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Quantum deformations of the discrete nonlinear Schrodinger equation
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A quantum system with the Hamiltonian and commutation relations depending on a deformation pa-
rameter e is introduced. When e=O the system reduces to the quantum Ablowitz-Ladik (QAL) equa-
tion, for e= y/3 it represents a quantum discrete nonlinear Schrodinger (QDNLS) system, and for e =y
the system reduces to the usual QDNLS equation. We show that the energy levels of this system can be
continuously deformed into the corresponding ones of the QAL and QDNLS equations. The physical
significance of this system is also discussed.

PACS number(s): 03.65.Ge, 03.70.+k, 11.10.Lm

There are two simple discrete versions of the nonlinear
Schrodinger equation: the discrete nonlinear Schrodinger
(DNLS) equation

i A, + A, ,
—2 A, + A, , +y ~ A,. ~

'
A,. —co,. A,. =0,

which preserves the standard norm [1], and the
Ablowitz-Ladik (AL) system [2]

t'A, +A;+, —2A;+A;, +(y/2)~A;~ (A;+, +A; ))

—coA =0
I l 7 (2)

which is completely integrable by the inverse scattering
method [3]. The quantum problem of these two systems
can be solved by different methods, which are based upon
different properties of these equations. The AL system
can be solved by the quantum inverse scattering method
(QISM) [4—6], which is based on the complete integrabili-
ty of the classical system. On the contrary, the QISM is
of no use in the solution of the quantum DNLS (QDNLS)
equation since this equation, except for two degrees of
freedom, is not integrable. To solve the quantum prob-
lem of the DNLS equation, one can use an alternate
method, which is based upon the conservation of the
standard norm. This leads to the existence of an invari-
ant operator with finite-dimensional eigenspaces (the
number operator), which allows one to reduce the
infinite-dimensional eigenvalue problem for the Hamil-
tonian to the diagonalization of finite matrices [7,8]. In a
recent paper it has been shown that this method is also
effective in solving the quantum probIem of the
Ablowitz-Ladik system [9]. The aim of the present paper
is to introduce a DNLS equation, which has the following
properties.

(i) Its quantum version is exactly solvable by the above
alternate method.

(ii) The Hamiltonian, as well as the Poisson bracket,
continuously depends on a deformation parameter e so
that when @=0 the system reduces to the AL system,
which has a nonstandard Poisson bracket; for a=y /3 the
system represents a new discrete quantum version of the
nonlinear Schrodinger equation, and in the limit e going
to y the system reduces to the QDNLS system, which has
the standard Poisson bracket. These properties hold true

X ln l+ —A; A,- —gA, A,- (3)

where f denotes the number of degrees of freedom and
periodic boundary conditions A&+,- = A, are assumed.

also for the corresponding quantum systems (by replacing
Poisson brackets with commutators).

(iii) Except for the case e=O, this system is noninte-
grable so that the QISM is of no use in its quantization.

From a physical point of view this system describes the
propagation of molecular excitations in the presence of
both resonance interaction and molecular vibrations cou-
pled with low-frequency phonons. For the above proper-
ties we call this system the general discrete nonlinear
Schrodinger (GDNLS) equation. In this paper we con-
centrate only on the quantum GDNLS (QGDNLS) equa-
tion, leaving the classical analysis to a planned forthcom-
ing paper In t.he following we show that the QGDNLS
equation is a q deformation of the quantum DNLS
(QDNLS) equation, the corresponding quantum group
being the q-Heisenberg group. Quantum groups have
been shown to be of importance in physics, especially in
the fields of statistical mechanics, quantum field theory,
and quantum optics [10—12]. From a mathematical point
of view, quantum groups are usually introduced in con-
nection with integrable systems. In the case of the
QGDNLS system, the q-Heisenberg group, it is shown to
characterize both integrable and nonintegrable fields. To
this end, we derive in the simplest case of a two-particle
chain some explicit formulas for the erst excited levels of
the QGDNLS equation, and we show that they can be
continuously deformed into the corresponding ones of the
QDNLS and of the quantum AL (QAL) systems. Thus
although the classical behaviors of the AL and of the
DNLS systems are quite difFerent (one is integrable, the
other is chaotic), their quantum problems are both exact-
ly solvable.

