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Correlation-function hyperspherical-harmonic calculation of the ddt molecular ion
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Direct solution of the Schrodinger equation for the ground and excited S states of the pdt molecular
ion is obtained with the help of the correlation-function hyperspherical-harmonic method. Given the

proper correlation function, chosen from physical considerations, the method generates wave functions,
accurate in the whole range of interparticle distances, which lead in turn to precise estimates of the ex-

pectation values of the Hamiltonian and of different functions of interparticle distances. Our results are
compared with those obtained in other precision calculations.

PACS number(s): 36.10.Gv

The correlation-function hyperspherical-harmonic
(CFHH) method [1—9] of solving the Schrodinger equa-
tion for three Coulomb-interacting particles, introduced
by Haftel and Mandelzweig a few years ago, has been
able to provide together with very precise estimates of en-

ergy and of expectation values of different operators also
very accurate wave functions.

To date the accuracy of this method has been verified
for systems consisting of one heavy and two light parti-
cles [2,3,5,7,8), of two heavy and one light particle [6],
and of particles of equal masses [4,7,9]. Direct solutions
of the Schrodinger equation by the CFHH method for
bound three-body atomic systems [1—9] has yielded pre-
cision comparable to that obtained previously only by
elaborate variational calculations. For maximum global
momentum K =56, up to nine significant figure pre-
cision has been obtained for the energies of the ground
and excited states of the helium atom [2,3,5,7,8] and eight
significant figures [4,7,9] for the positronium ion e e e+
(also denoted Ps ). [The global momentum K in the hy-
perspherical formalism [1] is an angular momentum in
the six-dimensional space defined by the two Jacobi vec-
tor coordinates of three particles. Its maximum value
E determines the number of the basis (hyperspherical
harmonic) functions used in a wave-function expansion. ]
The accuracy of wave functions for the whole range of
the interparticle distances and different expectation
values for these systems is estimated to be about seven
and six significant figures [1—9], respectively.

In recent years interest has accelerated in the three-
body muon molecular-ion systems [10—15] (two light
ions, e.g. , two deuterons, two tritons, or a deuteron and a
triton, covalently bonded by a negative muon). This in-
terest stems from the possibility of a fusion reaction
(called muon catalyzed fusion or pCF} occurring in the

molecule at low temperature and resulting in the libera-
tion of a large amount of energy. This type of reaction
requires neither the extremely high temperature nor the
huge magnetic fields needed for conventional fusion pro-
cesses. Hence, muon-catalyzed "cold fusion" (the tem-
peratures needed are of order of 1000 K) could be looked
upon as a desirable alternative to conventional fusion
[10—15].

Originally the pCF reaction was not regarded as a
practical way of generating energy. However, experimen-
tal and theoretical advances [10—15] have shown that un-
der the proper conditions a single muon can catalyze
about 200 fusion reactions, which is about 40% of the
number needed to reach the energy "break-even" point.
Future developments in reactor physics, laser excitation,
etc., could render pCF practical, and a good understand-
ing of the muomolecules would play a very important
role.

The efficiency of pCF depends mainly on the fusion
rate and the "sticking probability, " i.e., the probability
that the muon sticks to a helium nucleus produced in the
fusion reaction and is subsequently lost for further ca-
talysis. This will limit how many fusions a single muon
(which is expensive to produce} could catalyze. It is im-
portant for fusion and sticking-probability calculations to
have accurate knowledge of the muomolecular-ion wave
function, especially at the so-called "nuclear coalescence
point, " i.e. where nuclear particles are close together.
The fusion rate is determined by the quantum-mechanical
probability of tunneling through the Coulomb barrier, as
modified by the screening of the negatively charged
muon, into the nuclear interaction region. Similarly, the
sticking probability also depends on the wave function in-
side the range of nuclear interaction. However, the usu-
ally employed adiabatic approaches [16], which assume
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an instant muonic response to nuclear motion, are not
precise, since the mass of the muon is not very small
compared to the masses of nucleons. Variational wave
functions [17—25] are accurate only in the region where
the probability density is high, and not necessarily
around the nuclear coalescence point (where fusing nuclei
are on top of each other), which determines the sticking
probability. The Green's-function Monte Carlo method
for ground states does not have these limitations, but en-

ergies and wave functions obtained by this method are
usually not very accurate [26,27]. In addition, its exten-
sion to the excited mesomolecular states, which are ex-
pected to be the most important in the fusion process, is

diScult, due to the fact that any, however, small admix-
ture of the ground state in the important function will

eventually dominate the numerical simulation. On the
other hand, the wave function obtained by the CFHH
method (which is equally applicable to ground and excit-

