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Applications of the unitary-group approach to variational calculations in many-electron atoms
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We present methods for utilizing the unitary-group approach to many-electron systems as a basis for
performing variational calculations using Hylleraas coordinates. We discuss the construction of wave
functions and evaluation of operator matrix elements for both spin-independent and spin-dependent in-
teraction types.
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I. INTRODUCTION

Until recently, high-precision variational calculations
for many-electron atoms have been quite difficult to per-
form [1—5]. In the cases of helium and lithiumlike ions,
Drake and co-workers [6—8] have produced accurate re-
sults using trial wave functions, expressed in terms of
Hylleraas coordinates, and the technique of multiple
basis sets, defined by multiple sets of exponential pararne-
ters associated with a single spin function. Their ap-
proach constitutes a hybrid of pure Hylleraas and other
techniques, such as superposition of correlated
configuration methods [7].

The motivation behind the approach of Drake and co-
workers is to avoid severe numeric problems associated
with the linear dependence that arises in methods utiliz-
ing single sets of exponential parameters for each spin
function [9]. What is appealing about this approach is
that the number of sets of exponential parameters is rela-
tively small, convergence of calculations is improved over
previous methods, and a consistent physical interpreta-
tion based on core and valence orbitals is obtained.

Our purpose in this work is to present a generalization
of the above techniques to many-electron ions in the con-
text of the unitary group approach [10—14] (UGA). In
this regard the UGA affords a consistent scheme whereby
a substantial portion of the computational effort is made
efficient.

In Sec. II, we present the basic theory involving
definition of states in the UGA scheme and calculation of
matrix elements. We study a many-electron Hamiltonian
that includes both spin-independent and spin-dependent
interaction terms. In the remaining Secs. III and IV, we
deal with these successively.

II. BASIC THEORY

We assume from the outset that many-electron trial
wave functions are represented by Weyl-Young tableaux
(WYT's), which incorporate orbital functions dependent
on the electronic and interelectronic coordinates. Thus,
ro; and so; describe the position and spin vectors, respec-

tively, for the ith electron, while r; =ra; —ro. describes
the radial vector between the ith and jth electrons. In
general, the orbital part of the electronic wave function is
expressed as a linear combination of products of func-
tions of radial coordinates, ro; and r;, and spherical har-
monics, Y|IJ) = Yt (8,$ }, with / and rrt the angular-

l

momentum eigenvalues.
Many-electron basis states are constructed in the uni-

tary group approach (UGA) by correlating the spin and
orbital single-electron wave functions according to the
product group of space and spin, U(2n)lU(n)XSU(2),
where n is the number of orbitals (n =21+I for pure
configurations), and also the unitary group chain
U(n)DU(n —1}D DU(1). The latter point assures
that a coupling chain ordering (genealogy) is consistently
observed and uniquely labeled; namely, that states of
U(n') involve only those single-electron wave functions
whose m ) I + 1 —n ', when n

' (n, and they are symmetry
adapted to states of intermediate total spin. We note that
the construction of states results in a product of conju-
gate tableaux; we shall suppress the spin tableau hence-
forth.

Thus, Tzs II ~I refers to a two-column WYT with
(N+2S)/2 boxes in the first column and (N —2S)/2
boxes in the second column. The labels in the boxes cor-
respond to I and m, and are strictly nondecreasing across
the rows and increasing down the columns.

Consideration of the orbital tableau shows that each
box carries a set of labels including single-electron wave-
function angular-momentum labels I and m; the enumera-
tion index i =1, . . . , N, which states the order in which
the box was added to the tableau following the group
chain hierarchy; the intermediate spin (the number of un-
matched boxes in the first column, divided by 2); and, as
required, the So eigenvalue M, or other spatial symmetry
labels. Not all of these labels need be stated explicitly.