We start by introducing the Hamiltonian operator of
the QGDNLS system

f ) (2+co +g)H= g —A, (A;+, + A;, )+
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The operators A; and A; are creation and annihilation
operators satisfying the following nonstandard commuta-
tion relations

[ A;, A 1 ]= [ A;, A, ]=0, [ A;, A J. ]= [1+( Elr) ) A; A/]5;J. ,

(4)

with g depending on e and on a free parameter y in the
following manner:

(5)

f
H = g [ —A, ( A, +,+ A;, ) —y /2( A,

t A, )

+(y/2+2+co;)A, A, ] . (12)

The physical meaning of the above inclusion of the AL
system into a family of nonintegrable DNLS equations is
readily seen by comparing the corresponding classical
equation of (7) (GDNLS equation) with the simplest clas-
sical equation describing the propagation of a molecular
excitation [14,15], namely,

Note that commutation relations (4) can be seen as a de-
formation of the usual ones for the boson creation and
annihilation operators and are related to the ones defying
the quantum Heisenberg group of the q oscillator [13].
By using Eqs. (3) and (4), one gets from the Heisenberg
equations of motion

iA; —co; A;+J(A;+, + A; ))=0 . (13)

iA, =[A, ,H],
the QGDNLS system

i A; —(co;+2—eA; A; ) A;

(6)

+[1+(y/3)A; A;](A;+, +A; ))=0, (9)

while in the limit e~y, we have from Eq. (5) that system
(7) becomes the QDNLS equation

i A;+ A;+) —2A;+ A; )+y A; A; A; —co; A; =0 . (10)

Note that q diverges as e~y, but e/q~0 so that the
commutation relations in Eq. (4) reduce to the usual ones
for bosonic creation and annihilation operators. By using
Eq. (5), one easily verifies that

lim ln 1+—A, A,.ln(1+@/g)

(y/2)(A; A;) +(y/2)A; A;, (11)

so that in the limit E~y the Hamiltonian (3) approaches
the corresponding Hamiltonian of the QDNLS system

+[1+(e/ri)A; A, ](A, +)+ A,. ~)=0, (7)

with i =1,2, ,f. By properly choosing the deformation
parameter e, we can obtain from system (7) more conven-
tional quantum nonlinear Schrodinger equations on the
lattice. Indeed, when e=O we have from Eq. (5) that sys-
tem (7) reduces to the quantum Ablowitz-Ladik system
[6,9]

iA; —(co;+2)A;+[I+(y/2)A, A, ](A, +, + A, , )=0,
(8)

with the Hamiltonian and commutation relations respec-
tively obtained from Eqs. (3) and (4) with e=ri=O, and
from Eq. (5), e/ri=y/2. When e=y/3 the QGDNLS
system represents a new discretization of the quantum
nonlinear Schrodinger equation

i A; —[co;+2—(y/3) A, A; ]A;

This is the anharmonicity of a standard polaron and it
corresponds to the second term of Eq. (7). Similarly, cou-

pling of the resonance interaction to low-frequency pho-
nons leads to

(15)

which is represented by the third term of Eq. (7). In gen-
eral one expects both these terms to be present and this is
just what the present extended system realizes.

The energy levels of the above quantum discretizations
of the nonlinear Schrodinger equation can be obtained as
deformations of the corresponding levels of system (7) in
the following manner. In order to solve the quantum
problem of the QGDNLS system, we introduce the Fock
space P» corresponding to the creation operator A» and
its usual basis ~0&», 1&», . . . , j&», . . . , defined as

A„"~n &„=+13„~n+1&„,

A» ln &» =V'~„ln —1&» .

(16)

By using the commutation relations (4) and requiring the
orthonormality of the above basis, we easily obtain the
action of the Ak, Ak operators on the basis states

A»t~n &„=[ri[(1+a/g)"+' —I]/e]' '~n +1&»,

A» ~n &»
= [g[(1+e/q)" —1]/E] '

~n
—1 &» .