TABLE I. Calculated ground-state binding energy e, its expectation value (h ), and expectation
values of different functions of interparticle distances in the odd-man-out notation. The units are eV
and muonic atomic units a„=2.559277X10 "m, respectively. The parameter b3 equals —5 except in

the second entry for E =24 where its value is —5.6805126 ( —0.32 in deuteron a.u.). The indices
1,2,3 correspond to deuteron, triton, and muon. E is the maximum global angular momentum and N
is the number of included hyperspherical functions. The number of digits indicates the numerical pre-
cision of calculated values. The variational energies quoted are the best nonextrapolated values.

N

24 91
24 91
32 153
40 231

1.234 7 0.758 027
1.234 3 0.757 80
1.232 283 0.758 262 75
1.231 434 0.758 214 48

(5(r, ) )

0.175 8 2.032 0 5.451 0 331~ 859 890
0.175 76 2.034 5.471 331.756 568
0.175 033 5 2.026 559 6 5.416081 5 323.010309
0.174 833 1 2.025 504 2 5.408 838 5 320.753 963

Refs. 23,28,29
Refs. 23,25
Ref. 31

E N

0.758 3

2.023
2.024
2.023

5.396
5.397

24 91
24 91
32 153
40 231

1.124 9 0.721 67
1.124 1 0.721 32
1.122 721 0.721 958 82
1.123 162 0.722 329 5

0.155 34 2.128 4 5.949 2 318.408
0.155 21 2.131 5.969 318.4
0.154 627 2 2.122 905 5.913 54 318.956 9
0.154 670 7 2.120 589 6 5.899 067 6 319.080 203

Refs. 23,28,29
Refs. 23,25
Ref. 31
Ref. 19
Ref. 21
Ref. 22
Ref. 23
Ref. 24
Ref. 25
Ref. 28

0.722 7
2.117
2.118
2.118

5.882
5.881

319.140 10
319.139752 161
319.139752 161 8

319.1397
319.139606
319.1411
319.139752 161

24 91
24 91
32 153
40 231

0.180 7 0.400 30
0.180 5 0.39998
0.182 676 9 0.402 467 7
0.183 270 0.403 1350

1.235 4 2.773 8.441
not converged 2.778 8.479

1.157 7199 2.757 923 8.350 20
1 ~ 1129190 2.753 152 5 8.320 714 1

Refs. 23,28,29
Refs. 23,25
Ref. 31
Ref. 12
Ref. 19
Ref. 30

0.403

12.5'
0.60
0.922 26~

0.887 37'

2.747
2.748
2.747

8.287
8.286

'A difference by one order of magnitude is believed to be an error due to conversion to cm
Adiabatic.

'Nonadiabatic.



CORRELATION-FUNCTION HYPERSPHERICAL-HARMONIC. . . 6905

ed states [8]) is extremely precise also inside the range of
nuclear interaction because the method employs Jastrow
correlation functions to exactly account for singularities
at coalescence points.

In view of the diSculties of the above-mentioned ap-
proaches, and in view of the fact that a first application of
the CFHH method to the Ittpp, pdd, and hatt molecules [6]
indeed generated accurate ground-state wave functions
for all interparticle distances, including coalescence
points, in this paper we extend our study of the CFHH
method to the pdt molecular ion, whose properties are of
most relevance for muon-catalyzed fusion research [10-
15]. We calculate here the ground and excited S states of
this system. This is our first test of the method for a sys-
tem of three nonidentical particles. In this case the num-
ber of basis hyperspherical functions describing the sys-
tem up to a certain precision has to be doubled com-
pared with previously studied systems (He,
e e e,happ, pdd, p, tt) containing two identical parti-
cles, due to the absence of the symmetry requirements
which restrict the types of the hyperspherical functions
entering a wave-function expansion.

