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Two-center shell potential: Spectral fluctuations and an efFective underlying classical dynamics
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The two-center shell potential is an example of a system that does not possess an obvious classical ana-

log. %'e carry out a detailed study of the spectral measures and Snd, apart from other interesting details,

a regular-irregular-regular transition in both the nearest-neighbor-spacing distribution as well as the

spectral rigidity with a variation in the separation between the two nuclei. Moreover, the saturation of
the spectral rigidity, together with an accurate prediction of its onset using the Fourier transform of the

spectrum, clearly indicates that a "Gutzwiller-like" sum rule for the density of states does exist in this

system.

PACS number(s): 03.65.Sq, 03.65.Ge, 05.45.+b

I. INTRODUCTION

Extensive studies on the fluctuations in the density of
the quantal energy eigenvalues during the past decade
have established the existence of universality classes [1]
determined essentially by the nature of the underlying
classical dynamics. Among the typical fluctuation mea-
sures used in these investigations are the nearest-neighbor
level-spacing distribution P(s) and the spectral rigidity
63~ Their behavior is quite distinct for the two extreme
cases of the classical flow. In the integrable case, the dy-
namics is regular and the quantum spectra exhibit fluc-
tuations typical of a Poisson process. For chaotic sys-
tems, on the other hand, the fluctuations are close to
those of the eigenvalues of random matrices reflecting the
presence or absence of antiunitary symmetries. In the
generic case, where the phase space is mixed, the statis-
tics is intermediate. This present understanding is largely
due to the successful applications [2,3] of the semiclassi-
cal periodic orbit theory [4] aided by certain classical
[2,5] and semiclassical [3] sum rules.

The emphasis in these studies has, however, been on
systems which possess a clear classical analog and are de-
scribed by a scalar wave field. This made the interpreta-
tion of results largely unambiguous. The few numerical
studies [6] on spectral measures in systems with mul-
ticomponent wave functions show a similar behavior. In
their analytical work, Littlejohn and Flynn [7] succeeded
in decoupling the wave components by extending %KB
approximations to multicomponent wave fields and using
Weyl transformations. This work thus showed that for
each individual "polarization, " there exists a classical
Hamiltonian and the semiclassical description is given by
a scalar wave. The presence of an underlying classical
dynamics was indeed indicated by Biswas, Pal, and
Chaudhari [8) while studying the two-component wave
functions in an axially symmetric system with spin-orbit
coupling. Apart from a transition from regular to irregu-
lar in the nodal patterns and contour plots, regions of

unusually high probability density were observed analo-
gous to the "scarred states" that show up in systems with
a classical limit. In a subsequent publication, Littlejohn
and Flynn [9] considered spin-orbit coupling semiclassi-
cally for integrable systems and obtained the classical
Hamiltonian. In this paper, we shall seek further evi-
dence of classical dynamics for the above two-component
system [8] in both the integrable and chaotic regimes us-

ing the spectral rigidity h3.
Predictions of random matrix theories [10]on the spec-

tral rigidity differ from numerical observations (at least
for systems with few degrees of freedom) in an important
aspect —63(L) saturates for values of L much larger than
the characteristic outer scale in the spectrum (the inner
scale is the mean spacing distribution). This, however,
can be explained [3] by the periodic orbit theory (POT)
which takes into account the underlying classical dynam-
ics. The outer scale is in fact determined by the shortest
periodic orbit which also dominates the saturation value
of b,3(L). Thus, for the existence of an effective classical
Hamiltonian in the two-center shell model, the spectral
rigidity must saturate.

The eigenvalues can in fact be exploited to extract fur-
ther information about the classical dynamics. A Fourier
transform of the spectrum is known to reveal sharp peaks
at the periods of the classical periodic orbits [11—14].
For a system without any obvious classical limit, such a
behavior can well be misleading. Assuming for the mo-
ment that the peaks do correspond to the time periods;
the smallest of these should give a value of the outer scale
consistent with the saturation of the spectral rigidity.

