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Nuclear polarization in d p and tp atoms and in the dtIJ, molecule
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Deuteron polarization in a dp atom and triton polarization in a tp atom were investigated on the basis

of a three- (four-) body model of the d-p (t-p) system. Virtual excitation of the deuteron and triton is

treated within the second-order perturbation theory. The nuclear polarization energy is obtained as
—9.9 meV for the dp atom and —1.1 meV for the tp atom. We examined the validity of the adiabatic
approximation and the dipole approximation which were employed in the literature calculation of the
deuteron polarization; the approximations were found to be rather poor. Deuteron and triton polariza-
tion potentials were derived and were found to deviate much, in the internal region, from the r -type

potential, which is given by the adiabatic and dipole approximations. With the use of these potentials,
correction to e„due to the nuclear polarization in the dtp molecule at the J =U =1 state was calculated
to be —1.7 meV, which should significantly affect the resonant formation of the state, a key to the muon

catalyzed d -t fusion.

PACS number(s): 36.10.Dr, 21.10.Dr, 21.10.Ft

I. INTRODUCTION

Muon-catalyzed d-t fusion is attracting strong atten-
tion [1] in nuclear physics and atomic or molecular phys-
ics from the viewpoint of the study of the possibility of
energy release in hydrogen isotopes at low temperature
and the study of physically interesting few-body problems
seen in the fusion cycle (a recent review of this subject is
given in Ref. [1]. An essentially important key to the
fusion cycle is the formation of the muonic molecule

(dt's)„ in a very loosely bound excited state with
J =u = 1 (J is the total angular momentum and u is a
quantum number to specify the states with the same J).
Energy of this J =U =1 state, c», is only —660 meV with
respect to the (tie )„-d breakup threshold which lies 2711
eV below the d+t+p three-body breakup threshold.
The rate of formation of the muonic molecule (dt's)„ is

known [2] to depend very sensitively on E». The value of
c.&&= —0.6603 eV obtained by variational calculations
with the nonadiabatic coupled-rearrangement-channel
approach [3,4] was consistent with those obtained by oth-
er approaches [5,6].

However, the Coulomb three-body problem was solved
with the use of the nonrelativistic pure Coulombic poten-
tials among d, t, and p. Since at least the accuracy of 1

meV is required, various corrections to c» should be es-
timated carefully as far as they are of the order of O. l —l

meV. Many authors then investigated the corrections ex-
tensively, such as those due to relativistic effect ( =+1.0
meV) [7—9], effect of finite size of the charge distribution
of nuclei d and t (=+10.4 meV [8,10,11], effect of the

vacuum polarization ( =+ 17.0 meV) [8,10,11], effect of
the nuclear interaction between d and t (=+10 meV

[8,10], effect of the electron screening on the (dt's)» mol-
ecule ( =+0.3 meV) [11],and effect of the deuteron po-
larization by the muon ( = —2.2 meV) [7].

Among these corrections, the last one due to the deute-
ron polarization has been the least investigated. Con-
trary to the other effects, each of which was calculated at
least by two different groups, the effect of deuteron polar-
ization in (dt's)» has been calculated only by Bakalov
[7]. However, his calculation was based on crude approx-
imations. In addition, there is no calculation for the tri-
ton polarization effect. Thus, accurate calculation of the
nuclear polarization effect in the (dtjtt)» molecule is more
desirable from the viewpoint of not only muon-catalyzed
fusion problems but also a precise study of few-body
problems.

Lack of accurate calculation of the nuclear polariza-
tion is due to the difficulty that one has to investigate the
three- and four-body systems, p + n +p and

p +n +n +JLt, and treat the nuclear force and the (atom-
ic) Coulomb force simultaneously. The former force is
strong and short ranged and the latter one is weak and
long ranged. One needs an accurate and tractable
method for this purpose. The Gaussian-basis coupled-
rearrangement-channel variational method is such a
method. It has been developed by Kamimura in the
study of muonic molecules such as (dt's) [3] and by
Karneyama, Fukushima, and Kamirnura for three-
nucleon bound states (t and He) [12]. This method has
been found to be suited for describing both the short-
range correlations due to the nuclear force and the long-
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range behavior due to the Coulomb force.
The purpose of this paper is to apply the Gaussian-