The enumeration labels are particularly important in
the current context. A tableau TNs is simply a short-
hand notation for a Young operator, corresponding to an
irreproducible representation [N/2 S,2S, n N/2 S]— — —
of the symmetric group SN applied to a set of enumera-
tion labels. The orbital Young operator Ytt(T) acts on
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+Ã, S ]I m] ]v ]p„] ]a ]] P g q32 N, S,(l m) (@q p. ,a
q =0 JL/

where

N —1 N n,"
4q 32 P P 1j exp( aq~j r J

)—
i =0 j=i+1

(2)

The tableau T(4) is defined as

the labels in the tableau boxes by performing antisym-
metrization (denoted by [ ]) on all enumeration indices in
the same column, and symmetrization [denoted by ( )] on
all indices in the same row.

Trial wave functions are constructed as linear com-
binations of orbital functions, represented in part by the
orbital WYT multiplied by the conjugate spin tableau.
Hence

N= Y (T). P Y, (0„,$„)4 ]„]] ]
. . (3)

k=1

It should be noted that Yz acts only on the coordinates,
and not on other indexed quantities. The coefficients

Cq p are to be determined through iteration as part of
q.pq

the variational optimization of the energy when diagonal-
izing the Hamiltonian. Finally, the index v refers to the
number of sets of exponential parameters [a ], while

[p, ] refers to the tuple of N(N —1)/2 non-negative in-

teger powers nq/J.
For example, we consider the case of three p electrons

with total spin S=
—,'. Assigning tableau labels 1, 2, and 3

to the respective mt values 1, 0, and —1, the WYT 2
' is

written explicitly, in accordance with (3), in terms of the
orbital Young operator Yz, assuming a single set of pa-
rameters, as

3(m, n,a)g, ~g(rr2r3r]2r]3r23eY)OY)~Y)1 2 —Y ((12}1133)( 1 2 3 12 13 23 1 I 2 2 3 3 12"12 13 13 23 23 [3] [2] [1]1 (4)

The primary labels on the left-side tableau are the mI re-
lated labels, the subscripts are the enumeration indices,
and (m, n, a) refer to the entire sets of powers and ex-
ponent indices appearing on the right side.

In this case, the Young operator YR(1,2), [1,3]) per-
forms symmetrization of indices 1 and 2 and antisym-
metrization of indices 1 and 3. Using the permutation
operators e;, which juxtapose enumeration indices i and j
on the coordinates only, the Young operator in (4) can be
expressed as the product of projectors,

Y((1,2), [1,3])=C(1 —e» )(1+e, 2 ),

where C is a normalization factor. These projectors are
applied in the same order in which boxes are coupled to
the intermediate tableau states.

The orbital part is expanded using the Young operator
acting on a product of orbital components stated in
normal-order form. The form chosen is that suggested by
the tableau itself; thus the spherical harmonics are ar-
ranged so that the m values are nonincreasing from right
to left. The symmetric (antisymmetric) permutations cor-
responding to the positions of labels in the same row
(column) are applied to the normal form. Expanding (4),
we obtain

1 1 Cq) [ [ 1+p 12' 312e 12 12 312 312
]YI3]Y I2] YI1]

313$ 213 13 13 213 213 1 1+ 3 12$ 312 12 32 312 132 3 Y(3]Y(2]Y(1] 1 (6)

where we have defined

p; =r;/rj, A,;k=r; /rk

~ij i rJ, 5/'Jk ij r/k

PiJ / J /Jk /J /k

Aij ai aj ijk aij ik

(7a)

(7b)

(7c)

(7d)

From (6) we can deduce the effect of different relative
length scales and also different values of exponents. It
has been customary [15—18], heretofore, to set a,"—=0 for
i &0, hence B,- k =0 in all cases. In a single-basis-set ap-
proach, one finds that A,2=0. Finally, if we consider r,
and r2 to be nearly equal (core orbitals) while r3 to be
much larger (valence orbital), then it follows that the
second product of spherical harmonics predominates

