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The perturbed-ladder-operator method is applied to the analytical solution of the harmonic-oscillator
eigenequation perturbed by a symmetric potential V(x). This method, well adapted for computer alge-

bra, is an extension of the original Schrodinger-Infeld-Hull factorization method within the perturbative
scheme and allows an analytical solution of nonfactorizable Storm-Liouville eigenequations in almost
the same way as factorizable ones. Closed-form expressions of the perturbed harmonic-oscillator eigen-
values are obtained by means of a few algebraic manipulations, either in a series of binomial functions
{"„)or in a series of powers (v + —')". Alternative expansions of the perturbed potential V(x) in a series

of Hermite polynomials %2,(x) or in a series of x ' are considered and some illustrative examples
demonstrating the capabilities of the method are given. Particularly, analytical expressions of the x-
perturbed harmonic-oscillator energies, as well as analytical approximations of the eigenenergies for the

+x /(1+gx ) interaction, are quickly derived.

PACS number(s) 03.65.Fd, 31.30.—i

I. INTRODUCTION

In two previous papers [1,2] (hereafter referred to as
paper I and paper II, respectively), the "perturbed-
ladder-operator" method has been proposed for provid-
ing an algebraic recursive solution of perturbed wave
equations. This method is an extension of the
Schrodinger-Infeld-Hull factorization method [3,4]
within the perturbative scheme. It is particularly well
adapted for treating problems which can be conveniently
described by a "kernel potential, " leading to an Infeld-
Hull factorizable equation, together with an additional
perturbation. As a matter of fact, such kernel potentials,
and therefore solutions of factorizable equations (factor-
izable types A to E, within the Infeld-Hull nomencla-
ture), are involved in many physical models. Among
solutions of factorizable equations of fundamental in-
terest in atomic and molecular physics applications, let us

quote, for instance, the spherical harmonic or symmetric
top functions (factorizable type A ), the Morse-oscillator
functions (factorizable type B ), the nonrotating or rotat-
ing harmonic-oscillator functions (factorizable type D or
C), the Schrodinger (and Dirac) hydrogenic radial func-
tions in the usual Euclidean flat space (factorizable type
F) or in a space of constant curvature (factorizable type
E) and, more generally, the Gauss or confluent hyper-
geometric functions (general factorizable type A or B).
Briefly stated, many equations of current interest in phys-
ics can be viewed as "perturbed factorizable" equations
and are relevant to the perturbed-ladder-operator
method.

Summarizing grosso modo the principle of the "per-
turbed factorization" technique, one assumes that the
perturbed potential function, as well as the ladder and
faetorization functions, can be expanded in a perturba-
tion series. Then, one tries to build up the required per-
turbed ladder operators and the perturbed factorization
functions allowing the factorization of the perturbed
equation at any rank N of the perturbation. The

efficiency of the procedure mainly relies on the use of
suitable associated basis functions y, (x ) and Y, (x ) for ex-

panding the perturbation and the perturbed part of the
ladder function, respectively. These basis functions have
to satisfy selective ladderlike properties and, also, have to
lead to a manageable finite-difference solution of the fac-
torizability condition giving the required perturbed func-
tions a suitable dependence on the quantum number.
Once the perturbed ladder and factorization functions
have been found, the perturbed problem may be handled
in the same way as the exact factorizable (unperturbed)
problem: analytical expressions of the perturbed eigen-
values in terms of the quantum numbers are readily ob-
tained from the knowledge of the perturbed factorization
function and the complete set of the perturbed eigenfunc-
tions can be generated by repeated application of the
ladder operator on the perturbed "key function, " which
is a solution of a first-order differential equation.

In paper I, the main features of the perturbed-ladder-
operator method have been given and general formulas
have been derived allowing the "perturbed factorization"
of eigenequations which correspond to unperturbed
ladder operators which are linear functions of the quan-
tum number (factorizable types 3 and D ). Although val-

id for any factorizable type, these formulas, when applied
to the last two factorization types E and F, where the un-

perturbed ladder function is not a linear function of the
quantum number, lead to rather lengthy and intricate cal-
culations. Therefore, in paper II, the method has been
reformulated for analytically solving the perturbed
Coulomb (type-F) eigenequation and, by the way, it has
been found that the introduction of specific basis func-
tions, instead of a standard Newton's expansion, greatly
simplifies the finite-difference solution of the factorizabili-
ty condition. Thus, it appears that the capabilities of the
perturbed factorization scheme have not yet been com-
pletely exploited, even for the cases where the unper-
turbed ladder function is a linear function of the quantum
number.
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In the present paper, special attention is paid to the
symmetric-anharmonic-oscillator eigenequ ation (per-
turbed type-D factorization). There has always been a
great deal of interest in the analytical solution of this
eigenequation which, apart from certain very particular
cases [5], is not exactly solvable analytically while, also, it
is the simplest case of a "perturbed factorizable" eigen-
equation. Moreover, it seems well suited for giving a
deeper insight into the perturbed factorization procedure.
After a necessary and brief reminder of the exact and per-
turbed factorization schemes (Sec. II), we focus on per-
turbed type D. Alternative solutions of the factorizability
condition, which lead to closed-form expressions of the
perturbed harmonic-oscillator energies either in a series
of binomial functions („)or, more classically, in a series
of power functions (v+ —,

' )", are carried out. Suitable ex-

pansions of the perturbation either in a series of Hermite
polynomials &z, (x ) or in power series x ' have been con-
sidered (Sec. III}. In Sec. IV, illustrative applications are
given. General expressions for the perturbed eigenvalues
have been written down, up to the third order of the per-
turbation. The solution of the x -perturbed harmonic os-
cillator, which has been studied many times and by vari-
ous methods (WKB, Pade approximant, Hill deter-
minant, hypervirial, perturbative variational methods,
etc.), is chosen as a test example of the capabilities of the
perturbed factorization procedure. Finally, the solution
of the Schrodinger equation with a potential function
x +A,x /(1+gx ), which is of interest in several areas of
physics, is considered.

(i) Closed-form expressions of the eigenvalues are
readily obtainable from the knowledge of the factoriza-
tion function L(m ):

c 1
A =L j+—+—

2 2
(2.4)

(ii) The normalized eigenfunctions are solutions of the
following pair of difference-differential equations:

K(x, m )+ 4 =A&(m )VJ.
d

K(x, m+ I)— 4 =IV (m+1}+J +&

(2.5)

with JV (m ) = [A.—L(m ) ]'

where L(m ) is the factorization function, which does not
depend on x, and H* are mutually adjoint ladder opera-
tors: H*=K(x,m)+(d/dx). Owing to the mutual ad-
jointness of the ladder operators H+ and H, the neces-
sary condition for the existence of quadratically inte-
grable solutions of Eq. (2.1), i.e., the quantization condi-
tion, is

s(j—m ) = v = integer ~ 0,
where a=+ I (or E= —1}according to whether L(m) is
an increasing (or decreasing) function of m.

The interest and advantages of the factorization
method are well known [4]:

II. FACTORIZATION SCHEME

In order to set up the definitions and notations, it is
first necessary to briefly recall the main features of the ex-
act and perturbed factorization schemes.

These "ladder" equations allow the determination of any
(x) function from the knowledge of any one of them,

particularly from the knowledge of the normalized "key"
function O'JJ(x) which is the solution of the first-order
differential equation

A. Exact faetorization

After exact or approximate separation of variables and
appropriate transformations of variable and function,
many eigenequations of current interest in quantum
mechanics can be reduced to the standard form

d2
+U(x, m)+A 4 (x)=0

dx
(2.1)

associated with the boundary conditions (x, x x z )

I
+(x

q ) I

=
I +(xq ) I

=0, J I O(x ) I
dx = 1,

l

(2.2)

H +,H++, 4 = [A L(m + 1)]4-
H+H 4 =[A —L(m)]%

(2.3}

where m =mo, mo+1, mo+2, . . . is a quantum number
which takes successive discrete values labeling the eigen-
functions.

Such an equation (2.1) is factorizable when it can be re-
placed by each of the following two difference-differential
equations:

1 dK x,j+—+——s 4 "(x)=0.
2 2 dx

(2.6)

In fact, when an eigenequation is exactly factorizable,
closed-form expressions of the eigenfunctions involving
classical orthogonal polynomials are known [6].

There are six fundamental types of potential functions
U' '(x, m ) (denoted types A to F, within the Infeld-Hull
nomenclature) leading to factorizable equations. More-
over, as pointed out by Infeld and Hull [4], when direct
factorization is not possible solely because of the inade-
quate m dependence of the potential function U(x, m)
under consideration, one can resort to "artificial" factori-
zation, i.e., one can consider U(x, m ) as "embedded" in a
new potential function u (x,m; p ) which depends on a
supplementary "artificial" parameter p such that
u(x, m; p) can be identified in m with a factorizing poten-
tial U' '(x, m) and that u(x, m;p=m)=U(x, m). Then,
Eq. (2.1) is factorized using u(x, m;p), and the eigenval-
ues AJ(p)=L(j+e/2+ —,';p) are determined as well as
the eigenfunctions %J (x;p), both depending on the pa-
rameter p. At the end of the ladder procedure (2.5), one
merely sets p=m and obtains the required eigenvalues
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A. (m )=A ()M=m ) and eigenfunctions 0'i (x )

(x;p =m ). This "artificial" or "embedded" factor-
ization device is widely used all along the "perturbed fac-
torization" scheme.

B. Perturbed factorization

Let us now consider an eigenequation (2.1) where the
potential function U(x, m ) does not belong to any of the
six Infeld-Hull factorization types, and let us assume that
this potential function, as well as the associated ladder
and factorization functions K(x, m) and L(m) to be
found, can be expanded in a perturbation series with a
parameter g,

= g W,' '(m)y, (x) . (2. 1 1)

Thus, using the artificial factorization device with an
artificial parameter p (see paper I), one can solve phy-
sicomathematical problems with a potential function
V(x, m ) such as

tion %V( '(x, m ), which at each order of the perturbation
is generated from the preceding orders of the perturba-
tion and is involved in the factorizability condition, can
be expanded in a series of y, (x ):

N —1

'(x, m ) = g K'"'(x, m )K' '(x, m)

U(x, m ) = U' '(x, m )+riU")(x, m )

+rI U' '(x, m)+

K(x, m ) =K' '(x, m )+v]K("(x,m)

+g K' '(x, m)+
L(m)=L' '(m)+gL"'(m )+ri L, ' '(m)+

(2.7)

V(x, m ) = U' '(x, m )+q V' "(x )+i12V'2'(x )+
(2.12)

where the V"(x ) have the same dependence on x as the
U'"'(x, m ), i.e., V'"'(x ) = U'"'(x; m =p, ) and

Sz+1
V' '(x)= g b,' 'y, (x) . (2.13)

s=1

2K' '(x, m ) Y, (x ) = A, (m )y, (x )+B,(m )y, + ((x ),
dY,' =a,y, (x)+p,y, +((x),

(2.8)

where K' '(x, m ) and L' '(m ) are the ladder and factori-
zation functions allowing an exact factorization of Eq.
(2.1) with U' '(x, m).