Studies along these lines for the two-center shell model
potential form an important aspect of our current investi-
gations. In the two earlier studies on this system [6,7],
the focus has been on the variation of the nearest-
neighbor-level spacing distribution (NNLD) with a pa-
rameter that measures the separation R between the two
centers (see Sec. II for details). A transition from Poisson
statistic at R =0 to Gaussian orthonormal ensemble
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(GOE) at intermediate values of R and back again to
Poisson at large separations formed the chief observation.
The histogram representation is, however, known to be
inadequate since P (s) depends sensitively on the bin size
[15,16]. Further, important details get washed out [16].
We thus investigate the spacing distribution using more
reliable techniques and find the emergence of interesting
details both at small (as well as large) and intermediate
separations. We also study the spectral rigidity in the re-
gion of universality and find that our conclusions are
identical to those from the NNLD. For example, the
variation of the fitting parameters follows similar pat-
terns in both cases.

The paper is organized along the following lines. Sec-
tion II contains a brief description of the two-center shell
model potential. Studies on the variation of P(s) and b, ,
with R constitute Sec. III. In Sec. IV we seek further evi-
dence of the existence of an effective underlying classical
dynamics using the spectral rigidity. Discussions form
the concluding section.

II. THE TWO-CENTER POTENTIAL

u(z)

Zt Zt Zy Z

Z

U UHo+ U~« (2)

—,'Mao, p + —,'Mco„(z —z, ) for z &0
U (,z)= '

—,'Mao 2p + —,'Mco, z(z —z2) for z )0,

FIG. 1. The two-center oscillator potential along the z axis.
The two centers are at z, and z2 and the barrier is at the origin.
The barrier heights with (full line) and without (dotted line) the
neck potential are U& and U2, respectively.

The two-center potential has often been used to model
shape transitions in heavy-ion collisions. The total Ham-
iltonian of a single particle in the combined field of two
axially symmetric harmonic oscillators centered at z, & 0
and z2 )0 (the position of the barrier is at the origin)
joined smoothly by a neck (Fig. 1) and with a spin-orbit
potential is given as [17]:

H =T+ U+ Uso,

where

R =z2 —z),
Q —

co&~ /co& ~

5 —co ~/Ql&~
—co 2/co&~,

(4)

giving z, = —QR/(1+Q) and zz=R/(1+Q). The neck
potential joining the two oscillators of Eq. (2) is defined as
[17]

p and z being the cylindrical coordinates. The above po-
tential is essentially characterized by

—,'M td, ~,', (z —z, )'+g, cop,p'](z —z', )'e(z —z', ) for z &0

—,'M[dzco, z(z —z2) +g2co 2p ](z —z2) e(zz —z) for z )0

g= U) /U2,

z =z;(1—e)/v. ,

d, = —e /I(1 —E)z, ],
g, =e (Q —1)(Q+1)/[(1—E) QR I, gz= —g, &Q .

(6)

The spin-orbit potential is evaluated in the same way as
in Ref. [18].

For a given R, Q, e and 6, only one of the frequencies
remains to be fixed for a complete description of the mod-
el. Considering a system of A nucleons, we shall obtain
the frequency co, by requiring [18] the volume under the
equipotential surface Vo =McooR o /2= Wo = (4vr/3)R o,
where Ro =1.2249 3 ' fm and Acoo=41 MeV A

for z', &0&zz. The parameters of Eq. (4) are obtained
from the smooth matching conditions of the potential
and are given as

In what follows, we shall consider an A =260 system
with 5=1 and a=0.8. The asymptotic value of Q is tak-
en as 1.1695 which corresponds to an asymptotic mass
asymmetry of 1.6, thereby placing two nuclei of masses
160 and 100 at z, and z2, respectively, for large separa-
tions. We shall be concerned with the neutron single-
particle levels in the following calculations.

In the absence of neck and spin-orbit potentials, the
system is clearly separable and can be assigned good
quantum numbers. The eigenfunctions are thus regular
as one would expect. The introduction of the neck poten-
tial leads to nonseparability in the region z', &z &zz. Our
numerical investigations show that the nature of
quantum-mechanical energy eigenfunctions does not
change drastically even at this stage. The presence of the
spin-orbit potential, however, has significant effects. The
eigenfunctions P„are now of the form

P„=P„'(p,z)
~

1 & +P'„(p,z ) l 1 & .
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As R increases from zero, the individual spatial com-
ponents P'„(i =1,2) of generic wave functions undergo a
regular-irregular-regular transition [9] as in the nearest-
neighbor-spacing distribution [6,7]. States with unusually
high probability density in certain regions also appear [9]
and are similar to the scarred states seen in systems with
a classical limit.