I

over the first in determining the wave function; physical-

ly, this can be interpreted that the valence p electron cou-
ples to a triplet p P state. For each such set of relative
distances r,-, a different set of a; is assumed, with a
different physical interpretation for each. It is precisely
this type of analysis that is used to justify the multiple-
basis-set approach of Drake and co-workers [6—8]. Thus,
the labeling of the WYT simultaneously accounts for the
correlation of the spins, the genealogy of the orbital func-

tions, and the permutation symmetry with respect to in-

terchange of particle indices.
Next comes the evaluation of operator matrix ele-

ments. There are two issues involved: first, the effect of
an operator on the order of spin coupling, and second,
the evaluation of the orbital integrals.

The representation of operators in terms of the U(n)
generators, F., - and their products, has been dealt with by
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various authors [10—14]. Those results, however, pertain
only to the evaluation of the matrix elements of the gen-
erators, and they do not address the issue of orbital in-
tegrals. We note that the generators play two roles. The
first is they act in the spin space to decouple and recouple
an electron in the spin chain; the second is they act as
permutations e," in the orbital space.

We note that it is often assumed that the orbital in-
tegrals that arise reduce to one- or two-electron integrals;
the integrations over remaining orbitals are obviated by
orthonorrnality considerations. While this is so when the
tableau basis is adapted to particular symmetries (for ex-
ample, I.S adaptation), it is not always the case. For an
¹lectron system, there arise ¹lectron integrals in gen-
eral. As seen from (3), matrix elements that arise in the
tableau basis require the evaluation of a number of in-

tegrals, the actual number being defined by the number of
permutations implied by the tableau labeling. What is
sought, therefore, are efficient methods for evaluating
these integrals.

Recently, Fromm and Hill [19] developed a method
that uses radial and angular generating functions to
bypass the need to perform repeated explicit integrations
over all spatial variables. Although their results are re-
stricted to three-electron cases (and, in limiting cases,
two-electron integrals and two-center two-electron
molecular integrals), current work by the present authors
[20] suggests that their approach can be extended to
four-electron integrals, and perhaps beyond.

The method of Fromm and Hill starts with the use of
variational trial wave functions of the form

N

p =$0+ g ~r rile J
i &j=2

where 1(t0 and p;J are finite sums of products of single-
particle functions. For atoms the appropriate choice is
Slater-type orbitals, which simplify problems associated
with the electron-nucleus cusp behavior [21].

Fromm and Hill obtain the analytic form for the in-
tegral of the generating function,

N

I([a;,j)=f g r,,
'

i (j=l

3 3

+X X ~

j=0 k =0

(j)
Yk

where the functions u and v are defined as

~ 1
u (z) =Li2(z) —Li2 (12a)

1 —z
v(z) =—'Li22 2

—
—,
' Li2

1+z
2

1 —z, 2 1+z
4 2 4

(12b}

and where Li2(z) is the dilogarithm function [26,27]
defined as

Li2(z) = —f d g .
~ ln(1 —g) (13)

The P1kj' are defined as

a —y(J)
gj) k

k + (J)

Xk
(j)

(j)
Yk

(14)

The quantities 0. and y'kj' are homogeneous sixth- and
third-degree polynomials, respectively, in the a' s. We
refer the reader to Sec. IIA of Ref. [19) for complete
definitions. For purposes of comparison, in the case of
two-electron systems, the integrals reduce to

the more complicated integral representing, say, an
operator matrix element.

One important feature of the Fromm-Hill approach is
that integration is to be replaced by differentiation over
certain variables that are determined by the physics of
the problem.