The present calculation is also a prelude to a very accu-
rate investigation of ground and excited S and P states of
the pdt molecular ion using a more general nonlinear
correlation function f (see below) which is able, for exam-
ple, to elevate the precision of e e e+ decay rate com-
putation [9] beyond that reached in the variational ap-
proaches.

In the CFHH method we write the wave function as a
product of two factors

deuteron, triton, and muon masses and of the Rydberg
constant were used:

m„=206.769m„m~ =3670.481m„

m, =5496.918m„A =13.605 8041 eV .
(4)

280-
+ (a)

This set of values is most commonly used in muonic rnol-
ecules binding energy calculations. In Table I we present
the results for the value of parameter b3= —5 which is
close to the arithmetic mean of the corresponding values
for the pdd and hatt ions (Table III and V of Ref. 6). To
show that the results do not depend appreciably on the
precise value of b3, we show in Table I also the results for
a different value of b3.

As one can see from Fig. 1, the convergence pattern of
the pdt ground and excited states results is very similar to
the pattern of the pdd ground state results of Ref. 6.
From the Tables I and II one concludes that our results
for the binding energy e= (E E„,)—,—where E„, is the
ground-state energy of the pt atom, the expectation value
of binding energy ( h ), h = (H E—„,), a—nd for all other
expectation values agree with the most sophisticated vari-
ational calculations using the Slater-type geminals
[21—23] and the generator-coordinate method [25], with
the precision of our calculations converged, for example,
for the expectation values of the ground-state binding en-
ergy up to an error in the fourth significant figure. [As de-
scribed in our previous work [2], E, the eigenvalue of the
effective Schrodinger equation, differs from (I), the ex-

where g is the "correlation factor" and (I) is expanded in
the usual hyperspherical harmonic (HH) functions. If the
correlation factor y is chosen to describe the singular
features of f (such as cusps), the HH expansion for ((I

should be rapid. The solution for (() proceeds as in the
usual HH method, except that the potential Vis replaced
by an effective velocity dependent potential V'

V'= V —— —(Vine)V,
1 V'X

(2)
2 X

300-

320—

I
340—

U

~ 360

I I I

-+

pl

where V is the six-dimensional gradient operator. For
the pdt system we employ here a correlation factor
y = exp( f) with a simple linear correlation function f:

3f= gb, r, , (3)

where b; are adjustable parameters, chosen to describe
cusp singularities [b; =m~mkZ~Zk l(m~ +mk ) ]. Here.
m j Zj are the mass and the charge of the particle j and r;
are the interparticle distances in the odd-man-out nota-
tion with {d,t,p} corresponding to particles {1,2, 3},re-
spectively. However, such a choice of the parameter b3,
which is positive, leads to the completely wrong asymp-
totic behavior of the correlation factor and therefore we
have used a different value of this parameter, given
below.

In our calculation the following values of the proton,

U

320
H

(b)
I

+
\

t

340 — ',

t

I
\

+
I I I I I I I I I I I I I I I } I I I I I I I } I I I I I I I I I I I360
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FIG. 1. Binding-energy eigenvalues c (dashed lines) and their
expectation values (h ) (solid lines), in eV as a function of the
maximum global momentum E . (a) ddt ground state; the two
points near the top correspond to the excited state, the plotted
values being a+250 eV (lower point), and (h ) +250 eV (upper
point). (b) pdd ground state, from Ref. 6, for comparison of the
convergence patterns.
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pectation value of the Hamiltonian, because, with a finite
K, V' is non-Hermitian. They are both estimates of the
energy, but approach each other only for infinite K
with &0 & (not E) having the variational property. ]

The general conclusion from the analysis of the results
is the applicability of the CFHH method to pdt computa-
tions. Improvements in the CFHH method are neverthe-
less desirable. Indeed, as one can see from Tables I and
II, even with 231 hyperspherical functions the inaccuracy
of the calculated binding energies is around 0.06 eV for
the ground state, and 0.5 eV for the excited state. This
inaccuracy is due to the slow convergence with I( as a
consequence of the fact that it is impossible to build in
both a satisfactory asymptotic behavior and dt cusp be-
havior with the linear correlation function f which was
previously very successfully used in the computations of
the helium atom [2,3,5,7,8] and of the positronium nega-
tive ion [4,7]. (Connected with that is also a numerical
difficulty [5] in extracting the asymptotic wave function
that leads to not being able to obtain precision in expecta-

tion values better than the number of significant figures
shown in Tables I and II.) In particular, the inability
with linear correlation function to include the dt cusp
leads to a slow convergence of &5(r3) & which is directly
connected with the fusion rate and with the muon stick-
ing probability. For this reason we plan to consider a
more general nonlinear correlation function f:

