pro-
cedures. Given the great importance of the operator r"
and the more abundant information that is available for
it, we have particularized our expressions for this opera-
tor.

Equation (15) is self-sufficient, and it has an ideal struc-
ture for programming on an algebraic processor such as
muMath or REDUCE. By way of example, we have ob-
tained the analytical expressions for the expectation
values of »" (k = —7, . . . , 5), which coincide exactly with
those published by Bockasten [17] and Drake and Swain-
son [33].

The expectation values calculated by means of these
analytical expressions and the values given by Shertzer
[32] are compared with those resulting from Eqs. (12) and
(13). There is seen to be absolute concordance even to
the twelfth significant figure.

In calculating the matrix elements with l=0, the re-
currence relations (12) and (13) are used
(n —1)+2+,":,'(n i) t—imes. This confirms therefore
the numerical stability of the expressions being used. The
results have also allowed us to verify the recurrence rela-
tion put forward by Blanchard [18], which relates two
matrix elements whose operators are nonconsecutive
powers of r.

B. Matrix elements of the form (nl'~» "~nl )

As the recurrence relations work by calculating matrix
elements from previously calculated ones, it is to be ex-
pected that if the diagonal elements maintain their stabil-
ity, off-diagonal elements should do likewise. Hence, the
elements that are o6'-diagonal in l may be taken to be al-
ready tested in light of the results of the previous section.
But there also exist other checks that can be made on
them.

Reference [32] gives some analytical expressions for
matrix elements where n'=n; l'=l+1, l+2=n —1,
n —5. The corresponding numerical results are com-
pared with those obtained from our recurrence relations
and we have again appreciated absolute concordance in

the first twelve significant figures.
But this is insufficient to demostrate unequivocally the

stability of our equations, since these elements are those
that are calculated at the start. The toughest test that
Eqs. (12) and (13) can be subjected to, as we noted before,
is the calculation of the matrix elements with values I =0,
1, or 2, i.e., s, p, or d levels. The fulfillment of the ortho-
gonality conditions which are known for them is the only
test that can be made. Pasternack and Sterheimer [16],
Armstrong [22], Cunningham [23], Herrick and
Sinanoglu [24], and Badawi et al. [34] demonstrated with
different procedures the orthogonality condition later
generalized by Blanchard [18],

Z2

n (1+—,')
(17)

( nl'~» t'
~
nl ) =0 (1'Wl ),
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A check of this equation was made even for a case as ex-
treme as that of n =500, with no deviations greater than
10 ' being observed.

C. Matrix elements (n'I'~r ~nl )

Infeld and Hull [27] obtained two recursion equations
relating matrix elements for the operator r. Storey and
Hummer [35] programmed these equations, giving tables
of some results for the matrix elements that we have been
dealing with. We have been able to compare them with
the results from our recursion equations (12) and (13) for
terms which are off-diagonal in the principal quantum
number. The numbers are listed in Table I where it can
be seen that there are no appreciable differences.

Whether or not the orthogonality condition

( n'I ~nl ) =5„,„

is satisfied represents an alternative way of checking the
matrix elements. We have again chosen extreme cases to
put our recurrence relations to the test, which led us to
discover a small limitation in their use: for matrix ele-
ments with hn =n' —n greater than 10, when the princi-
pal quantum numbers are large (n' or n =30), the error
which is made with respect to the orthogonality condi-
tions begins to be greater than 10

IV. CONCLUSIONS

We have obtained a set of recurrence relations for cal-
culating matrix elements between hydrogenic functions
for nay operator g (r) that is a differentiable function of r.

We have particularized these recurrence relations for
distinct operators: r, d"/dr", e'", and combinations of
them.

With the joint use of ladder operators and the hyper-
virial theorem we obtained a self-sufficient set of recur-
sion equations permitting the calculation of all matrix
elements of the form (n'1'~g(r)~nl) for the aforemen-
tioned operators, starting from a knowledge of
(n' n' —1~g(r)~n n —1). This matrix element is calculat-
ed straightforwardly, through the wave functions of both
states.