basis coupled-rearrangement-channel method to a precise
study of the nuclear polarization effects in the dp and tIJ,

atoms and in the dt p molecule.
Construction of this paper is as follows. In Sec. II, we

study the effect of deuteron polarization by the muon in
the dp, atom on the basis of the three-body (p+n+p)
model of the d-jM system. %'e calculate the polarization
energy and polarization potential, and examine some ap-
proximations which were employed in the literature stud-
ies of the effect. In Sec. III, we investigate the triton po-
larization effect in the tp atom using the four-body
(p+n+n+p) model of the t psy-stem. In Sec. IU, the
deuteron and triton polarization efFects in the dt's mole-
eu1e are studied. Conc1uding remarks are given in Sec. V.

II. DEUTERON POLARIZATION IN THE dp ATOM

A. Adiabatic and dipole approximation model

In order to discuss the deuteron polarizability in the
(dtp, )ii molecule, we need precise knowledge of deuteron
polarizability in the dp atom and the induced e6'ective
potential between d and p, .

A quantitative calculation of the deuteron polarization
in the dp atom was made by Startsev, Petrun'kin, and
Khomkin [13]. They started with the well-known
second-order perturbation formula for the correction to
the energy of an atomic level no.

l &x, nlrb vlo, n, & l'
b,Eg'(no )=-

N(40), & X 0 ~n nO

where

e 2

hV= — + 0 0
lr —Rnl lr —Rnl

Here, X and n are the quantum numbers, respectively, of
the deuteron and (dp) atomic states (l0) is the deuteron
ground state), E~ and e„are the energies of the states, R
is the radius vector between proton (p) and neutron (n),
and r is the radius vector of the muon with respect to the
c.m. of the p +n system (Fig. 1).

The muon levels no = 1s and 2s were considered. Start-
sev, Petrun'kin, and Khomkin [13] used two approxima-
tions to proceed further; the adiabatic approximation

and the dipole approximation (based on the assumption
R «r)

e (r.R)
2T

(4)

where a is the electric dipole polarizability constant of
deuteron

I & &IR10 & I'

N(%0) N 0
(6)

The effective deuteron polarization potential induced by
the interaction (4) may be written as

2

g"( )=-
8 2~4

In the case of S states for no, however, the correction (5)
diverges due to the integration in the region of r -0, and
introduction of some cutoff is needed. Startsev,
Petrun'kin, and Khomkin introduced a prescription for
the cutoff and obtained b Ed„"= —9. 1 meV for the n~ = ls
state by employing the observed value [14] of a=0.63
fm.

Correction to e„(«p, ) due to the deuteron polarization
by muon in the (dt's) molecular ion was calculated by
Bakalov [7], who referred to the value of bF.d„" = —9. 1

meV. He assumed, instead of Eq. (7), an effective polar-
ization potential between d and p in the form

Vg'(r) =—,ro = 15.8 fm,
2r (r +ra)

where the parameter ro was introduced to avoid the
divergence of Eq. (4) at small distance and to simulate the
Ilr behavior [15] in the intermediate region; ro was so
determined as to reproduce & lslVP'lls) = —9. 1 meV
with no cutoff in the integration. Bakalov then calculat-
ed the deuteron polarization correction, b,e[ («p), to
the energy e, i(dtp) within the first-order perturbation
and obtained

~eH'(«~) =—&p»«V )l Vg'l'p»(«v) &

= —2.2 meV, (9)

These two approximations make Eq. (1) very simple, and
generate

oIEEg„' (no)= —
n~ — n~),

7

g„—c.o &(E~—Eo (3)
where 'P»(dtp) is the wave function [16] of the J=v = 1

state of the dt's molecule.
In the above calculations or anywhere else, validity of

the adiabatic approximation and the dipole approxima-
tion in the dp atom has not been examined; this is due to
the difficulty in the three-body calculation appearing in
Eq. (1).