As it has been shown in paper I, the critical point of
this extension of the factorization method within the per-
turbation scheme relies on the choice of suitable x-basis
functions y, (x ) and Y, (x ) for expanding the required fac-
torizing perturbations U' '(x, m) and associated per-
turbed ladder functions K' '(x, m), respectively. These
basis functions, which are specific to each factorization
type, have to satisfy the following "ladderlike" relations:

Hence, as it has been shown in paper II, we set

SN

K(N'(x, m )= g Y, (x)Q, (m)[k,' '+F,' '(m )j .
s=0

(2.14)

m —
1 [B(j)—p ]

[B,(j +1)+P, ]
S~+ 1

k(N) y d (p)[b(N)+ W(N)(p) j
u =s+1

(2.15)

(2.16)

Then, solving the factorizability condition, one gets the
following expressions of Q, (m) and k,' ', involving the
A, (m ), B,(m ), a„and p, coefficients, which are specific
to the factorization type and associated basis y, (x ) and
Y, (x } under consideration:

Y, (x)Y, (x)= g h(s, t, r)y„(x) . (2.9)
where

u —1 u —1

We set

Siv

K'")(x,m ) = g y',"'(m ) Y, (x )
s=0

(2.10)

and, as a consequence of Eq. (2.9), the potential-like func-

d„,(p)= — g [A, ((U, )
—a, j Q, (p) P ((B,(p) P, j . —

t =s+1 t=s

The required F,' '(m) and factorization L' '(m) func-
tions are then solutions of the following finite-difference
equations:

5W,' '(m)+b {[A,(m)+a, ]y,' '(m )j+2a, y,' '(m)

Q, ,(m+1)[B, ,(m+1)+P,
bL' '= —b, Wo '(m ) —b, [[AO(m )+ao]yo '(m ) j

—2a()yo '(m ),

(2. 17)

(2.18)

where bF(m)=F(m+1) —F(m) is the usual first
difference 6 operator in m.

and the following associated conditions have to be
fulfilled:

y,' '(m)=Q, (m)[k,' '+F,' '(m)j,

F, (m ) =0 for s =sN

F, (m =p)=0,
L' '(m =(((,)= —

W() )((((,}—[Ao(p) —a()]y() '()M) .
(2.19)
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At each order N of the perturbation, the finite-
difference equations (2.17) and (2.18) will be solved recur-
sively, starting from s =Sz down to s =1.

The factorizability condition is solved recursively, i.e.,
when considering the determination of K' '(x, m; p) and
L' '(m;{u), both depending on the artificial parameter p,
it is assumed that all the K'"'( x, m;p} and L'"'(m;p) for
v=1,2, . . . , N —1 have already been found. Hence, the
perturbed problem (up to the ¹horder of the perturba-
tion} can be handled in the same way as the exact factor-
izable (unperturbed) problem.

(i) The total perturbed eigenvalue and associated ladder
function are

A (m)=L j+—+—(0) . 6 1
J 2 2

+ y g"L'"' m=j+ —+ —;p,=m
2 2'

N

K(x, m;p)=K' '(x, m) +g g"K"(x,m;p),
v=1

(2.20)

(2.21)

where a =+ 1 (or s= —1) according to whether the un-
perturbed factorization function L' '(m) is an increasing
(or decreasing) function of m.

(ii) The ladder equations (2.5) and (2.6) hold with
K(x, rn;p) for the determination of the perturbed eigen-
functions 4 (x;ju). Once the ladder process is achieved,
one sets p=m and obtains the required 4'.~(x;m ) per-
turbed eigenfunctions. One can also use an alternative
procedure which provides the perturbed eigenfunctions
as linear combinations of the unperturbed eigenfunctions
[7,8].

Let us now apply these general results to the solution
of the anharmonic-oscillator eigenequation.

III. PERTURBED FACTORIZATION
OF THE ANHARMONIC-OSCILLATOR

EIGENEQUATION

Let us consider the anharmonic-oscillator eigenequa-
tion:

oscillator energy:

E,' '=
—,'[A' '+b(2m+1)]=b(v+ —,') .

The normalized unperturbed eigenfunctions are [6]

gg(0)(x ) (g /~)1/4(1/2vv~)1/2 exp( ~ bx2)~ ($ 1/2x )

(3.3)

(3 4)

where &„(x) is a Hermite polynomial of degree v.
When V(x )%0, the different possible choices of the x-

basis functions y, (x) and Y, (x) satisfying the ladderlike
properties (2.8) lead to different possible perturbed factor-
izations of the eigenequation (3.1) (see Table I).

B. g,&2, (b ' x ) expansion of the perturbation
associated with a ("„)expansion

of the perturbed eigenvalue

As pointed out in paper I, when dealing with type-D
factorization, it is rewarding to expand the perturbations
V'N'(x) in a series of Hermite polynomials &2,(b'/ x)
rather than in a series of the familiar x ' basis. More-
over, the associated use of a Hermite polynomial x-basis
and binomial functions, for the m dependence of the
ladder and factorization functions leads to a compact ex-
pression of the first-order energy involving only one sum-
mation instead of two summations when using other basis
functions (see, for instance, Ref. [8]). It is then rewarding
to first work out the expressions of the perturbed
harmonic-oscillator eigenvalues and associated ladder
functions when expanding the perturbations V' '(x ) and
eigenvalues A'„' in a series of Hermite polynomials

%2,(b '/ x ) and binomial coefficients ("„),respectively.
Let us choose the associated x-basis functions

y, =y,&2, (b '/ x )

and

Y, =b ' y, + @f2,+,(b' x),
where the factor y, =s!b/(2s )! is introduced for compu-
tational convenience. This choice is convenient (see
Table I) and we set

X
bx +b(2m—+I }+V(x)+A 4/ (x)=0, (3.1)

where —~ (x (~ and
+g V' '(x )+. . . is a perturbation.

s=1
(3.5)

A. Exact factorization of the
unperturbed eigenequation

TABLE I. Perturbed factorizations of the anharmonic-
oscillator eigenequation (3.1). (m ), =m(m —1) . . (m —t+1)
is a generalized factorial; 5„, is the Kronecker symbol.

When V(x)=0, the eigenequation (3.1) reduces to an
exact Infeld-Hull type-D factorizable equation with the
following factorizing ladder and factorization functions:

K' '(x, m ) =bx, L ' '( m ) = 2bm . — (3.2)

Let us assume b &0 [9]. The factorization function
L' '(m ) is a decreasing function of m. This is a class-II
problem with E= —1, v=m —j, A' '=L' (j)= 2bj, —
and we get the following expression of the harmonic-

V$

Y,
A, ( )

8,(m)

Q, {m)

d„,(p)

2$

~2$+1

0
2b
2s+ 1

0
1

1

b
(+ 2)„—,—I

s~2$(b x )

X +12 +1(~
1

1

1

0
1
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s+t+1
Y, Y, = g h(s, t, u)y„,

u=(s —rI

where

(3.7)

SN

)(x m )=b y y @f2 +i(b x )y (m ) (3 6)
s=0

where [see Eq. (2.14) and note that Q, (m ) = 1]

y(»(m ) =k(»+F(»(m ) =k(»+ Z(»(m ) —Z(»(

The first condition (2.19), i.e., F,(m =p) =0, is ipso facto
fulfilled by setting F,' '(m)=Z, ' '(m) —Z,' '(p).

In order to build up the potential-like function
"lV( '(x, m ), the following multiplication formulas will be
used (see paper I):

Z' ' (m)= —
[ W' '(m)+2[k' ' —Z' '((Lt)+Z' '(m )]

+2g —i[k(» —Z(»(&)+Z(»(m )]]
(3.12)

Before tackling the solution of this equation, let us re-
mind the reader that, at the final step of the artificial fac-
torization process, in order to obtain the analytical ex-
pression of the perturbed eigenvalue A& '(m ) in terms of
the quantum numbers j and m, we set m =j and p =m in
the final expression of the perturbed factorization func-
tion L' '(m;)M). Since we require AJ '(m ) in a series of
binomial coefficients ("„),where U =m —j, we require the
final expression of L' '(m;)Lt) in a series of ("„).There-
fore, we set

2'+' " '(2u)!s!t!
h(s, t, u ) =

u!(s + u t )!( t + u ——s )!(s + t + 1 —u )!

Thus, the potential-like function can be written:

N —1

'(x, m)= g K'"'(x m)K' "'(x,m)

SN s p —m
Z,' '(m)= y C,' '(t)

N P 77l
W' '(m)= g w' '(t)

t=0

(3.13)

(3.14)

v=1

SN
= g W' '(m)y, &,(b' x)

s=0
(3.8)

Using the relation [10]

g —
1

p —m P Pl

t+1
At the first-order N =1 of the perturbation, we have

'N")(x, m ) =0 and the upper bound S, which is involved
in I(: '"(x, rn ) can be arbitrarily chosen. At the higher or-
ders N ) 1, the highest power of x is already fixed as data
following from the preceding orders and the relation
S)v=S„+S)v,+ I must hold for any v (v= 1 to N 1):—
the value of SN depends on S, and N. One finds the fol-
lowing necessary condition to be fulfilled:

p —IS-'Z(")(m ) = —y
t=1

c v()()t )

SN
—s+1 p m

C,'"'(t —1) .

we get, after some rearrangements,

(3.15)

SN=NS1+N —1 . (3.9)

One has now to determine the ladder Z,' '(rn ) and the
factorization L' '(m ) functions which are solutions of
the finite-difference equations (2.17) and (2.18} and have
to satisfy the conditions (2.19). Since B,(m ) does not de-

pend on m and P, =0 (see Table I), the finite summation
of Eqs. (2.17) and (2.18) can be partly carried out. One
gets, within an arbitrary summation constant,

Z, ), (m)=—
B,

1
[ W( '(m)+[A, (m)+a, ]y,' '(m)

+2a, a-'y,(")I,
L' '(m ) = —

[ Wo '(m )+[Ao(m )+ao]yo '(m )

+2a,a-) y(~)
]

(3.10}

(3.11}

As a rnatter of fact, these equations will hold and serve
for the three perturbed factorizations under considera-
tion in the present paper.