We conclude by saying that the present method
represents an ideal procedure for tackling the calculation
of a great number of matrix elements for different opera-
tors g(r) of interest in quantum mechanics, between hy-
drogenic radial wave functions. The different tests that
we submitted our equations to allow us to affirm that they
present a high degree of numerical stability, comparable
to the analytical expresions, and yet with the advantage
of being easier to implement on a computer program in
which the equations that appear in the present work are
developed [36].

TABLE I. Elements that are off diagonal in n and l: ( n'l'~ r ~nl ).
1'= I —1 1'=1+1

1=2

3.064 815406 571
3.064 815
4.747 991 611 539
4.747 992

n =2;n =3
—1.851 108 792 498

—1.769 472 000 000

0.938 404 237 739 8'
0.938 404 2

1=0

1=2

1=3

1=4

1=5

1=6

1=7

33.491 154 246 21
33.491 15
38.184 810709 27
38.184 81
43.281 633 318 56
43.281 63
48.827 020 709 28
48.827 02
54.870 703 024 95
54.870 70
61.467 226 020 62
61.467 23
68.676 480 330 84
68.676 48
76.564 282 256 87
76.564 28
85.203 012 472 43
85.203 01

n'=9;n =10
—29.159 151031 48

—29.154 232 503 42

—29.114024 589 87

—28.973 149 893 03

—28.620 101 271 80

—27.874 257 638 59

—26.435 855 393 55

—23.756 983 054 19

—18.569 566 052 63

25.150758 079 32
25.15076
21.431 004 044 51
21.431 00
17.967 585 91473
17.967 59
14.730410 355 91
14.73041
11.690 944 568 25
11.690 94
8.820 931 912 864
8.820932
6.088 550 890 421
6.088 551
3.438 808 528 265
3.438 809

'Equations (12) and (13).
Storey and Hummer (Ref. [35]).
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2ZI"

1/2
(n —t —1)! '

n (n+I)!

(A2)

(A3)

u„, =N„tq'„+' exp( —
—,'q „)L„",', (q&„), (Al)

where L„' I ', is the associated Laguerre polynomial, y a
I

APPENDIX: CALCULATION OF THE INITIAL
MATRIX ELEMENTS

We shall evaluate the matrix eleinents (n'!'~r "e'"~!nl )
starting from the expression given for the radial wave
function of the hydrogenic atom [37]

a a+b
L, (x)= g( —1)'

a —tt=0
(A4)

we obtain the following expression for the matrix ele-
ments of the operator g (r) = r "e'":

With the expansion of the Laguerre polynomials as a
finite sum [38],

n' —I' —I n —I —
1

( I)m+j
( n '1'

~

r "e'"
~
n 1 ) =N„, N„,

m =0 j=o

r

n '+ I' n+I
n' —I' —1 —m n —I —l —j

'1'+m I+j2Z' 2Z
n'

r k + I'+I+ m+ j+2 e
0

Z' Z
, +——s r dr.n' n

(A5)

With the change of variable t =(Z'/n'+ Z In —s )r, the integral reduces to the gamma function [I (x)], and hence

n' —I' —1 n —I —1
( I )m+ j

(n'I'~r "e'"tnl ) =N„ t N„t
m =0 j=o

n' —I' —I —m n —I —1 —j
n'+I' n+I 2Z'

n'

' I'+rn ' it+ j
2Z

Z' ZX, +——sn' n

—
( k + 1'+ I + rn +j+ 3 )

I (k+l'+l+m+j+3) . (A6)

In the case that k is a negative integer, recalling that the I function can be expressed in the form I (y) =(y —1)!,k can-

not take value less than —(1'+1+3).
When 1' and l take their maximum values, I' =n' —1 and I =n —1, the expression (A6) simplifies to

n' —1
' n —1

2Z' 2Z

(n'n' —l~r"e'"~n n —1)=
1/2

23Z'3

n' (2n')!

23Z3
1/2

n (2n)!

n'

Z' Z+ Sn' n

(A7)

where u =k + n + n ', and the I function has the value I ( u + 1)=u!, when k is an integer.
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