B. Nonadiabatic three-body model

FIG. 1. Jacobian coordinates of the p +n +p coordinates.
&e neglect spin dependence in the nucleon-nucleon

force. This is because the polarization calculation is very
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tedious with spin-dependent forces, but we consider that
virtual breakup of deuteron can be well studied with the
central potential. The three-body Hamiltonian of the sys-
tem is written as

V~ — V„+v„(R)+V„~ r
2M 2m

(10)

where v„~(R) is the nuclear potential between n and p,
and V„p is the Coulomb potential between p and p with
the proton charge distribution folded. M and m are the
reduced mass associated with the coordinates R and r, re-
spectively. The Hamiltonian is rewritten as

H =H„+H„+V;„,

(H —E))IIJ 0(r, R) =0 . (17)

In order to solve Eq. (17), we expand )pJ 0 in the eigen-
functions of Eqs. (15) and (16):

(H„„—e„L )Q„L(r)=0,
where L is the angular momentum of the n-p system and
that of the p-(np) system, and N and n are used to specify
the eigenstates both for discrete and continuum states,
for the sake of simplicity of expressions. The deuteron
ground state is described by X00(R). Since v„~ is con-
sidered to be spin independent in this work, we do not ex-
plicitly write spin components (spin =1) of X.

We consider a three-body wave function with angular
momentum J =0, q)J 0(r, R), for which the Schrodinger
equation is

with +1=0(r R) g A NL I XNL(R)4 L(r)]J=0
n, N, L

(18)

(12)

eH „=— V2„——
2m " r

r

R e
V =V r —— +int pp 2

(13)

(14)

(Hnp ENL )XNL(R—) =0, (15)

We introduce the eigenfunctions of the Hamiltonians

H„p and H„d.

In order to avoid the di%culty of dealing the infinite
number of continuous basis functions, we approximate
the continuum states, as often done, in the following
manner. We first diagonalize the Hamiltonian H„with a
finite number of L -integrable basis functions and get the
same number of discrete-state wave functions which
stand for bound and discretized (pseudo-) continuum
states. We then regard the finite number of wave func-
tions so-obtained as the XNL in Eq. (18). We similarly
define a finite number of p„L. Use of the Rayleigh-Ritz
variational principle for Eq. (17) leads to the matrix equa-
tions for A„NL..

(~nL+EnJ E) A„NL
—g '( [PnLXNL]J=OI I'

)n) I[fn'LXN L]J 0& An N L
n', N'

(19)

Within the second-order perturbation, we have

AEd„"

e
—p R

vNP(R) =v
piR

2
—p R

V2
P2R

(22)

I & [PnLXNL 1J=Ol V;., I &P „XOO & I

'

(n ; LN)WL(), s;0,0) nL NL ( Is 00 )

~ nNL c„L+ENL —(ci, +Eoo)
(21)

We examined higher-order effects in b,Fg' solving
directly Eq. (19) with L =0 and 1, and found them to be
—10 meV. We therefore discuss below the case of the
second-order perturbation only.

C. Interaction and basis functions

As the nuclear potential vNP (R ), we employ the
Malfliet-Tjon potential [17] which is often used in the
studies of few-nucleon problems:

I
(L) L

—~R /Rl )

ELM(R),
I =1

(23)

P„LM(r) = g b„; r e
i=1

(24)

Here, the range parameters are taken to be geometrical
progressions:

Rr= (25)

The potential parameters are taken as v, =1438.72 MeV,
v2=626. 885 MeV, p~=3. 11 fm ', and p2=1.55 fm
This potential reproduces the deuteron binding energy
and low-energy triplet n-p scattering.

The basis functions XNL and p„L in Eqs. (15) and (16)
are described in terms of Gaussian-tail functions:
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TABLE I. The parameters used in the calculation for the
p+n +p system.

10

L=0
L=1

Imax

30
30

RI
(fm)

0.05
0.2

RI
max

(fm)

20
40

~max

30
30

1.0
3.0

2000
4000

max

(fm) (fm)

10'

~ ~ ~
~ ~ ~
~ ~ ~
~ ~ ~
~ ~ ~
~ ~ ~

~ ~ ~ ~ ~ ~

~ ~ ~ ~ ~ ~ ~
~ ~ ~ ~ ~ ~ ~
~ ~ ~ ~ ~ ~ ~
~ ~ ~ ~ ~ ~ ~
~ ~ ~ all
~ ~ ~ ~ J~ 0
~ ~ ~ ~ ~ ~ ~
~ ~ ~ ~ ~ ~ ~

~ ~
0 ~
~ ~
~ ~
~ ~
~ 0
~ ~
~ ~
~ ~

~ ~
~ ~
~ ~
~ ~
~ ~
~ ~
~ ~

~ ~ ~
~ ~ ~

~ ~ ~

~ y ~

~ ~

r,. =r, a' (26)

Usefulness of this type of basis functions was demonstrat-
ed in the work of the dt's molecule [3] and the three-
nucleon bound states [12].