1. Determination of the perturbed ladder function

The required Z,' '(m) function is the solution of the
finite-difference equation (3.10) with A, ( m ) =B,(m )

=a, = 1 (see Table I), i.e.,

After choosing the arbitrary summation constant so that
Z,' ', (m ) keeps the same form (3.13) as Z,' '(m ), we ob-
tain

SN s p —m
Z,' ', (m)= —g w,

' (t)
t=1

p —m
k(, N)2 s

SN
—s+ 1 p —rn

+2 y C,(»(t —1)
f =2

(3.16)

C(N) ( ) w(»(u )+2C()v)(u 1} (3.17)

Starting from s =SN + 1 down to s = 1 and from
u =SN —s+ 1 down to u = 1, this relation allows a recur-
sive determination of the C,' '(u) in terms of the k,'

One has now to obtain analytical expressions of the k,'

in terms of the data, i.e., in terms of the expansion
coefficients b(+) of the given perturbation V' '(x ). For
this purpose, we use Eq. (2.16) together with the expres-
sion d„,= —5„,+, of Table I. We get

Now, comparing this expression for Z,' ', (m ) with its
standard expression (3.13) and setting k,' '=C,' '(0), we

get the following recurrence formula, which holds for
1&u &S —s+1:
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' (k)= —b' '(k)+2C' )(k —1)

where, since W,' )(p)=w,' '(0) [see Eq. (3.14)],

b' '(P)=b' '+w' )(P) b' '(k)=w' '(k)

(3.18)

(3.19)

k(N) [b(N)+ W(N)(p)]

and we obtain the following single recurrence formula al-
lowing the determination of the C,' '(k) for O~k SN—s+ 1.

k

Cs(„— {k} g 2jbs„+i +—(k J)
j=0

(3.20)

Finally, at each order N of the perturbation, one has at
one's disposal the following closed-form expression of the
perturbed ladder function in terms of the "data
coefficients" b,' '(j):

Using this recurrence formula successively from
s =SN+ 1 down to s = 1, it is easily found that the follow-
ing closed-form expression holds:

SN N —m tE' '(xm (M)= b—' g y+)&2+)(b' x) g g 2' Jb'~I+, (j) .
s=0 t =0 - ~ j=O

(3.21)

2. Determination of the perturbed eigenualue

Consequently, after substituting U for (((t —m) into this
expression of L' )(m;((t) and using the expression (3.20)
of the Cs(N) (k), the following expression of the per-

N

turbed eigenvalue is obtained:

S +1S +1
A(N) y y 2t b(N)( j )

j=0 t =0

or, alternatively,

(3.23)

The perturbed factorization function is a solution of
the finite-difference equation (3.11) with Ao(m )=ac= 1,
and the associated condition (2.19) to be fulfilled reduces
to L' '(m =p) = —Wo )(p). We get

r

p —mL' '(m;p)= —Wo»(m)+2 g Co»(t —1)
t=1

(3.22}

Sl+1
p(1) ~ ps b (1)

v ~ ss=1

Before applying the general results of the present sec-
tion to specific cases, let us investigate an alternative per-
turbed factorization of the anharmonic-oscillator eigen-
equation (3.1) when, as usually done, the perturbation is
expanded in a series of powers of x.

S~+ 1

V(N)(x ) y b(N)x2s

s=l
(3.25)

C. x ~' expansion of the perturbation associated
with a ("„)expansion of the perturbed

eigenvalue

Let us now assume that the perturbations V' '(x ) can
be expanded in a series of x ' and choose the associated
basis functions y, =x ' and Y, =x '+'. We set [see Eq.
(2.13)]

S~+ 1

A(N)—
t=O

(3.24)
Since Q, (m ) =1 (see Table I), the perturbed ladder func-
tion is [see Eqs. (2.14)]

At each order N of the perturbation, the determination
of the perturbed eigenvalue amounts to the determination
of the data coefficients b,' '(j) which depend upon the
particular problem under consideration [see Eq. (3.19)].
In fact, the b,' '(j) coefficients involve the expansion
coefficients of the perturbation V' '(x) in a series of
y, (x ) =g,&2,(b ' x ) together with the expansion
coefficients w,

' '(j} of the potential-like function

N —1

~(N)( ) y ~(v)g (N v)—
v=1

in a series of y, &2,{b'~ x)(" ) [see Eqs. (3.8) and
(3.14)].

Let us note that, at the first order (N= 1 ) of the pertur-
bation, since the data coefficients b,' "(j ) reduce to the ex-
pansion coefficients b,'" of the perturbation V"'(x) in a
series of ypf2, (b'~ x) we find again the already known
[8] compact expression of the first-order perturbed eigen-
value:

SN

E' '(x m)= g x '+'y' '(m)
s=0

where

&(»(m ) =k(N)+Z(»(m ) —Z(N)(&)

The potential-like function is

N —1

'N' '(x m)= y K'"'(x m }K' '(x m }

(3.26)

SN
= y W'"'(m)x"

s=1

where SN is still defined by Eq. (3.9).

(3.27)

1. Determination of the perturbed ladder function

In order to obtain the perturbed eigenvalues A', ' in a
series of binomial functions ("„), we assume that the
Z,' '(m) and W,' '{m) functions are still given by Eqs.
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(3.13) and (3.14). Since 8, (m ) =2b and P, =0 (see Table
I), the required Z,' '(m ) function is the solution of the
finite-difference equation (3.10). Noting that
Z,' '(m =p) =0, and using Eq. (3.10) together with Table
I, we get, after choosing the arbitrary constant so that
Z,' 'i (m ) keeps the same form (3.13) as Z,' '(m ),

j=0
1

2b

' a+1 —u

Xd (o —u, k, SN —u )

xb,'"', „(J), (3.34)

Z' ' (m)= — W' '(m) —2a k'1 p —m
s 1 2b s s 1 s

where the d (o,k, s) coefficients obey the recurrence for-
mula

+a,Z( )(m }+2a,g Z( )(m )

(3.28)

where Z,' '(m), W,' '(m), and b. 'Z,' '(m) are given by
Eqs. (3.13), (3.14), and (3.15), respectively.

From the comparison of this expression (3.28) of
Z,' 'i (m ) with its standard expression (3.13), we get

d (cr+ 1,k, s)=(2s —2cr+1)I2d (0', k —l, s)

+d (cr, k, s) I (3.35)

with the associated conditions

dk(O, k,s)=1,
dk(cr+ 1,k, s)=(2s —2cr+ 1 )dk(cr, k, s) for k=j

and
) (I)=— [w' )(1)—2a k' ' —a C' '(1)I1

(3.29) d (k —j,k, s+k —j—1)

and, for 2~t ~Sz —s+1,

(t)= — tw' '(t) —2a, C' '(t —I)—a C '(t)I1

(3.30)

Starting from s =SN+ 1 down to s = 1 and from
u =Sz —s+1 down to u =1, these relations allow a re-
cursive determination of the C,' '(u ) in terms of the k,'

In order to obtain analytical expressions of the k,' ' in

terms of the expansion coefficients b,' ' of the given per-
turbation V' '(x ), we use Eq. (2.16) together with the ex-
pression of the d„,(p) coefficients of Table I and we get

=2(2s+ 1)dj(k —j—l, k —l,s+k —j—1)

for O~j~k —1.
At this level, let us emphasize that the d (cr, k, s)

coefficients depend neither on the order N of the pertur-
bation nor on the particular problem under considera-
tion. Their determination can be performed, once and
for all, by means of the recurrence formula {3.35). More-
over, taking advantage of the underlying connection be-
tween the former perturbed factorization of the same
eigenequation (3.1) and this last one, the following
closed-form expression can be derived (see Appendix B):

T

S~+ 1

2
0=s+1

1

b
(u —

—,')„, , Ib„' '+ W„' '(p}I . ( ) (
( )(7 ( +j ( 2s + 1 )!(s cr )!—

s!(2s—2c +1) ! t —j (3.36)

Consequently, we have

(3.31)
Finally, we obtain, via the expression (3.34) of the

Cs ' (k) coefficients, the analytical expression of the

perturbed ladder function in terms of the data coefficients
b(N)( ~ ).

k( ) N[b(N)+ W(N)( ) a k(N)
Is —1 2b s S S S (3.32)

Now, introducing the notation k,' '=C,' '(0) and set-

ting a, =Zs+1 (see Table I), it is easily found that the
following single recurrence relation holds (O~k ~SN
—s+1):

C' ' (k) = — [b' '(k }—(2s+1)[2C,' '(k —1)
1

where

s=0 i=O

Sg+1
C(N)(t ) .=, +1 4b

0 S

2
—

i(2u )!s!

o u!(2s+1)!

S~ s p —mE' '(x, m;p}= g x '+' g C,' '(t} (3.37)

+C,' '(k}]I, {3.33)

u —s —1
b (N)( )—j ll

where, since W,' )(p, ) =w( '(0) [see, Eq. (3.14)], the
b,' '(k ) are still given by Eq. (3.19).

Using this recurrence relation for s =S&+1,S&,S~—1, . . . it can be inferred that one can write (see Appen-
dix A)

2. Determination of the perturbed eigenualue

The perturbed factorization function L ( )(m;((t ) is
solution of the finite-difFerence equation (3.11) where
Ao(m )=0 and a()= 1 (see Table I). After introducing the
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expansion (3.13) of Zo '(m) and noting that Wp)(m)=0
[see Eq. (3.27)], we obtain

T

JM
—m

L(N)( m. p) y C(N)(r)

the integral (x '), it follows that (x ') = —S,(0). From
the expression (3.42) of the 2, (j), one finds again the al-
ready known expression [11]

i=0

S~+1
+ y 2, C,(")(r—I)+r,

t=O

(2b )' „()
(3.38) Particularly, we have

(3.43)

S~+1
p(N) —~ g(&)

u ~ u (3.39)

where A,(„)=CP)(u)+2CP)(u —1). Noting that, for-
mally, A(„)=2bC( i'(u ) and using Eq. (3.37), we get

SN +1—j
g(N) y g 1 2u —J (2t ).