3

f= g [a;+(b, —a, }exp( c, r, )—]r, , (5)

geared to reproduce both all the cusps and the asymptot-
ic behavior of the wave function, guaranteeing smooth-
ness of the factor P in (1) and correspondingly a fast con-
vergence of the hyperspherical expansion also at very
small and very large interparticle distances r;. Indeed, at

r; ~0 f has the form

3f= gb, r,

TABLE II. As in Table I, but for the excited state.

K N

40 231 1.21 0.707

&S(r, }&

0.180 2.73 11.6 38.447 072

Refs. 23,28,29
Refs. 23,25
Ref. 31

0.705 3
2.738
2.737
2.738

11.74
11.759

K N

40 231 0.763

&r2')

0.517

&5(r, ))

0.108 3.89 21.6 34.32

Refs. 23,28,29
Refs. 23,25
Ref. 31

Ref. 19
Ref. 21
Ref. 22
Ref. 23
Ref. 24
Ref. 25
Ref. 28

0.5154
3.933
3.915
3.933

22. 12
22.395 34.834 465 01

34.834 464 99
34.832
34.833 32
34.834 465
34.834 464 7
34.8344
34.834 372
34.850
34.834 465

K N

40 231

—2)

0.085 1 0.245

10'& Sir, })

0.933 5.10 30

Refs. 23,28,29
Refs. 23,25
Refs. 31
Ref. 12
Ref. 19
Ref. 30

0.244

10.4'
0.49
0.799 3
0.741 5'

5.161
5.142
5.161

30.34
30.629

'A di8'erence by one order of magnitude is believed to be an error due to conversion to cm
Adiabatic.

'Nonadiabatic.
Also written 34.834 327 in the same paper.
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so parameters b; have to be chosen to describe the cusp
singularities, while at r; ~ ao it has the form

3

a,.r,- (7)

and parameters a; have to provide a proper asymptotic
description. Parameters c,- determine the start of the
asymptotic region. Use of such correlation function will
allow very precise estimate of wave function for all inter-
particle distances including the dt coalescence point
where the knowledge of the wave function is essential for
an accurate calculation of the fusion rate and the muon
sticking probability.

Summing up, the present calculation serves a triple
purpose. First, it is a test of our method on a nonsym-
metric system which necessitates the doubling of a num-
ber of the hyperspherical functions compared with previ-
ously considered systems of two identical particles, due to
the absence of symmetry requirements. Second, it is a
preliminary calculation of pdt which checks the necessity
of using the nonlinear generalization of the correlation
function able to include all cusps in the wave function
without violating the asymptotic conditions. Third, the
excited state was calculated in order to be able to com-
pare its precision to the precision of the ground state, and
to see improvements due to nonlinear correlation func-

tion in future work. In view of these aims, it was not at-
tempted to fine tune the value of the parameter b3 which
has to depart from the cusp value, as described in Ref. 6.
Also, the excited state was calculated using the same
value of b3 as used for the ground state, which may not
be optimal.

As for results, we have shown that the convergence
patterns of the energy eigenvalue, its expectation value
and the expectation values of operators depending on in-
terparticle separations, particularly of the 5 function
operators, are similar to those obtained in the symmetric
systems pdd, ptt, etc. (Ref. 6). The same is true for the
excited state. In all cases the expectation values of the 5
function operators are much more stable than the degree
of coincidence between different published values. Nev-
ertheless, the inability to include the cusp condition be-
tween the repelling heavy particles if a correlation func-
tion linear in interparticle distances is used, limits the ac-
curacy of the calculations. Calculation of the ddt system
using a generalized nonlinear correlation function f will
be therefore a subject of our future work. In this way the
cusp conditions will be satisfied exactly, and the asymp-
totics of the wave function will be taken into account
simultaneously as well. Such a program has recently
been carried out successfully for the positronium negative
ion [9].
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