The parameters used in the following calculation are
listed in Table I.

Use of the parameters reproduces accurately the
ground-state solution of Eq. (15) (cf. Ref. [12]); E„I is

given with an accuracy of the seven significant figures for
n =1-3with the use of the parameter sets of Table I.

In the interaction V„between muon and proton, we
take into account the finite size of the proton charge den-
sity with a Gaussian function with the range of 0.64 fm
(as shown later, this effect cannot be ignored in b,Eg' ).

We note that since the wave functions g's and P's in
Eqs. (23) and (24) are described with the Gaussian func-
tions, the calculation of matrix elements which appear in
the variational calculations can easily be performed. It is
also noted that the dipole approximation for V;„„Eq.(4),
is not taken in our calculation.

D. Numerical results

It was first found that contribution to Eq. (20) from the
excited states with LA1 is less than 10 meV. We
therefore neglect it and take the case of L = 1 alone in the
following investigations. We obtained

b,EP'= —9.9 meVP (27)

by calculating Eq. (20). Contributions of individual terms
(n, N) in Eq. (20) are illustrated in Fig. 2 with the magni-
tude being represented by the area of the circles.

It is clearly seen that dominant contributions come
from the excited states with c„L &

—
c&, =ENL, —Eo0

approximately equal to several MeV. This shows break-
down of the adiabatic approximation E„L—c„
«EEL —Eoo, Eq. (3), which was assumed in the previous
work of Startsev, Petrun'kin, and Khomkin [13]. In the
calculation of Eq. (20), if we neglected the excitation en-

ergy of the (dp) atom (namely, e„L—e„=0), we would
get b,EP~' = —28. 5 meV, which deviates much from our
result of —9.9 meV.

10 '
10 10-' 10' 101 102

(M~v)

10

FIG. 2. Contributions to b,Ef„"= —9.9 meV from the indivi-

dual terms of Eq. (20). The area of the circle is proportional to
the magnitude of each contribution (multiplied by —1). The
largest circle corresponds to a contribution of —0.19 meV.

Also poor is the dipole approximation for V;„„Eq.(4),
which was adopted in Ref. [13]. Namely, calculation of
Eq. (20) with this approximation (but without the adia-
batic approximation) results in EEg' = —12.7 meV. Use
of these two approximations leads to Eq. (5) for BED„',
but Startsev, Petrun'kin, and Khomkin modified it by
taking a cutoff prescription for small r; this gave —9.1

meV, which is close to our result of —9.9 meV. As men-
tioned before, Bakalov [7] also modified Eq. (5) using the
polarization potential (8) instead of (5) so as to fit
b,EP„' = —9. 1 meV of Ref. [13].

In the above calculation, the finite size of the proton
charge density was taken into account. But, if we
neglected the proton size (namely if V„z = —e /r„~ ), we
would obtain EEPd„"= —10.1 meV instead of —9.9 meV
mentioned above. As long as we are interested in the ac-
curacy of 0.1 meV, we cannot neglect the proton finite-
size effect in b,Eg'.

We examined dependence of AEP„' on the number of
basis functions, I,„and i,„, in Eqs. (23) and (24). The
value of AEP~'= —9.9 meV, which was obtained for

max
=

E max
=30, did not change for Imax = l'max 25 and

20. We tried different sets of (R„RI ) and (r„r; ) in
max max

their reasonable ranges, but results did not change
significantly. These tests clarify that the choice of the pa-
rameters in Table I is suitable enough for our purpose.