4b (r )!

b(N)( .
)u —j (3.40)

Rearranging the terms, the following alternative ex-
pression of the perturbed eigenvalue is obtained:

where X is an arbitrary summation constant.
The associated condition to be fulfilled is L' '(m =)u)

=ko '=Cp'(0) [see Eq. (2.19) and Table I], and it is

easily checked that X=0.
Finally, substituting m with j and p with m in the ex-

pression (3.38) of L' '(m; p, ) and setting m —j= v, we ob-
tain

U2, +1

(3.44)

&x') = '815,
8b

(x') =s 1O

16S4

V V

+12 2 +6

U V

4 +32 3 +24

+1 ',

U V

+8
1

+1 '.
In the same way, we get

V

J)(1)=— '2

3 U

S (1)=— '4
2 4/2 3

r r

15,2 (1)=— '8
8S' 4

V

+

V

+4
V

+

V V

+12 3
+6

2
+

3 V U(x)= '42 +4
1

+1',
4b

and

~ (.)
(2t —1)!!

(2b)r k k+j

Sg+1 Sg+1 —j
A(N) y y b(N)(j)g (J )

j=O t =1

where

(3.41)

(3.42)

U V

S)(2)=— '2
3 +

U U

&i(2)=—,'4 4 +4
3

+
4b3

U V

S,(3)=— '2
4 +

(3.45)

(2t —1)!!= 1 X2X3 X X(2t —3)(2t —1)= (2t )!
s!2'

is a double factorial.
I.et us note that, as a by-product of the method, a

closed-form expression of the diagonal integrals (x ') be-
tween the unperturbed harmonic-oscillator eigenfunc-
tions )p'„'(x) [see Eq. (3.4)] is obtained as a particular
case of expression (3.42}. Indeed, at the first order
(N= 1 } of the perturbation, we have IV,")(m ) =0 [see Eq.
(3.27)]; the data coefficients b,'"(j ) reduce to the expan-
sion coefficients b,'"(0}=b,"' of the perturbation V"'(x )

and, consequently, the expression (3.41) of the perturbed
eigenvalue reduces to

SI +1
A'"= y b'"J'(0)

When comparing this expression of A(,"with its alterna-
tive expression within the classical Rayleigh-Schrodinger
framework where the coefficient of b,'"=b,"'(0) is merely

Finally, using either expression (3.40} or expression
(3.41}, at each order N of the perturbation, the deter-
mination of the perturbed eigenvalue reduces to the
determination of the data coefficients b,' '(j), which de-
pend on the particular problem under consideration.

The anharmonic-oscillator energies are usually com-
puted in a series of (v+ —,

' )". Particularly, for the case of
a quartic anharmonic perturbation, the perturbed eigen-
values of order N are known [12] to be polynomials in
(v+ —,') of degree N+1 and with partity ( —1) +'. It is
then worthwhile to work out an alternative perturbed
factorization of the anharmonic-oscillator eigenequation
leading to such an expression of the perturbed eigenval-
ues.

D. x ' expansion of the perturbation associated
with a ( v +—')"expansion of the perturbed eigenvalue

The perturbation V' '(x) as well as the perturbed
ladder function K' '(x, m) and the potential-like func-
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tion "%( '(x, m ) are still given by Eqs. (3.25), (3.26), and
(3.27), respectively.

1. Determination of the perturbed ladder function

The required Z,' '(m ) function is a solution of the
finite-difference equation (3.10) with A, (m ) =P, =0,
8, (m ) =2b, and a, =2s+ 1 (see Table I).

Since we require the final expression of the perturbed
eigenvalue in a series of powers of ( v + —,

' ), the perturbed
factorization function L' '(m;p) has to be expanded in a
series of powers of (m —p, ——,

'
) and we set

k

LE =0

k Xm"
g L/

and make use of the following relations [10], which are
valid within an arbitrary summation constant:

'm '=t!(p, +)(m )— 1
t+1

t+1 t+1

In order to solve the finite-di8'erence equation {3.10),
we require an analytical expression of b, 'Z,' '(m ). Let
us introduce the Bernoulli polynomials,

S —sN

Z,' '(m)= g C, '(t)(m —
(M

—
—,')'. (3.46)

t+1 „
LL+t+ 1 —um (3.47)

The %„are Bernoulli numbers (see Appendix C). We get

S —sN

'Z,' '(m)= g C,' '(t) t!q, , (m
—

(M
—

—,')—
t=l

S& —s+1 S& —s C(N)(t )

X (
—

l
—l)" X t+1 t+1 —u (3.48}

After choosing the arbitrary summation constant in
the expression (3.10) of Z,' ', (m ) so that Z,' ', (m ) keeps
the same form (3.46) as Z,' '(m ), we obtain

Z' ' (m ) = —
[

W' '(m )
—w' '(0)1

s —1 2b s s

+2a, (m —
)u

——')[k,' ' —Z,' )((M)]

+ct,z' '(m )+2a, h 'Z' '(m )]

(3.49)

) (1)=— w' '(1)+2a [k' ' —Z'N)(p)]
s —1 S S S

S s

+a, C(N)(1)+2a, g C,'"'(t)&,

and, for 2~ u S~ —s+1,

(3.51)

S —s
N

1V,' '(m)= g w,' '(t)(m —p —
—,')'.

t=0
(3.50)

where b 'Z,' (m) is defined by Eq. (3.48) and the
W,

' '(m ) function can be written [see Eqs. (3.27), (3.26),
and (3.46))

C' ' (u)= — w' '(u)+a C' (u}
2b S S

C,'N'(t) t+1
+2a, t+1 +t+ 1 u

Then, after introducing into Eq. (3.49) the expansions
of thefunctions Z,' '(m), p N)(m), and g 'Z N'(m) in a
series of (m —

(M
—

—,
' )" and comparing the resulting expres-

sion of Z,' '1(m ) with its standard expansion (3.46), we

get

(3.52)

Setting k,' ' —Z,'"'(p) =C,'"'(0), it is easily checked that
this recurrence formula (3.52) also holds for u = 1. Rear-
ranging the terms, it can be written again (1 ~ u
~ SN —S+ 1):

C' ' (u)=— ' '(" '+'
w,' '(u)+ C,' (u —1)+2a,

2b +t+1 —u (3.53)

Starting from s =A+1 down to s =1 and from
u =S&—s+ 1 down to u = 1, this relation allows a recur-
sive determination of the C,' (u ) in terms of the
C(N)(0) k(N) Z(N)( )

One has now to obtain analytical expressions of the
C,' '(0) =k,' ' —Z,' )(p) in terms of the expansion
coefficients b,( ' of the given perturbation V' '(x }. On
one hand, we have the expression (3.32) giving k,' ', in
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terms of b,' ' and k,' '. On the other hand, using the ex-
pression (3.49) of Z,' ', (m ), we get

Z(N) (m p) [ Pr(N)( ) (N)(()) k(N)1
s —1 2g s s s s

+2u, [Z,' '((M)+6 'Z,' '(m =(M)]].

(3.54)

will be seen hereafter that this property of the Bernoulli
numbers leads to the expected property [12] that the per-
turbed eigenvalues are polynomials in (U+ —,') of definite

parity.
Using this recurrence formula (3.58) successively from

s =S~+1, down to s =1, it can be inferred that one can
write (see Appendix A)

Using the first part of Eq. (3.47) together with its coun-
terpart expression m '= t!b,(Ih, +,(m ), we can write

a cr+j —k
CP) .(k)= y

j=O u =j
1

2b

can+1 —u

d, (o —u, k, S)}(
—u )

m ++ m =t'[({pg+((m)+~/(+)(m)] t+1
xb,'")+, „(J), (3.60)

and we get

1= t!(p~+)(m + 1) t+1 (3.55) where d (Oj, S&—j)=1 and the dh(o, k, s) satisfy the
following recurrence formula:

z'"'( )+a-'z( '(m=) ) d (o+l, k, s)=2(2s —2o+1) dh(—o, k —l, s)1

C,' '(t) t!{p,+)(—,') — 8,+( . (3.56)
t=l

Then, using this expression together with Eqs. (3.32) and
(3.54), and reminding the reader that [13]
k!yk( —,')= —[1—

—,
'" ']8k, we obtain the required ex-

pression

C(ht) (p) — b(N)+~(N)(p)1
s 1 2b s s

S —sN

+2+, y c,'"'(t)
t=1

0+j
+ g a)„d (cr, t, s)

s =k+1,2

(3.61)

This recurrence formula depends neither on the order
X of the perturbation nor on the data speci6c to the prob-
lem under consideration. Setting

'8 o, k
(2s+ 1)!(s o)!j—!8
s!(2s—2cr + 1 )!k!

(3.62)

it is found that the 8 ((T,k ) satisfy the recurrence formu-
la

QM

(3.57)
e, (o+1,k)= y A„„e,(u, k+2u —1),

@=0
(3.63)

Finally, after setting a, =2s+1 (see Table I), relations
(3.53) and (3.57) reduce to the single recurrence formula

where uM is the integer part of (o+j—k+1)/2,
8 (0,j)=1,8 (O, k ) =0 for k (j, and

C' ' (k)= — b' '(k)+ C' '(k —1)s —1 2g $ k

S —sN

+(4s+2) g ak, C,' '(t)
f =k+1,2

where

(3.58)

(3.64)

Finally, the analytical expression of the perturbed
ladder function in terms of the data coefficients b„' '(j ) is

SN SN s

E' '(x m ((h, )= g x '+' g C' '(t)(m —
(M

——')'
s=0 t=O

b()v)(0) b(N)~ ()v)(0) b(N)(k ) (w(k )

for 1~k ~S~—s

(3.59)
2a, = [

—( —,
' )'+']X.t+1

where

S~+1
1c'"'(t)=,' yS 2

Q S

(2u —1)!!
t!(2s+ 1)!!

(3.65)

1
ak' t+1

t+1
+t +1—k

S —s —1N

X g 1!e,(u —s —l, t )b„(~)(J ) .
j=0

Note that since, except S)= —
—,', the Bernoulli num-

bers Sk with odd subscripts k are a11 zero, the t summa-
tion involved in Eq. (3.58) works by steps of two units. It

The 8.(o,k) are easily obtainable, once and for all, by
means of the recurrence formula (3.63). Some values
have been reported in Appendix C.
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2. Determination of the perturbed eigenuaiue )P(, '(x) in a series of (v+ —,')". We have (x ') = —2, (0),

Then, using the expansions of Zo '(m ) and b, 'Zo '(m }

in a series of (rn —p —
—,')", substituting m for p and

—(v+ —,') for (m —p,
—

—,') into the expression (3.66) of
L' '(m;p), and keeping in mind that ao=1, we obtain
the following expression of the perturbed eigenvalue:

S +1
A(N) — ~ g(N)( + ) )u

u ~ u
0=0

where

(3.67)

The perturbed factorization function L' '(m ) is solu-
tion of the finite-difference equation (3.11) with
8'o( '(m)=0 [see Eq. (3.27)]. After introducing the m-

basis functions (m —p —
—,
' )", we get

L' '(m;p)= —2a (m —p —
—,')Ik' ' —Z( '(p)j

—aoZo '(m) —2aoh 'Zo '(m)+X, (3.66)

where b, 'Zo '(m) is defined by Eq. (3.47) and X is an
arbitrary summation constant.