The analytic form of the Fromm-Hill three-electron
generating integral is defined as

I( [a j ) = g u (P' 'P'~')16m

CT

N

Xexp — g a,"r," g(d r0, ), (9)

16m
01 02 12)

01+ 02)( 01+ 12 ( 02+a12
(15)

J([n; a,, j)=f g r,,'
i (j=1

N N

Xexp — g a; r; g(d r0;)

a
Ba;j

n. .
CJ

(10)

where, at the last step, differentiation is used to obtain

where the a," are the (physically relevant) parameters to
be determined. Using I ( [a; j ), one may express integrals
of the form

Differentiation of expressions (11) or (15) can be per-
forrned efficiently by computer. A caveat is in order,
however. Owing to the structure of (11},individual terms
may possess singularities; hence it is necessary to have an
understanding of the behavior of the generating functions
in order to avoid problems arising from this. Notwith-
standing, since numerical differentiation is more accurate
than integration, it is expected that results obtained for
integrals, such as (10), using this approach will be easier
to obtain and more numerically reliable than with other
approaches.

The increase in algebraic complexity in going from
two- to three-electron generating integrals suggests that
higher-order cases may be intractable with respect to an-
alytic solution. Preliminary studies [20] indicate that
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solution of the four-electron integrals involve elliptic and
hyperelliptic functions [25] as well as the generalized po-
lylogarithm [26,27]. Although analytic solutions are con-
sidered highly desirable, however, they are not required
for the sake of accurate computations. If the generat-
ing integrals can be computed numerically, then
differentiation in the manner prescribed above can still be
performed.

Following Fromm and Hill (cf. Sec. III G of Ref. [19]),
the treatment of more general X-electron integrals that
contain factors involving spherical harmonics, such as

I
"o It ((9o. 0o ) (16)j j

can be reduced to the form (9) by averaging over orienta-
tions of the coordinate system. Such cases arise in this
treatment owing to the inclusion of spherical harmonics
in the basic definition of states. By contrast, calculations
of ground-state energies involving S states only [8] do not
contain this di%culty.

Using the addition relations for spherical harmonics,
we find

(8,$)I'( (6j,p)

III. SPIN-INDEPENDENT INTERACTIONS

Hs, =g —— + +
2 g», . roi ar„

2Z

roi

(ro; +r~l ro/ )ol I1 oj

r 1 dr~ rOI' rij

a2

dro, dr, z

—2(V; roj) +y 1 8 1

LJ IJ IJ

(19)

where the angular-momentum operator, in the UGA
scheme, is expressed as the product of two first-rank ten-
sors and has the form [10,14]

L = L,'L',—L', L—', +LoLo,

with

(20)

For the spin-independent terms in the Hamiltonian,
the tableaux are eigenstates of total spin S. Including nu-
clear attraction and electronic repulsion terms, the Ham-
iltonian can be written symbolically as

(2l'+ 1)(2l + 1)(2L + 1)

L, M 4'lT

' 1/2

l' l J l'lL
m' m M o o o ~~M'8&) (17)

n

Lz = g (I, IIL IIl; ) Vz(i, j), A. = —1,0, 1 (21)
i j =1

where (lIILIIl ) =[1(1+1)(2l+I)/3]'~ . The unit irre-
ducible tensor V$(j,k) is expressed

~=~cF +~ -.+Hso +Hss (18)

In the following sections we discuss, first, spin-
independent terms, and second, spin-dependent terms.

for each bra and ket Yl pair. Choosing, say, r, as the z
axis and applying the rotation operators D' "(a,f3, y ), we
can express the angular dependence of all YL M's in terms
of relative direction 8, ,$; alone. Recently, Kent,
Schlesinger, and Drake [22—24] developed methods for
dealing with many-electron operator matrix elements us-
ing L adaption. In this approach, they reduced the prod-
ucts of Yl 's to a finite sum of terms involving products
of 6-j and 12-j symbols.

In order to illustrate the above approach in the
remainder of the paper, we shall consider the Hamiltoni-
an

q 1

J
—m' X m

E . (22)
k

The L operators have the effect that, when they are ap-
plied to a given tableau state, they change the value of
ml. Since, in general, this produces a state with non-
standard ordering of orbital labels, this state is expressed
as a linear combination of other tableaux, that is,
different spin-coupling chains. The utility of the genera-
tors is that their matrix elements account for the reorder-
ing of the spin-coupling chain.