E. Deuteron polarization potential

We calculated the polarization potential Vg'(r) from
our second-order solution. Definition of the potential is
given by

Vfz'(r)Pt (r)= —g 2 xL, ([P„L(r)gm (R)]J=ol V;„t Igloo(R) )R
n, N, L

(28)
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FIG. 3. Deuteron polarization potentials given by our calcu-
lation (solid curve), by Bakalov [7] (dashed curve), and by the
r approximation (dot-dashed curve).

where A„~L is given by Eq. (21). Note that Eqs. (20) and
(21) result in Eq. (28). Therefore we can write

~EP' =
& y), (r)

I
g„"(r)lyi, (r) & . (29)

Calculated VP~'(r}, which gives AEPd„" = —9.9 meV, is
illustrated in Fig. 3 (multiplied by —1) together with
Bakalov's approximated potential [7], Eq. (8).

Also illustrated is the r potential (the dot-dashed
curve) which is given by the dipole and adiabatic approxi-
mation [see Eqs. (3)—(7)]; this curve is normalized to our
VP~' at r =40 fm. Our potential tends to be proportional
to r for r ~40 fm (much outside the deuteron tail re-
gion), but deviates much from it in the internal region;
this clearly shows the breakdown of the dipole and adia-
batic approximations. At r-0, our potential is propor-
tional to r; this is reasonable because
V;„,= —e (r R/R ) for r «R. Bakalov's potential is
smaller by —50% in magnitude than ours for r ~ 5 fm,
but much larger for r &2 fm (nearly the deuteron size).
This difference in the short-range region is very
significant since 50%%uo of the contribution of Vg (r} to
bEpd„" comes from the region of r = 10 fm. We emphasize
that this calculation of the deuteron polarization poten-
tial is based on the three-body model, and clarifies the er-
ror of the literature approximations.

The polarization potential Vg„(r} will be used in Sec.
IV in the calculation of deuteron polarization effect in the
dt p molecule.

taining the triton three-body wave function in tractable
form so that one can discuss the excitation of triton by
muon-proton interaction. Kameyama, Karnimura, and
Fukushima [12] developed the coupled-rearrangement-
channel method for three-nucleon bound states (t and
He) and obtained very accurate and tractable wave func-

tions for them. In that work, a realistic nucleon-nucleon
force was used, but we consider that such a precise
nucleon-nucleon force is not necessary in the calculation
of triton polarization by muon. We therefore take the
Malfliet-Tjon potential [17], MT-V, in the form of Eq.
(22), but the parameters are taken as v i =1458.05 MeV,
U2=578. 09 MeV, p, =3.11 fm ', and p2=1.55 fm
which are assumed both for n-n and n-p pairs with no
spin dependence. Therefore, spin part is neglected in the
three-body wave function.

Following the prescription of Ref. [12], we calculate
the triton wave function with the above interaction.
Three rearrangement channels (c =1,2, 3) and the Jaco-
bian coordinates are taken as shown in Fig. 4.

We discriminate proton and neutron, and antisym-
metrize the two neutrons. The two neutrons are assumed
to couple to spin =0 and therefore the spatial part is tak-
en to be symmetric between them. The triton wave func-
tion with the total angular momentum L is then expand-
ed in the basis functions of coordinates x and y:

3

@LM X Q A; I i' [4i t (xc )X t'(yc )]LM
c' c' c' c

with

(30)

H, = — P'„— 7 +v(x, )+v(xz)+v(x, ) .

The Schrodinger equation for this system is

(H, EL )@LM =0 .—

The basis functions P;& and y; &
are defined by

(33)

A.",', , = A.',', , for (i, l, i', l', )=(izl2i2l2), (31)
Ii ll 1 l l2 2lg

where I and I' are angular momenta associated with x
and y, respectively, and i and i ' are numbers which speci-
fy the spatial dependence of the basis functions.