The associated condition to be fulfilled is [see Eq.
(2.19)]

L' '(m =p;p, }=aok'

and, as a consequence, the arbitrary summation constant
is found to be

X=2aoIZo(")(p)+b, 'Z,'"'(m =p) j

SN

2ao X ao(CO

1.e.,

($7)(2t—1).. 'o'(+))r k-e (t, t —k)
b' „oz (t —k)!

For instance, we get

'}=—(u+ —,'),1

(x )=, [(u+ ) )'+ —,
' j,4 3

(x }= I(u+ —,') +—,'(u+ —,')j,5

(x ) = I(v+ —,') +—,'(u+ —,') + —,', j .8 35

In the same way, we get

J((1)= I(u+ —,') + —,
' j,1

gi(1)= I(u+ —,') + —,'(u+ —,') j,1

23(1)=
&

I(v+ —,') +—,'(u+ —,') + —,', j,5

J,(2)= — I(v+ —,') +—,'(u+ —,')j,1

J'~(2)= — I(u+ —,') +2(u+ —,') + —,', j,1

J)(3)= I(u+ —,') +(u+ —,') —
—,', j .1

(3.70)

(3.71)

(3.72)

(N) u+1 2 N

&'„'=(—1)"+' —C()(u —1)+2 g a„,CP'(t)
t =u+1, 2

write, formally,Noting that one can
A(„'=2b( —1)"C,(u ), we get

d (t, u, t 1)—1g(N) ( 1)u+ 1

j=0 t=u —j
xb,(")(j) . (3.68)

Rearranging the terms and introducing the expression
(3.62) of the d~ (cr, k, s ),. it is easily found that the general
expression (3.41) of the perturbed eigenvalue A', ' still
holds where

s( )=(—iv+'("
bt X —1

'(x, m)= g K' '(x, m;p)K' '(x, m;p)+i j!6 (t, t+j—k)
X y J

( +i)t+j k

o i (t +j k)
v=1(3.69)

in a series of y, (x )(" ), or y, (x )(m —p —
—,
' )J, according

to the factorization case under consideration. When
dealing with extensive perturbations and/or high orders
of the perturbation, the following expression of the

w,' '(j ) in terms of the b„"(k ) of the preceding orders of
the perturbation is well adapted for microcomputer pro-
gramming and can be used (see Appendix D):

Following from the property that 6 .( t, k ) vanishes unless
k is of the same parity as ( t +j ), the k summation works
by steps of two units.

As a by-product of the method, we obtain a closed-
term expression of the diagonal integrals (x ') between
the unperturbed harmonic-oscillator eigenfunctions

Note that while the expressions (3.71) of the (x ') can
be found again by using the former expressions (3.43) to-
gether with the expansion of the binomial functions („)in

a series of (v+ —,
' )", this is not the case for the expressions

of the pseudointegrals 2, (j) which are specific to the per-
turbed factorization case under consideration.

Summarizing the results, at each other X of the pertur-
bation, the determination of an analytical expression of
the perturbed eigenvalue A', ' and ladder function
K' '(x, m;p), associated with the perturbation V' '(x),
merely amounts to the computation of the data
coefficients b,' '(j ). For the three perturbed factoriza-
tions considered in the present paper, the data coeScients
b,' '(j ) are defined by Eq. (3.19) and involve the expan-
sion coefficients of the perturbation V' '(x } in a series of
y, (x ) together with the expansion coefficients w,

' '(j) of
the potential-like function
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(iv)( ~

)

N —1 N —v v+ w —v+ ~v+ l

b,' '(l )b„' '(m )X,(s, r, t, l, m, j), (3.73)
s=l I=p m=p

where, in each of the above three cases, a closed-form ex-
pression of the "coupling coefficient" X';(s, r, t, l, m,j) is
available [see Eqs. (D4), (D7), and (D10), respectively].

Let us emphasize that the values of these
X;(s,r, t, l, m, j) depend neither on the order of the per-
turbation nor on the particular problem under considera-
tion: Tables and/or subroutines giving these numbers
can be made available once and for all and can serve for
the analytical solution of any anharmonic eigenequation.

Let us now consider some illustrative and test applica-
tions of the method.

IV. ILLUSTRATIVE APPLICATIONS

Since the main purpose of the present paper is to
present the method rather than to give new results or ex-
tensive tables, we limit ourselves to some short and com-
parative test examples of the above three perturbed fac-
torization types.

and, since we have

p —m p —m

1 1

jM
—m JM

—m

1
+2 2

p m
+

1 [(4g)g2+4gz)Yo Yo

+4g3Yo Yi]

p m
+ 2 8g2Yp Yp,

where [see Eq. (3.7)]

we get

'll' '(x, m;l4)=g, Yo Yo+2gig2 Yo Y, +g~Y) Yi

(4.4)

A. General determination of the perturbed
eigenvalues and ladder functions

Yp Yp = 2gp+ 2J l, Yp Yl =
—,'Vl+ —,'32

Let us consider the solution of eigenequation (3.1) up
to the third order (N=3) of the perturbation. In order
to avoid writing down too many cumbersome expres-
sions, let us set b =1 [14] and assume that the perturba-
tion corresponds to the choice Sl=1 and therefore,
Sz=3 and S3=5 [see Eq. (3.9)].

Yl Yl =—pp+g l + pp2+ A/3 ~

Keeping in mind that w,
' '(j ) is the coefficient of

y, ("J ) in this expansion of lV'2) and that

b,' )(0)=h, +w, ~ '(0) while, for jAO b' '(j)=w' '(')
we get the following nonvanishing b,' '(j ):

1. Expansion of the perturbation in a series
ofHermite polynomials

The perturbations are

I'"'(x ) =g»i+gty»
V'"(x ) =h, y, +h,y, +h,y, +h4y4,

p I» +p2y2+p3y3 +p4y. +psy5+p6y6(3)

(4.1)

bo '(0)= 2g) +—,
'—g2, bI '(0)=h, + ,'g) +g)g2+g—z

b'2'(Q)=h +g g +—'g b' '(Q)=ll +—'g

b' '(0)=h4, b' '(1)=2g,g2+2g'

b'"(1)=2g,g +4g b"'(1)=2g'

b' '(2)=4g b' '(2)=4g

(4.5)

where y, =y, (x ) =y,&2, (x ).
a. First order (N=l) of the perturbation (Si =1). The

perturbed eigenvalue is [see Eq. (3.24))

(4.2)

The associated perturbed ladder function is [see Eq.
(3.21)]

Using Eq. (3.24), the second-order perturbed eigenvalue is
found to be

U '

A'„'= —
—,'g, +—,'g2+(2h, +g, +4g, g2+4g2)

U

+(4h2+8gig2+ 18g3)
p —mK'"(x,m;)M) = —[g) Yo+g2 Y, ]

—2 g3 Yo (4.3}

where Y, = Y, (x ) =y, +,&z, +,(x }.
b. Second order (N=2) of the perturbation (Sz=3).

One has first to calculate the data coefficients b,' '(j }.
The potential-like function is %V' '=(K'") [see Eq. (3.8)]

U V

+(8h3+ —",g2) 3 +16h4 (4.6}

The associated perturbed ladder function K' )(x, m;)u)
is [see Eq. (3.21) and use expressions (4.5)]
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K' (x, m;P) = —[(h1+—,'g1+g1g2++g1) YP+(h2+g1g2+ 2g2)Y1+(h3+ 6g2) Y2+h4 Y3 j

p —m

1 [(2h2+4g1g2+7g2) Yo+(2h3+ —",g2) Y1+2h4 Y2 j

p —m

2
p —m

{{4h3+—",g'2) Yo+4h4 Y, j
—

3 Sh, Yo . (4.7)

c. Third order (N=3) of the perturbation (S3 =5). The
potential-like function is '1121 '=2K'"K' ', where K"'
and K' ' are given by Eqs. (4.3) and (4.7), respectively.
Since we have [10]

p —m p —m
(4.8)

p —m p —m
=(t+1) +1 +t

and [see Eq. (3.7)]

Y Y =
—,'yo+ —,'y„Y Y, =—,'y, + —,'y

Yo Y2 =
—,'yp+ &y3 Yp Y3 =—'y3+ —'y4,

Y Yj =—'y +y, +—,'y2 + —,'y

Y, Y2 =—'yi+2y2+ —', y3+ —6y4

Yi Y3 =yz+3y3+-y4+-y»

(4.9)

we obtain the following nonvanishing third-order data
coelcients:

bO '(0) =(h1+ ,'g1+g1—g2+g2)g1

+ $(h2+glg2+ 2g2)g2

b, '(0)=p, +(h, +h2+ —,'g 1+2g,g 2+'g2)g,

+(h, +2h2+ —', h3+ —,'g, +3g,g2+ —",g2)g2,

b', '(0) =p2+(h2+h3+g, g2+ —', g2)g,

+(h, +3h2+4h, +2h4+ —,'g, +4g, g2+ —", g2)g2,

b', '(0) =p, + (h 3+h4+ —,'g 2 )g1

+(—',h2+Sh, +6h~+ —',g, g2+ —",g2)g2,

b4 '(0) =p4+ h4g1+ ( —,
' h3+ 7hq+ —'„'g2 )g2,

b5 '(0)=p5+3h&g» b6 (0)=p6,

bo '(1)=(2h2+4g, g2+7g22)g,

+(2h, +4h2+ —', h, +g1+10g,g2++6'g2)g2,

b', '(1)=(2h2+2h3+4g1g2+ —",g2 )g1

+ (2h, + Sh2+ Sh3+ —,'h4+g,

+ 16g1g2+ —",' g 2 )g2,
b2 '(1)=(2h3+2h4+ —", g2)g,

+(4h +10h +12h +6g, g2+30g2)g2,

b3 '( 1 )=2h~g, +( —", h, + 16h4+ —",g2 )g2

b' '(1)=—"h4g2,

bo '(2) = (4h 3+ —",g2 )g,

+(Sh2+ 16h3+ —',h4+16g, g2++g2)g2,
b I '(2) = (4h 3+4h ~+ —",g 2 )g,

+(Sh2+28h3+24h4+ 16g,g2++g2)g2,
b 2 '(2) =4r14g, + (12h 3+ 36h 4+ —", g2 )g2,

b(31(2)—20h

b0131(3)=Shag, +(24h3+48h4+68g2)g2,

b', '(3) =Sh4g, +(24h, +80h4+68g2)g2,

b2 '(3)=32hqg2, bo (4)=b'1 '(4)=128hgg2 .