(17)

Note that these relations reduce to the usual ones for bo-
sonic operators when the deformation parameter e goes
to y and they give an explicit representation of the quan-
tum Heisenberg group [10]. In terms of q numbers, nota-
tion equations (17) read as

A„'~n &„=Q[n+1],~n+1&„,
(18)

A»~n &»=Q[n]q~n 1&»

where q = 1+e/y and [n ]q defined as1S

In this last equation A, is the complex mode amplitude of
a particular molecular vibration, co; is the site frequency
of this vibration, and J is the next-neighbor resonance in-
teraction energy. Assuming coupling of the co s to low-

frequency phonons (lattice distortion) leads, in an adia-
batic and small-field approximation, to a dependence
upon local energy as

(14)
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[n ]q =(q"—1)/(q —1). As a consequence we see that the
number operator of the QGDNLS system is the same as
the one of the q oscillator, i.e.,

genvalue whose dimension is

( +f 1—)!
n!(f—1)!

(22)

f
N= g ln 1+—A, A,In(1+ e/r) ), (19)

as it is easily verified using relations (17). An important
property is that the number (19) commutes with the
Hamiltonian (3)

Due to this decomposition, the Hamiltonian can be sepa-
rately diagonalized in the finite-dimensional eigenspaces

thus reducing the infinite-dimensional eigenvalue
problem for H to a simple algebraic problem. For a finite
number of degrees of freedom f, the Hilbert space & of
the quantum states is identified with the tensor product

[N, H]=0, (20)
JY=7)89' ' ' ' IgIPf, (23)

JY=JVo838)$ ' ' ' $8„83 ' ' ' (21)

where %„denotes the eigenspaces of N with n as an ei-

so that one can decompose the Hilbert space of quantum
states into the direct sum

IJlJ& Jf ) Jl) & lJP)P ' ' lJ f ~f . (24)

In this representation the matrix elements of the restric-
tion of the Hamiltonian H to &„are given by

with the generic element of the corresponding product
basis given by

2

(i&iz iflHl J'~j q
' 'jf ) = g (ruk+ri)jk — [(I+«1)k—I]+2& ~ ~ ~

'A

+ [[(I+a/ri) "+' —1][(1+E/'g) ' —I]]' '&;„„,„„+)&;„,„ (25)

where i, +i2+ . +iI=j,+j2+ . +jI=n. From
Eq. (25) the eigenvalues and eigenvectors of H are readily
obtained by diagonalizing the corresponding
(f+ n —1)!/[(f—1)!n!] matrix representation. For ex-
ample, let us compute the first quantum levels for the two
degrees of freedom (f =2) QGDNLS system in the reso-
nant case N] =c02=n.

For n =1 the secular equation corresponding to the
2 X 2 matrix (25) is readily written as

of the QDNLS system E, =4+0—y,
Eq 3=4+&—y/2+[(y/2) +16]'~ . In Fig. 1 we have
plotted the quantum levels (28) as a function of the defor-
mation parameter e, with g given by Eq. (5), Q=O and

y =2. From this figure we see that the quantum levels of

15-

2 —E —2
det 2 2 E =0, (26)

'1 0-
from which we have E, =0, E2=4; i.e., classical anhar-
monicity does not enter in the determination of the quan-
tum levels. For n =2 anharmonicity enters. Indeed the
secular equation for the 3 X 3 matrix (25) is

4+ 2Q e E —2&—2+—e/q 0
det —2&2+ e /g 4+ 2A —E —2+2+ e/g =0,

0 2&2+ E/ri 4+20 e—E——
(27)

from which we get

E, =4+0—e,
E, , =4+0 e/2+[(e/2) +—8(2+@/ri)]'

{28)

We see that for @=0 these levels coincide with those of
the QAL system E, =4+0, E& 3=4+0+2V4+y de-
rived in Ref. [9], while for e=y they reduce to the levels

—2 0 2 4 6

FIG. 1. The quantum levels of the two-degrees-of-freedom

QGDNLS equation vs e with r! given by Eq. (5), 0=0 and

y=2. The crosses refer to the levels of the QAL system, the

squares to the ones of system (9), and the stars to those of the
QDNLS system.
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the QAL system (in the figure denoted by crosses) are
continuously deformed into the levels of the QDNLS
equation (denoted by stars) as e is increased from zero to
r-

This fact holds true for arbitrary n and for any number
of degrees of freedom, having in general matrix (25) a
band structure that makes the problem of computing the
spectrum particularly suitable from a numerical point of
view. Finally we remark that, except the case a=0, the

QISM approach is of no use to solve the quantum prob-

lem of the QGDNLS equation with more than two free-

doms (f )2), because this system is classically noninte-

grable.
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