The Hamiltonian for triton, H„ is given in the form

III. TRITON POLARIZATION IN THE ER ATOM

A. Triton three-body wave function G=l G=2 G=3

Polarization of triton by muon has not been clarified in
the literature at all. This is because of the difficulty of ob-

FIG. 4. Three rearrangement channels and Jacobian coordi-
nates of the p +n +n system.
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(x /x. ))=x e '
YI (x) (34)

2

V;„,=V„+
r

(40)

and
—[3/3; ]2

7 'I' (35)

and the radial parameters are taken to be geometrical
progressions,

where r is the muon position vector with respect to the
c.m. of triton, and V „is the Coulomb potential between

proton and muon with the proton charge distribution
folded. Basis functions for muon orbits are given by the
solution of the equation

(36) (H,„e„,—)P„, (r)=0 . (41)

and Similar to the case of the dp, atom in Sec. II, P„i is ex-

panded in terms of Gaussian basis functions [cf. Eq. (24)]:

p'=3' a i'=1 to im,„. (37) —(r/r )(r)=g C„;r'e '
YI (r) (42)

B. Triton polarization

The total Hamiltonian for the t +p system is given by

H Ht +H]P + VIFIt

with

(38)

e
H, = — V„—

2m r
(39)

As done in Ref. [12], the eigenenergy and the expansion
coeiFtcients of Eq. (31) are to be determined by the
Rayleigh-Ritz variational principle.

As far as the Malfliet-Tjon potential is used, we found
that the ground state is well described by the I =l'=0
components alone for the three rearrangement channels.
Energy of the ground state is obtained as Eo= —8.2423
MeV, which agrees with the value in the literature ob-
tained with the same interaction; the observed energy is
—8.482 MeV. The Gaussian radial parameters employed
are listed in Table II(a); the number of the total basis
functions is 200.

As for the I.=1 excited states, we took the case with
(l, l')=(0, 1) for all three channels and (l, l')=(1,0) for
channels 1 and 2. The radial parameters used are shown
in Table II(b); the number of the total basis functions is
360. We thus obtained 360 energies, E&L „above the
breakup threshold which stand for the energies of discre-
tized continuum states, 4&L &. We have examined
several other choices of the parameter sets, but found no
significant change in the final result shown below.

with

r;=r, a„' ', i =1 to i (43)

The Gaussian range parameters employed for I =0 and 1

are listed in Table III.
The triton polarization energy is calculated within

second-order perturbation theory in the same manner as
in Sec. II. The energy is given by the expression

gg po1

ENL =1 ~nl = 1 Eoo C&s

AEt„"=—1.1 meV . (45)

This is 1 order of magnitude smaller than the deuteron
polarization efFect, AEP'= —9.9 meV, which is reason-
able because triton is much harder to excite than deute-
ron is; note their binding energies, —2.22 MeV for d and
—8.48 MeV for t.

Contributions of individual terms in Eq. (44) with
(n, N) for muon and triton excitations are illustrated in
Fig. 5.

This is to be compared with the same illustration (Fig.

(44)

Since we take Gaussian basis functions, all the integra-
tions appearing in Eq. (44) can be performed analytically,
although the results are not shown here explicitly.

The calculation results

TABLE II. The parameters used in the calculation for the p + n +n system: Gaussian radial param-
eters for (a) L =0+ and (b) L = 1

1+2
3

~max

10
10

(fm)

(a) L=O
0.1

0.1

X;
max

(fm)

12.0
12.0

~ I
~ max

10
10

3'1

(fm)

0.5
0.5

I

max

(fm)

8.0
8.0

1+2
3

1+2

12
12
12

(b) L =1
0.3
0.3
0.3

16.0
16.0
16.0

10
10
10

0.6
0.6
0.6

12.0
12.0
12.0
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TABLE III. Gaussian range parameters for I =0 and 1 of the
tp system.

& 10' ~ max r, (fm) "n
max

(fm)

i I I i i i

~ ~ ~
I =0
1=1

30
30

1.25
2.0

1800
3000

10o

1O-' 1O' 10

('.v[eV)

FIG. 5. Contributions to AE,„"= —1.1 meV from the indivi-
dual terms of Eq. (44). The area of the circle is proportional to
the magnitude of each contribution (multiplied by —1). The
largest circle corresponds to a contribution of —0.02 meV.

than VP„'. Similar to the deuteron case, we see that
VP„'(r) deviates very much from the r dependence in
the short-range region (r S 10 fm). However, the degree
of the deviation is smaller than in the case of deuteron;
this is due to the difficulty of excitation of triton com-
pared with deuteron.