Using these expressions, the third-order perturbed ei-
genvalue is found to be [see Eq. (3.24)]

AU '(h1+ 2g 1+glg2+g 2)g1+ 3(h2 glg2 Tg2)g2

+ [2p1+(2h1+4h2+g1+8g, g2+12g2)g1+(4h, +8h2+4h3+2g, +16g1g2+ 3 gz)g2]

+ [4p2+(Sh2+ 12h3+ 12g,g2+42g2 )g, +(8h, +36h2+48h3+ 16h4+4g, +64g, g2+ 190g2 )g2 j2

+ [ Sp 3 + (24h 3 +32h 4 +44g 2 )g1+ ( —",' "2+ 160"3 + 192h 4+ +g1g2 +440g 2 )g2 j

V U U

+ [16pq+64h4g1+(176h3+672h4+ ', g2)g2]+ 5 [32p~+ ",' h4g2]+ 6 64p6
' . (4.10)
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The associated perturbed ladder function E' '(x, m; p }
is given by Eq. (3.21) and, for the sake of brevity, has not
been reproduced.

The computation can be pursued up to any higher-
order N of the perturbation without special difficulty. As
a rnatter of fact, when the order N of the perturbation in-
creases the general expression of A', ', involving all the
expansion coefficients g;, h;, p, , etc. of the perturbation
becomes somewhat cumbersome and, of course, when
dealing with a given problem, one is better off giving the
nonvanishing expansion coefficients their actual values
from the beginning of the computation. Nevertheless, for
comparative purposes, let us also work out general ex-
pressions when the perturbation is expanded in a series of

2$

2. Expansion of the perturbation in a series ofx t'

Let us now assume that the perturbation is

V'"(x ) =g,x'+g, x',
V]2](x)=h,x~+h x4+h x6+h x]]

a. First order (N= 1) of the perturbation (S&=1). The
perturbed eigenvalue is [see Eq. (3.41)]

A'„"=g, $](0)+g~ $2(0),

where the S,(0)= —(x ') are given by Eq. (3.44). We
get

U U

A'„"=—'(g]+3g2)
1

+3g2 2
+ —,'g]+ —,'g2 ' .

(4.11)

The associated perturbed ladder function is given by Eq.

(3.37) where the only nonvanishing data coefficients are
b']"(0)=g] and b2" (0)=g2. We get

E'"(x,m;m )= — ( —,'g, +—,'g2)x

p —m
+ 2g2& + 2gp& (4.12)

and we obtain the following nonvanishing b,' '(j ):

b] '(0)=h]+ —,'g +],glg2—+„g2-
b2 '(0) =h2+ —,'g, g2+ —,'g2,

b3 '(0)=h3+ —,'g2, b'] '(1)=—,'g2+ —,'g]gz,
b'"(1)=-'g' b'"(2)= —'g'

(4.13)

Consequently, using the expression (3.41) of the per-
turbed eigenvalue together with the expressions (3.44)
and (3.45) of the 2, (j ), and rearranging the terms, we ob-
tain

b. Second order (N=2) of the perturbation (S2=3).
One has first to calculate the data coefficients
b,' '(0)=h, +w,' '(0) and b,' '(j)=w,' '(j ) where w,

' '(j) is
the coefficient of x '("J ) in the expansion of the
potential-like function 'N] '=(E'") .

Using the expression (4.12) of E"' and relation (4.8),
we get

(E'") =(—,'g] + —,'g]g2+ —,', g2 )x +(—,'g]g2+ —,'g2 )x

+—,'g2x + {(—', g,g2+ —', gz)x +—', g2x ]

p —m
+-', g',x'

2

U U U

A'„'= —'210h4 4 +(420h4+15h3+ —", g2) 3 +(+~]'h4+~45h3+3h2+3g]g2+ —",'g2)

U

+(105h4+ —", h3+3h2+h]+ —,'g] +3g]g2+9g2 )

+ '8 h4+ 8 h3+ 4h2+ 2h )+ 8g ) + 4g]g2+ 16g2 (4.14)

The associated perturbed ladder function E' '(x, m;p) is
given by Eq. (3.37) where the b„' '(i) have to be substitut-
ed with their expressions (4.13}.

The computation can be pursued by the determination
of the analytical expression of %" '=2E''"K' ' leading to
an analytical expression of A'„', now involving the x ' ex-
pansion coefficients of V(x ). This expression is some-
what more cumbersome than its counterpart (4.10) in-
volving the 7', -expansion coefficients and, for the sake
of brevity, is not reproduced.

Let us now apply the procedure to the determination
of the x -perturbed harmonic-oscillator energies.

B. The x -perturbed harmonic-oscillator energies
and ladder functions

Let us consider the eigenequation (g )0)

x 2gx +2E '%—(x)=—0 .
dx

(4.15)

This is an eigenequation (3.1) with b = 1 and S, = l.
l. Application of the jfrst perturbed factorization scheme

Since x4= —,'+ —'&2(x )+ —,],&4(x ) [see Eq. (Bl)], the
perturbation is V(x ) = V'"(x ) = —g(3y, + —',y2). The
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r

U UE'"=3g ' + +—
2 I 4

The associated ladder function is [see Eq. (3.21)]

(4.16)

perturbed energies are E'"=
—,'A"'+ —,'g and, for X) 1,

E(N) 1 A(N)
2

a. First order (N=l) of the perturbation (Si =I). The
perturbed eigenvalue is A',"=6g(1)+6g(z) [see Eq. (3.24)
with b', "(0)= —3g and b ~z" (0)= ——', g ], and one gets

to microcomputer programming.
Keeping in mind that the w,

' '(j ) are the coefficients of
y, (", ) in this expression, one gets the following expres-
sions of the second-order data coeKcients:

b' '(0) =—"g' b' '(0) =—"g b' '(0)= —"g
b' '(0)= —"g b' '(2)=b' '(2)=9g

Consequently, the perturbed energy E,' '=
—,'A,' ' and as-

sociated ladder function are

p mK"'(x,m;iz)= —g '(3YO+ —,
' Y, )+

1
3YO

' .

b Sec.ond order (N=2) of the perturbation (Sz=3).
The potential-like function is 'N' '= (K' "),i.e.,

')1)' =g 9YDYO+9YD Y, + —', Y, Y',

E(2) 2, 51 + 153, +18 + 2
3 4 2. 1 8

K' '(x, m; p) = —g —", Yo+ —", Y, + —,", Yz

p —m
+[—',"Yo+ —", Y1]

(4.17)

P Pl
+(27Y111'11+9Y13Y, ) p —m

+ —", Yo

p —m
+18YO Yo c. Third order (N=3) of the perturbation (Sz= 5).

The potential-like function is %V' '=2K"'K' ', i.e.,

p m
"lV =g '

3 Yo Yo+81 Yo Yi +
4 Yo Yz+ 8 Yi Yi +

8 Yi Yz+[+ Yo Y13++Yo Yi +
4 Yo Yz+ 4 Yi Yi ]

p —m
+ [8641'11Yo+ '53' Yo Y, ]

p —m
+4S9 Yo Yo

where the Y, Y are given by Eq. (4.9).
One gets the following expressions of the third-order

data coeKcients:

(0)—333 b (0)—813 b (())—1485 b ((})—315

b4(0)= —",,', bo(1)=—',", b, (1)= ",", bz(1)= —",',
b (1)=—"' b11(2)=432, bi(2) = ""
b, (2) =+345', bo(3)=+,
where, for the sake of brevity, we have set g = 1 and used
the shortened notation b,I '(j )=b, (j ).

The perturbed energy E„' '=
—,'A', ' is found to be

U U U U
E(~)— ~ ~ 1125 + 1 125 + 6291 + 1791 + 333

4 3 s 2 s

to microcomputer programming.
Of course, the expressions of E,'", E„' ', and E„' ' are

directly obtainable by setting g, = —3g, g2= —
—,'g, and

h, =p, =0 in the general expressions (4.2), (4.6), and (4.10)
of A'" A' ' and A' '

2. Application of the second perturbed
factorization scheme

a. First order (N = 1) of the perturbation (Si = 1).
Since the perturbation reduces to VI "(x)=—2gx, the
associated eigenvalue is A'„"=—2gfz(0) and, using the
expression (3.44) of Sz(0) = —(x ), we find again the ex-
pression (4.16) of F.,"'=

—,'A'„". The associated ladder
function is [see Eq. (3.37) with b(z" (0)= —2g ]

p —mK"'( mx;p) =g ' —', x+x +3x
1

' . (4.19)

(4.18)

and the associated ladder function K' '(x, m;)Lt) is given
by Eq. (3.21).

The computation can be pursued by working out the
expansion of 'V' '=2K'"K' '+(K' ') in a series of
y, (" ). Nevertheless, as the order N of the perturbation
increases, one has rather to compute the data coeScients
via the general expression (3.73) of the w,' '(j ) and resort

p m
(&' ') =g ' —x +3x +x +(l8x +6x )

1

p m
+ 18x (4.20)

b Second ord. er (N=2) of the perturbation (Sz=3).
One gets
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and the perturbed eigenvalue is found to be

A'„'=g2{ 9S,(0)+322(0)+23(0)+182,(1)

+622(1)+182,(2) j . (4.21)

b .Second order (N=2) of the perturbation (S2=3).
One gets

(K'")'=g'{x'—6x'(m —p —
—,
' )+9x'(m —p —

—,
' )'j

(4.27)
Using the expressions (3.44) and (3.45) of the S,(j), we
find again the expression (4.17) of E„' '.

The associated ladder function is
and, consequently, the perturbed eigenvalue is

A', '=g {$3(0)—622(1)+97,(2) j . (4.28)

K' '(x m'p)= —g —"x+—"x +—'x Using the expressions (3.71) and (3.72) of the S,(j), we

obtain

P Pl
+ —",x (4.22)

(4.29)

Setting b~3 '(0)=g, b2' '(1)= —6g, and b1 '(2) =9g
[and b„' '(j)=0, otherwise] in the expression (3.65) of
C,' '(t), we get

c. Third order (N=3) of the perturbation (S3=5).
One gets

2~ '[ i ig '[2 i = —g 3, 63 x 2 + 75 x 4+ 7x 6+x 8
4 4

P P1
+(261x +117x +14x6)

p —m+('"'x +117x )2 2

1)s+1
C,' '(t)=g { ", 8 (2—s,t)+—98,(1—s, t)

t!(2s + 1)!!