The vector operator r,. and gradient operator V; act
only on the spherical harmonics that arise in the expres-
sion of the ith electron's wave function when using the
central-field approximation. These operators are expres-
sible in the forms

and

r;=r, g( —1)' ' ' —
1,+1,+I

m, q

V;= g( —1)' ' 'l, +l, +I
r-i m, q

mi

—m,

1 l' l,

5., . .+(i, +1)QI,
q m '. l'. , l, +1 —m, -

1 I' li

5., . .+(i, +1)+l,
q m '. l. , l,. +1 —m,.

1 l'
~ ~(, l -1 EJ'

mJ

1 l'-

q m.

(23)

(24)

respectively, where e (q = 1,0, —1) are R(3) unit vectors.
Drake and Schlesinger [10] showed that two-body

operators, such as the interelectron potential g = 1/r, -,

can be expressed in the UGA scheme in terms of linear

combinations of two U(n) generator products, namely,

g= &i m i,'m, 'Ig li„m, &, m, &E(qE~~

+ ( lj'm 'i,'m, 'IgI 1& m & 1~m~ )E,&E~z, (25)
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where, for example,

(zjlglkI)= f Y,' .Y;, .gY,„„Y,
J J

q Ip' I Ia'
I q Iim I, Ia

N
X g Y, Y1 gd r

pWij k I ~ & p=1
(26)

These operators act on two electrons, whose states are la-
beled i and j, which are transformed to states k and I.
Since these respective states may occupy different spin-
chain positions in the tableau states, the role of the
generator-product matrix elements is to represent the
overlap contributions from the spin recouplings in the
respective parent tableaux.

Similarly, matrix elements of operators like the gra-
dient, usually in combination (scalar or tensor product)
with another operator [22] (e.g., V; rj or V; V ), as well

as r;J', can produce changes in the relative ordering of
single-particle states in given tableaux. These cases can
also be represented as operators in the VGA scheme, as

I

for the g, operator above. Such operators act only on
the radial parts of wave functions; however, they produce
configuration mixing and require the use of mixed-
configuration representations of tableaux [14],therefore.

All operator matrix elements separate into spin and or-
bital parts, the first handled by U(n) generator matrix ele-

ments and the second by means of the Fromm-Hill tech-
niques. One important aspect of these calculations is that
only one or two terms of the linear combination (3) in-

duced by the Young operator survive, owing to ortho-
gonality considerations.

IV. SPIN-DEPENDENT INTERACTIONS

Spin-dependent terms in the Hamiltonian break the S
symmetry, ' nevertheless, the UGA is still a powerful
scheme for evaluating matrix elements. For light atoms,
perturbative calculations result in energy shifts due to
spin-orbit and spin-spin interactions, while in heavier
atoms, states can be defined which are linear combina-
tions of spin-adapted tableaux.

In the case of spin-orbit type interactions, we write

N

y g„I,.S.=( 1)»™&
ij =1 2

Xgg,"
l,j =1

SN

SN+ 1

—m —
A, m,

I SN 1 SN

—M~ A, M1v

X(E, z+1Ezv+1 1+ ,'E,J), —. (27)

2

Hss(i, j)= 3 [s; s~
—3(s; r; )(s .r,")/r, ]. "

lJ

(28)

The first term is the zeroth-order component of the
I

where g;~ =(u )go;~/r J. The spin-own-orbit interaction
includes all terms for which i =j; remaining terms
comprise the spin-other-orbit interactions.