The polarization potential VP„"(r) will be used in Sec.
IV in the calculation of the triton polarization effect in
the dt p molecule.

2) for the dp atom. We find that dominant contributions
come from the state (n, N) with e„L,—e„=1 —50 MeV
and E~L,—E00=10-20 MeV. This shows breakdown
of the adiabatic approximation c.„L &

—c.„
«EzL &

—Eoo. If we assumed this in the calculation of
Eq. (44), then we would have b,E,„"= —2. 9 meV, which
is much different from the correct value —1.1 meV.

The triton polarization potential induced by muon,
Vf„"(r), is calculated in the same manner as in Sec. II for
the deuteron polarization potential. The result is shown
in Fig. 6 (multiplied by —1) together with the r depen-
dent behavior which is given under the dipole and adia-
batic approximations; this figure is to be compared with
Fig. 3 for the deuteron polarization potential. It is
reasonable that V,„" is an order of magnitude smaller

IV. DEUTERON AND TRITON POLARIZATION
EFFECTS IN THE dtR MOLECULE

In this section we calculate the correction to the ener-

gy, c.», of the J= U = 1 state of the

dt's

molecule induced

by these effects of deuteron and triton polarization.
The deuteron polarization energy in the (dtp)» mole-

cule, b, eP(d), is calculated with the first-order perturba-
tion by

bP, "(dtp) = ( VJ, ,(dtp)I Vp„'
I
ipJ, , (dtp) ),

(46)

and the triton polarization correction is given by

bP, '"(dtp)=(+~, ,(dtp)IV(„"IVI „,(dtp)) .

(47)

yPOL(r)

(Mev)
l

yp
2

The sum of the corrections should be measured with

respect to the (tp)„dthreshold energ-y which is also
corrected by be„"= —1. 1 meV for the (tp)„atom;
namely, the total correction, be i'i'(dtp), due to the nu-

clear polarization is given by

bP, (dtp)= bcPi ""(dtp)+bcPi '"(dtp) bE,„" . (48)—

10

In order to perform the integrations in Eqs. (46), we

first transform the density I %J=, ,(dtp)I onto the Jaco-
bi coordinates of the (dp) tchannel; namely, on-to the
coordinates rz and Rz of Fig. 7. Then, we make the in-

tegration over Rz on which the potential VJ„(rz) is in-

dependent. We reach the expression

bcP„"""(dtp)=fp„(r )VP~'(r )dr (49)

with

yo
—6 p»(rz)= f I%I=„ i(dtp)l dR~ . (50)

20 30
r (fm)

Similar procedure is also made for hc. , ', ""(dtp); we have

FIG. 6. Triton polarization potentials given by our calcula-
tion (solid curve) and by the r approximation (dot-dashed
curve).

bePi '"(dtp)= fp»(ri)V~„"(r, )dr,

with

(51)



46 NUCLEAR POLARIZATION IN dR AND tR ATOMS AND IN. . . 6901

V. SUMMARY

c=l

FIG. 7. Three rearrangement channels of the dt's system and
their Jacobian coordinates.

p, )(r()=f ~+J, )(dt's)~ dR) . (52)

The density functions p&~(r, ) and p&&(r2) were explicit-
ly given in Ref. [8]. Using them, we calculated Eqs. (49)
and (51) and obtained

b,sf '(dry) = —1.7 meV . (53)

It is interesting that the following approximate estima-
tion is very accurate and useful to understand this result.
In the short-range region up to about 50 fm, the ratio of
the density function p& &

to the 1s density of the respective
muonic atom in free space is nearly constant: namely,

p&&(r&)/pf", (r, )=0.80 (r& ~50 fm),

p»(rz)/p&, "(r2)=0.20 (r2 50 fm) .

(54)

(55)

Furthermore, as seen in Figs. 3 and 6, Vf&'(r&) and
VP'(rz) are negligibly small for r ~ 50 fm. We can then
estimate b,

sP'(dry�

}with the relation

As/&'(dt}u) =0.80bEf„"+0 20k Eg.
' DE(„"—

=0.206.EP' —0.206E~"

=0.20X( —9.9 rneV} —0.20X( —1. 1 meV)

= —1.7 meV . (56)

This is the same as the value of Eq. (53) which is obtained
by accurate integrations of Eqs. (49) and (51).