+982( —s, t) j

and, after introducing the values of the 8.(o,k) (see Ap-
pendix C), the associated perturbed ladder function is
found to be

K'"(x,m;p) =g'{—
—,
'x'+ —", (m —p, ——,

' )x'

—[—'„'+—", (m —
IM

—
—,') ]x j . (4.30)

P Nl
+459x

and the perturbed eigenvalue is found to be

A'„'= —g {—", g1(0)+ —", J2(0)+793(0)+J4(0)

(4.23)

c. Third order (N=3) of the perturbation (S3 =5). Us-

ing expressions (4.26) and (4.30) of K"' and K' ', we get

"lV' '= —
{[x + —"x ]+[14x + —",x ](m —ls —

—,')
——',"x (m —p —

—,')'+ —",'x'(m —
JM

—
—,')'j,

(4.31)
+26121(1)+11722(1)+1423(1)

+ ","J,(2)+117J'2(2)+45971(3)j . (4.24)

Using the expressions (3.44) and (3.45) of the S,(j), we
find again the expression (4.18) of E„' '.

The associated perturbed ladder function K' '(x, m;p)
is given by Eq. (3.37) and the computation can be pursued
to higher order of the perturbation.

Let us now consider the determination of alternative
expressions of the E„' ' in a series of (u+ —,

' )".

E(')=g {—,'(v+ —)2+ —j (4.25)

The associated perturbed ladder function is [set
b2" (0)= —2g in Eq. (3.65)]

K"'(x,m;p)=g{x' —3x(m —p —
—,')j . (4.26)

3. Application of the third perturbed
factorization scheme

a. First order (N= 1) of the perturbation (Sl = 1). The
perturbed eigenvalue is A'„"=—2g J'2(0), and using the
expression (3.71) of 22(0}=—(x ), we get the following
expression of E,'"=

—,
' A',":

and the perturbed eigenvalue is found to be

A'„"=g'{—2 (0)——3S,(0)+14',(1}

+ 99 J (1) 117+ (2)+ 133+ (3) j (4.32)

Using the expressions (3.71) and (3.72) of the S,(j), we
obtain

g { ( u + 1
) + 170

( u + 1 )2 + 1339
j16 2 32 2 256 (4.33)

C. Kigenenergies for the x +kx /(1+gx ) interaction

Let us consider the solution of the eigenequation

A,x
2

—x —
2

+8 qs(x)=0 .
dx (1+gx 2)

(4.34)

The above expressions of the x -perturbed harmonic-
oscillator energies E,"', E„' ', and E,' ' are in accordance
with already known results [12]. The expected property
that the quartic anharmonic energies are polynomial in
(u+ —, ) of definite parity is found again as a direct conse-
quence of the vanishing conditions of the 8.(lr, k ) nurn-
bers: the pseudointegrals S,(j},as well as the integrals
(x ') = —S,(0), are polynomials in (u+ —,'} of the same
parity as (t+j ).
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Since, on one hand, we have at our disposal general ex-
pressions of the anharmonic-oscillator eigenvalues (up to
the third order of the perturbation} and, on the other
hand, it has been shown [15] that the eigenequation (4.34)
can be viewed as a particular case of the perturbed
harmonic-oscillator eigenequation (3.1) with a perturba-
tion which is expandable as a convergent series of Her-
mite polynomials, we can obtain analytical expressions of
the eigenenergies @'„'with a minimum e6ort.

The perturbation to be considered in the anharmonic-
oscillator eigenequation (3.1), with the eigenvalue
A=8 —b(2m+1}, is

e"'=b A"'+ (—I —1)—1 —b
U U 0

for ~) 1
V U

(4.38)

when using the following expressions for the expansion
coeScients of the perturbation:

2 1—b A,bl(0)= ——. ——2)21 b 4b 2

the perturbed factorization procedure provides the re-
quired perturbed eigenenergies

V(x ) = —(1 b)x———+2 2 A A

g g(1+gx )
(4.35)

(2k )!A,
bk(0)

I tb
+2k

k Ibg

(4.39)

where

+ g +2k~2k(b
g k=2

(4.36}

k

2)pk = g (
—1)"[u!(2k 2u)!2—"j 'Ik

Q

b " ' (2s —1)!!
(I()—1)—gg, —(

2'

Q S

I0= b
exp

g

' 1/2
b

erfc

erfc( u ) = 1 —erf( u ) is the complementary error function.
Tables, series, and asymptotic expansions of the erfc(u)
functions can be found, for instance, in Ref. [13]. Formu-
las allowing the computation of Io(u ) for several ranges
of u are available [15].

Now, we note that when setting x =b ' I, the
eigenequation (3.1) to be considered becomes

d2 —X +2m+1+ —V(b '~ X)
dX b

+—[6—b(2m+1)] '+(X)=0.1

b
(4.37)

The general results of the preceding section, which corre-
spond to an unperturbed harmonic-oscillator potential
U' '(X,m)= —X +2m+1 and basis functions y, (X)
=X,%z, (X), can be used. We have 6"',~'=2b(U+ —,') and

where the scaling real parameter b is used to improve the
zeroth-order harmonic Hamiltonian.

As it has been shown [15], the choice
b =1+A,/(1+g/2) is well adapted to most low-lying
states while, if one is interested solely in one specific vi-
brational level U, it is more convenient to choose
b = 1+A, /[1+g ( v + —,

'
) ].

The perturbation (4.35) can be expanded in the follow-
ing convergent series of Hermite polynomials [15,8]:

1 —b
V(x ) = ——(1—2)0)—

g
' 2b

T

1 —b ——2), .8~(b x)
4b 2

Using the expression (4.2) of A'," with g, =b, (0) and

gz =bz(0), we get the following approximate expression
of the total energy in terms of A, , g, b, and U:

1 ~ 1 4A,
8, =———(Io —1)+ —— 2)p0

48k
4 2

(4.40)

where

42), = — (Io —1)—Io,2b

482)q = 2b 6b 3 (I 1)+ b
2 2 0

g

This simple and compact expression gives again, as par-
ticular cases, the analytical expressions already obtained

[15] for the ground and first excited states (U =0, 1, and
2): setting b =[1+A,/(1+g/2)]'~, it reproduces the
trend of the exact values of the energies C„o, 8„„and

~, for a rather large range of values of A, and g [15].
Using both the expressions (4.2) and (4.6) of A'„" and

A'„', we obtain the more elaborate expression of the total

energy,

U U U U

lgeo+ IP]1 +eg2+e33+IP44 (4.41)

where

(28~+272)~)e2

96k. ~ 34k, ~q 2A,

g bg 3g

1 (1 b} A, — 1 b~-
e0= ' 1 'I0 1+

b 8b' g
' b

2

[ ZS~+ 482)Q,
b

e, =—— 2)~+ — ——(2)~+ 122)~)
1 4A, 4 1 —b A.

b g b 4b g
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6%6=— b + 15b +45b + 15

2g 4g 8

b 3b 15
2g2 g 8

to the case of the x '-perturbed rotating harmonic oscilla-
tor (perturbed type C), which corresponds to the unper-
turbed potential

U(p)( ) b2 2 m (m + 1)
X

8l b 14b 105b 105b 105
g4 g' 2g' 2g 16

b 25b 141b 105

2g 4g 8g 16

This expression, showing the U dependence of the ener-
gies, gives a rather good approximation of the exact
values.

With the help of a computer program and the use of
expressions (4.38} and (4.39), the perturbed factorization
procedure can provide the perturbed energies 8'„' in
terms of the ("„),up to any high-order N of the perturba-
tion without special difficulty.

and analytical expressions of the S,(j) in a series of
(v+ —,

' )"(m +—,
' )" or ("„)(m+—,

' )" can be derived. The pro-
cedure also works nicely for giving an elaborate perturba-
tive solution of the nuclear diatomic Morse-Pekeris
vibration-rotation (perturbed type-B ) wave equation,
which is needed, for instance, for a theoretical determina-
tion of the centrifugal contributions to the rotational
spectra of diatomic molecules [16]. Results concerning
these studies, together with a more extensive investiga-
tion of the computational aspect of the method, will be
given elsewhere.

APPENDIX A: DETERMINATION OF
THE C,( )( t ) COEFFICIENTS

V. CONCLUSION
1. x 2' expansion of the perturbation associated

with a ("„)expansion of the perturbed eigenvalue

Using the recurrence formula (3.48) successively for
s =SN+1, Sz, . . . , and introducing the shortened nota-
tion Cs (k)=Cs ' (k) and b, (u)=b,' '(u), we have

1
Cs„(0)=

2b bs„+&(0)

'2

Cs, (0)=— bs (0)—1 1
(2S&+ 1)bs„+&(0»

'2
1

(4Stt+2)bs +,(0),Cs i(1)=— bs (1)—1

'2

(2S~—1)bs (0)
11

Cs 2(0)= — bs 1(0)—

'3

(2S~ —1)(2S~+1)bs +,(0),1

(A1)
'2

(4SJv 2)bs (0)—1
Cs 2(1)=-

N

3

(4SN —2}(4S~+2)bs +,(0}
1

2
1

bs„—i(1)— (2SN —1 )bs ( 1),1

3

Cs z(2) = — (4' —2)(4SN+2)bs +,(0)
1

2

(4S~ 2)bs (1)— bs —i(2),
2b

and so on.
More generally, it is easily checked that Eq. (3.34)

holds.

Three perturbed factorizations of the symmetric per-
turbed harmonic-oscillator eigenequation have been pro-
posed, allowing an analytical determination of the per-
turbed eigenvalues by means of a few algebraic manipula-
tions. For the three cases, the same expression (3.41) of
the perturbed eigenvalue A', ' in terms of the pseudoin-
tegrals J', (j ) and of the data coefficients b,' '(j ) holds and
serves successively at each order N of the perturbation.
For each perturbed factorization case, closed-form ex-
pressions of the pseudointegrals 2, (j) in a series of ("„)or
(v+ —,

')" have been made available. Therefore, for any
anharmonic-oscillator eigenequation under consideration,
the determination of the eigenvalue A', ' of order N sim-

ply amounts to the computation of the data coefficients
b,' '(j ) in terms of the expansion coefficients of the per-
turbation, either via the closed-form expressions of the
perturbed ladder functions or by means of formula (3.73).
In comparison with previous results (see paper I or [8]),
the computational algorithm has been drastically
simplified. Moreover, it requires only algebraic recursive
manipulations and, when high orders of the perturbation
are required, it is well adapted for microcomputer pro-
gramming. Let us add that, since the procedure provides
the perturbed ladder operator, the perturbed eigenfunc-
tions can also be determined in closed form (for details,
see paper II or [8]).