Both spin-orbit operators involve matrix elements be-
tween states of either the same or different total spin, as
well as possible configuration mixing. Matrix elements
calculated using UGA require the embedding of bra and
ket tableau states in a higher-order group U(n + 1) in or-
der to utilize the generators E; N+1 and EN+, ;, which
are not defined in U(n) In the .case of Weyl-Young-
tableau representations of states, this is equivalent to add-
ing one extra box labeled n +1 to the bra and ket ta-
bleaux [10,28], so that the total spin of the modified states
is S1v+1=(S1Ii+Sx)/2.

The spin-spin interactions are represented as the scalar
product of two second-rank tensors, Rz(r, , r ) and

Sz(s;,s. ). The interaction is expressed as

I

second-rank spin tensor, which in turn is proportional to
the scalar product of rank-1 spin tensors; this term yields

only matrix elements diagonal in total spin [U(n) irreduc-
ible representations]. These can be calculated easily in
terms of diagonal (number) generators [2], E;, .

The remaining term involves the other components of
the tensor product. In the UGA scheme, Kent, Schles-
inger, and Shavitt [29,30] determined that the sum of spin
tensors, up to rank 2, can be expressed as a sum of terms
involving products of four generators,

2

g (2K+1)llSx(1J )lln+2 Ei, n+1E„+1;EJn+zE„+z J
K=0

+
2 ii En+1,n+1Ej,n+2 n+2j

+ 2Ei n+1En+1 ] JJ n+2 n+2

1+ 4E;;EJJE„+,n+, E„+
(29)

The reduced-matrix elements of S2 are expressed symboli-
cally as

X

1

2

SN+1

I

l[S' + llS + ][S' ]

S SN+1 1 SN+
N+1 N+2 N j —1

1 S 2 S D,D, g B. , C g B, , C, ,
I (2) (4) (4) (4) (2) (2)

2

1 1
t =j+1 t =i+1

(30)
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where [S]=2S+1. The D'~', 8'~', and C'~' quantities
above represent various Racah (6-j) symbols (g =2) and
Fano (9-j) coefficients (Q=4), together with multiplying
factors, which derive from intermediate two-electron and
four-electron couplings; all factors are defined in Ref.
[30].

The remaining part of the scalar product, Rz(r, , rI), is
expressed as

R2 (r;, r )= Sm

5

1/2
a

3 Y2 (r~),
V

(31)

which can be evaluated using

(I m ]Y2 ~1 mj ) =Q[l'][ll]( —1)'

I,
' 2 1 I,' 2 I

—m,
'

m m
. (32)

As in the case of spin-orbit interaction, spin-spin
operator matrix elements calculated using UGA also in-
volve mixing states of differing total spin. Spins of the
respective bra and ket irreducible representation may
differ by 0, 1, or 2. In order to utilize the generators to
express the spin tensors, however, one requires the
embedding of each U(n) state in either U(n + 1) or
U(n +2), equivalent to adding one or two boxes to each
bra and ket tableau. From the expression for matrix ele-
ments of Yz, it is also clear that the spin-spin interaction
connects states in which 1 —Ij is zero or an even integer.
Thus, Hss is also, in general, a configuration-mixing in-

teraction. As in the cases of spin-independent matrix ele-
ments, only one or two terms of the linear combination
(3) induced by the Young operator survive, owing to
orthogonality considerations.

U. CONCLUSION

%e have presented an approach whereby techniques
for utilizing Hylleraas coordinates and multiple basis sets
in the construction of basis states and operators and the
evaluation of matrix elements are formulated in the con-
text of the unitary-group approach. Heretofore, unitary-
group techniques have been found to be particularly use-
ful in configuration-interaction calculations [31]. More
recently, interest has developed in using the approach in
nuclear magnetic resonance studies [32—34].

It is shown that utilizing these powerful techniques fa-
cilitates the extension of methods by Drake and co-
workers [6—8] from cases of two or three electrons to the
more challenging cases of many-electron systems. What
is presently required is the explicit extension of the
methods by Fromm and Hill in evaluating radial generat-
ing integrals to four-electron systems and beyond. %'e

are presently attempting such an extension.
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