In the literature, the nuclear polarization effect in the
(dt's)„molecule was calculated only by Bakalov [7]. He
estimated the deuteron polarization correction but not
the triton one. In his calculation he took an approximate
deuteron polarization potential which is based on the di-
pole approximation for the muon interaction and the adi-
abatic approximation for the muon excitation energy.
The (dt's)» wave function he employed is the one given
by Ref. [16],but it is less accurate than the wave function
we took here from Ref. [3]. As discussed in Secs. II and
III, the two approximations are rather poor. Bakalov
gave b, s'f&' "(dry, )= —2.2 meV, which agrees well with
our result of As(&' "(dt's)=0. 20X( —9.9 meV)= —2.0
meV. We understand from the above discussion, howev-
er, that this agreement is rather fortuitous.

One of the keys to the muon-catalyzed d-t fusion is the
formation of the muonic molecule (dtp) in a very loosely
bound state with J=U =1, and the formation rate is
known to depend sharply on the energy of the state, c.&~.

Three-body calculation of the energy with the nonrela-
tivistic pure Coulombic potentials gave [3] as
c.&&= —660.3 meV. Since accuracy of the energy was re-
quired for at least 0.1-1 meV, various corrections to c»
needed to be estimated carefully. Many authors investi-
gated them, but the deuteron polarization in the (dt's)
molecule was calculated only in a crude approximation
[7], and no calculation has been done for the triton polar-
ization.

In this paper we have developed a three- (four-) body-
model calculation for the d-p (t-p) system and applied it
to the precise calculation of nuclear polarization effects in
the (dp) and (tp) atoms and in the (dtp) molecule. We
calculated the wave functions of deuteron and triton
ground states (J=0) and those of continuum-discretized
excited states (so-called pseudostates) with J =1. The en-
ergy of deuteron and triton polarization, b,Eg' and
hE,~„", respectively, were calculated within the second-
order perturbation theory.

As for the deuteron polarization, we obtained
EEP„'=—9.9 meV, and found (Fig. 2) that dominant
contributions to it come from the virtual excitation of
deuteron internal motion and muon orbital motion both
into their J= 1 continuum states whose excitation energy
is several MeV for each. This clearly shows the break-
down of the adiabatic approximation which was em-
ployed in the literature calculations; use of the adiabatic
approximation (without the dipole approximation) would
give DER„"= —28. 5 meV. We also found that the dipole
approximation is not good; use of the approximation
(without the adiabatic approximation) would result in
PEP„'= —12.7 meV. Using both approximations simul-
taneously, Startsev, Petrun'kin, and Khomkin [13] gave
AEP„' = —9. 1 meV, but this agreement with our result of—9.9 meV is understood as accidental. We derived the
deuteron polarization potential, VP„'(r), induced by the
muon-proton interaction in the dp atom. It was found
(Fig. 3) that the r -type potential derived from the di-
pole and the adiabatic approximations deviates much
from our result in the internal region.

We calculated the triton polarization by muon in the
tp atom, for the first time, within the same manner as for
the deuteron polarization, and obtained the polarization
energy of AE,„"= —1.1 meV. This is an order of magni-
tude smaller than the deuteron polarization effect but it is
reasonable because of the large difference in the binding
energies of d and t. Similar to the deuteron case, we
found that the adiabatic approximation does not work
(Fig. 6} and use of it would give b,Ef„'= —2. 9 meV. The
triton polarization potential induced by muon, V~„"(r),
deviates significantly from the r dependence but ap-
proaches the r behavior much faster than Vg„"(r) does;
this is reasonable because the effect of the triton excita-
tion is much weaker than that of the deuteron excitation.

With the use of the polarization potentials Vdd„"(r) and
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Vf„"(r), we finally calculated the correction to the energy
c„ofthe I= v = 1 state of the

dt's

molecule due to the
nuclear polarization and obtained it as b e, &'(dtp) = —1.7
meV, to which contribution of the deuteron polarization
is —2.0 meV. The nuclear polarization in the dt's mole-
cule should significantly affect the resonant formation of
the molecule.
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