Owing to the present results obtained for perturbed
type D and also for perturbed type F (see paper II), one
can hopefully conjecture that these new techniques,
which have been elaborated for handling efficiently the
perturbed-ladder-operator method, can also be applied to
the remaining factorization types A, B, C, and E: very
likely, for each factorization type, one has first to find
adequate x-basis and finite-difference m-basis functions
and, then, to make available the associated pseudoin-
tegrals J,(j) and coupling coefficients X', (s, r, t;I, m, j). .

Particularly, the present results can be easily extended
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2. x ' expansion of the perturbation associated
with a ( v+ —')" expansion of the perturbed eigenvalue

Using the recurrence formula (3.25) successively for
s=S&+1,Sz, . . . , we have

1
Cs (O)= bs +i(O)

2b

1Cs„-i(0)=— bs (0),

and

( —1)' "(2s+ 1)!
2 )ok+ (

(s —k )!(2k+1)!
(B2)

Since we are dealing with the same perturbed eigenequa-
tion, at any order N of the perturbation we can write

S~+1
A(. '+ y b(")(0)y,m„(b'"x)

s=1

Cs —i(1)
b

bs„(1)
1

2

S~+ 1

=A'"'+ y b' '(o}x"
s=l

+ — (4S~+2)bs +,(0),1

Cs 2(0) =—1
bs i(0)—

2

(A2)

+ — ap)(4S)v 2)bs (—1)
1

3

++ — ap)(4S)v —2)(4S)v+2)bs +,(0),

S~+ 1

b(N)(0)—
t=s

t+1
1 (2t }!b()v)(0 }s b t122t

1 ~ s ~ S)v+1 . (B4)

where the left and right sides are related to the first and
second perturbed factorization cases, respectively. After
introducing the expansion (Bl) of x ' in a series of
7(', %2,(b' x), making some rearrangements, and equat-

ing the coefficients of y, &z, (b'~ x ) in both sides of Eq.
(B3), we obtain

Cs 2(1)=-
N

'2

+ — (4S)v 2)bs —(0),1

Let us now focus our attention on the first order
(N= 1) of the perturbation and compare the alternative
expressions of the associated perturbed ladder function.
On one hand, we have [see Eq. (3.37)]

2

Cs 2(2) = — bs, (2)+ — (2S)v —1)bs (1)1 1

2b & 2b t=0s=0

S1 S1 —s p —mK"'(x, m; p) = g x '+' g C,"'( t ) (B5)

3

+ — (4S)v —2)(2SN+1)bs +((0),1

APPENDIX B: INTERRELATIONS BETWEEN THE
FIRST TWO PERTURBED FACTORIZATIONS

OF THE ANHARMONIC-OSCILLATOR
EIGENEQUATION

Let us make use of the following relations:

2, ~ (2s)! ~ ( )

, =p 2 '(2t)!(s —t)!
(B1)

and so on. The shortened notation Cs ( k )
N

=Cs' ' (k) andb, (u)=b,' '(u) hasbeenus d.

More generally, it is easily checked that the expression
(3.60) for Cs '

z (k ) holds. Then, substituting for
N

Cs ' (k) froin Eq. (3.60) into the recurrence formula

(3.58), we get the recurrence formula (3.61) allowing the
deterinination of the d (cr, k, s ).

where

C,"'(t ) =—
S+1 ' u —s

1

dp(u —s —l, t, u —1)
u =s+t+1

xb„")(0) . (B6)

(B7)

where the b,'+', +, (0) are given in terms of the b„"'(0) by

Eq. (B3).
Substituting for the Hermite polynomials

&2, +,(b' x) from Eq. (B2) into Eq. (B7), making some

rearrangements and comparing the result with expression
(B5), we get

On the other hand, we have [see Eq. (3.21)]

S1

K'"(x,m'p)= b' y y— Pf~s+)(b' x)
s=0

S1 —s p —m
x g, 2'b,"'„,(0),

t=O

c,'"(t)=— Sl +1

X
u =s+t+1

u s S+ t —
u(2 )1

u —t —1
' b())(0) y ( 1)k —s

u1 k=s

kt u

( k —s }i(2s + 1 }1 k + t + 1
(B8)

Consequently, keeping in mind that the C,"'(t) coefficients are given by Eq. (B6), we obtain the following closed-form

expression of the dp(o, k, s ) coefficients associated with the second case of perturbed type-D factorization:
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2s +t —
u(2 )( u —t —i

d (u —s —l, t, u —1)= ' g ( —1)"0 ut
k! u

(k —s )!(2s+1)! k + t + 1
(B9)

(2S)v+ 1)!(Ss( (—r }!

cr —t S~—cr+ u S~+ 1

Setting u —1=SN, SN —s=o, this expression can be
written again:

Hence we obtain the general expression (3.36). It is easily
checked that this expression satisfies the recurrence rela-
tion (3.35) together with its associated conditions.

APPENDIX C: DETERMINATION OF THE
ei(n, k ) COEFFICIENTS

where

X g( —1)"
M=0

cr —t —u

(B10)

Values of the Bernoulli numbers 8, can be found in
tables [10,13] or can be calculated recursively by means
of the symbolic equation (1+%)'—%, =0. In the expan-
sion of (1+%)', 23k is to be put instead of S". For in-
stance, we have

( —1)"
S~—u+ u —S~+0.—1

and applying Cauchy's formula
r

n+m ~ n m

u z u@=0

I (n+1)
I (u+1)I (n —u+1)

is a generalized [10] binomial coefficient. Using the rela-
tion

6' 4 )or +6 ~~~ () )o r

691
10 66 & 12 2730' '

%2, +)=0 for any t )0 .

Using the expressions (3.64), we get

A()()=0 A()i = ( A()2=

Ako= 1, A»= —,'„Ak2= —
+2o for any k .

Applying the recurrence formula (3.63), we obtain

8 (o,o +j )= 1 for any j

(Cl)

(C2)

(C3)

we obtain the compact expression

( ( )~—((2s+1)!(s—(r)!
s!(2s—2(r + 1)!

(B1 1)

d (cr, k, s)=do((r, k —j,s) . (B12)

As expected, this expression satisfies the recurrence for-
mula (3.35). Moreover, we note that when applying this
recurrence formula for j %0, the j dependence of the
d (o, k, s) coefficients is generated only via the starting
value dl(0, j,s)=1. The following relation holds:

8()(2,0)=—,', 8()(3, 1 }= —,'„
8 (4,2}=—,'„8,(1,0)=-,',

8)(3,0}= —,'„, ei(3, 2)= —,'„

e,(4,o) =—„', ,

8)(2, 1)= —,', ,

8 (1,1)=—,', , (C4)

e,(2,o)=—„'„e,(2,2)=-,', e,(l,o}=-„, ,

ei(1,2)= —,', .

together with the following values which are required for
the computation of the expressions (3.71) and (3.72) of
the J,(j):

APPENDIX D: DETERMINATION OF THE DATA COEFFICIENTS b,' '(j )

1. y,&2,(b ' x ) expansion of the perturbation together with a ("„)expansion of the perturbed eigenvalues

Using the expression (3.21) of the perturbed ladder function and keeping in mind that SN „+S„+1=SN,one can
write, after some rearrangement,

SN S~ S
~(N v)lt- (v) y + y—

r=O k=O 1=0

S „—k S —1p —m p —m
h(s, r, t)C' "'(k)C'"'(l),

s =0 r=0
(D 1)

where h (s, r, t ) is given by Eq. (3.7).
Using the relation [10]

p —m p —m

k I
p —m

j (D2)
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in the expansion of the potential-like function
JM m

and keeping in mind that w' '(j) is the coefficient of yt j
'llj =g, K K, we obtain, after some rearrangements (t =0, SN; j=0,SN —t },

N —1 v

X X X
v=1 k=O u =k

S~ —j+k S —u

h (s, r, t )C,' '(j—k )C„' '( u ) .
s=0 r=0

(D3)

Finally, after introducing the expression (3.20) of the C,' '(t ) and again making some rearrangements, we obtain the ex-
pression (3.73) of w,

' '(j), where

s —1 r —1

X,(s, r, t, k, 1,j)= g g 2"+"
u =0 U=0

j u+k
„+k .

1
h(s —u —l, r —v —l, t) . (D4)

2. x ' expansion of the perturbation associated with a {"„)expansion of the perturbed eigenvalue

Using the expression (3.37) of the perturbed ladder function, one can write

K(N —v)K(v)—
t —1 1Y —v v p —m p —m

2t g g g C(N v)(1 )C(v) (1 )
s=0 k =0 l=O

Using Eq. (D2) and keeping in mind that w,
' '(j) is the coefficient of x '(" ) in the expansion of the potential-like

function "}V' '=gN:))K' 'K' ', we obtain, after soine rearrangements

l=j —kv=1 s=O k=O

N —1 t —1 v

w'"'(j}= X X X X
j k

k 1 —'+k (D6)

X2(s, r, t;1,m, j)=

After substituting for the C,' "'(k } and C,'"', , (1) from Eq. (3.37) into Eq. (D6), and again making some rearrange-
ments, we obtain the expression (3.73}of w,

' '(j },where the "coupling coefficient" is
's+r —t+1

1 ( 2s —1 )!!( 2r —1 )!!
2b o (2u +1)!!(2t—2u —1)!!

j—l S —Q —1
X y2"

k=0

J J 17l

k+1 i=0

r —t+u+1
j —m —i (D7)

3. x ' expansion of the perturbation associated with a (u + 2
)" expansion of the perturbed eigenvalue

Using the expression (3.65) of the perturbed ladder function, we get, after some rearrangements,

Sx Sz t —1 j
K(N —v)K(v) y X2r y (m p ) )j y y C(N v)(k)( (v) (j k)

t =1 j=0 M =Ok=0

and me have

N —1 t —1 j
W(N)(j ) y g g C(N v)(k )C(v) (j—

v=1 u=O k=O

(Dg)

(D9)

Substituting for the C,'N "'(k ) and C,'"', , (j—k) from Eq. (3.65) into Eq. (D9), we obtain the expression (3.73) of the
w,'N'( j ) where the "coupling coefficient" is

's+r —t+1
1

t —1 (2s —1)!!(2r—1)!!1!m!
X3(s,r, t;1,m, j)=

b o &~o k!(j—k )!(2u + 1)!!(2t—2u —1)!!4

Xe,(s —u —l, k)e (r t —u, j—k—),
and the 6 (o,k) are obtainable by means of the recurrence formula (3.63).

(D10)
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