The eigenvalues used for the study of spectral fluctua-
tions in Secs. III and IV have been obtained by diagonal-
izing the Hamiltonian in a basis discussed in Ref. [18]. A
total of 464 states have been used and the convergence
for the first 150 eigenvalues was found to be excellent.
The levels have been unfolded using a polynomial of de-
gree 8 and the mean density is found to be unity. The un-
folded levels are denoted by c,„. For evaluating the spac-
ing distribution in the following section, we have exclud-
ed the first 20 levels.

p(s) ~
se

—(n s /4)

2
(9)

while for those without any symmetry, the distribution

where N + 1 is the total number of levels and C„'s are the
coefficients to be determined. Convergence is found to be
excellent with a 25-term expansion and is easily checked

by plotting the cumulative distribution, fOP (s')ds'
For generic integrable systems where the contours in

action space are curved [3] and the periodic orbit actions
are nondegenerate [21], P(s) is the Poisson distributione, indicating a clustering of levels. This is the only re-
sult for NNLD based on the periodic orbit theory. For
chaotic systems with time-reversal invariance (or other
antiunitary symmetry), numerical explorations on a num-

ber of systems [1]show that P(s) is well approximated by
the Wigner distribution,

III. VARIATION OF P (s) AND h, 3 WITH R p(s) 2e —(4s /n )

~2' ' (10)

N

P(s) =—g 5(s —s; ) = g C„L„(s)e
n

(8)

In the following, we shall carry out a detailed study of
the nearest-neighbor-spacing distribution P(s) and the
spectral rigidity 63 with an emphasis on their variation
with the separation R of the two centers. Apart from the
regular-irregular-regular transition already observed by
Milek, Norenberg, and Rozmej [6] and Pal and Chau-
dhuri [6] in the NNLD, the emergence of finer details
leads us to generalizations of the Brody [19] and Berry-
Robnik [20] distributions for P(s) in order to obtain
better fits. Studies on the spectral rigidity in this section
are for the sake of a comparative study of the variation in
the fit parameter as well as for completeness.

The nearest-neighbor level-spacing distribution, P(s) is
defined such that P(s) is the probability of finding pairs

[ e;,s;+, } with spacing between s and s +ds. Since the
normal histogram representation depends sensitively on
the bin size, we expand P(s) in terms of Laguerre polyno-
mials [15,16] L„(s):

is found to be appropriate [22]. Equation (10) closely ap-
proximates the result for the Gaussian unitary ensemble
(GUE). Both cases are characterized by a repulsion be-
tween neighboring levels in sharp contrast to the cluster-
ing observed in generic integrable systems.

The spectral rigidity b, 3(L) is the first measure for
which expressions have been obtained using the periodic
orbit theory for both the integrable and chaotic case. It
is defined as

6,(l. )=tmin, ~
—f [N(x +x)—a be] dx)—+L/2 2

L —JZ2

and is a measure of the average least-squares deviation of
the integrated density of "unfolded" states, N(s), from
the best fitting straight line a +bc.. For values of L in the
range 1&L «L,„(a characteristic outer scale deter-
mined by the shortest periodic orbit —for details, see Sec.
IV), b,3(L) displays universality, the nature of which de-
pends on the underlying classical dynamics. Thus

L /15, integrable

63(L)= ln(L)/n —0.00695, chaotic with time reversal

in(L)/2m —0.059, chaotic without symmetry .
(12)

The averaging is performed over an energy interval large
compared to L,„. The second expression of Eq. (12)
holds for other antiunitary symmetries as well.

Figure 2 shows plots of the nearest-neighbor-spacing
distribution P (s) for values of 8 in the range 0—18 fm in
comparison with the Poisson and GOE results. The de-
gree of level clustering reduces with the separation and
vanishes altogether at R =10. It increases again thereaf-
ter and, for large separations, attains a value close to that
at R =0. There is also a similar regular-irregular-regular
transition in the overall distribution as the plot indicates.

Certain interesting details appear as well. At R =0,

I

the potential U(p, z) is a pure harmonic oscillator. In the
absence of the spin-orbit coupling therefore, the system
belongs to the nongeneric category [2] of integrable sys-
tems and hence should display no universality. The pres-
ence of Uso pushes the distribution towards a Poisson.
However, there are oscillations as well and these are
characteristic of Hamiltonians having terms that are
weakly nonlinear terms in actions [23]. A similar
phenomenon occurs at R =18 as well. Thus the effect of
spin-orbit coupling at these separations is identical to an
addition of weak nonlinear terms in the harmonic oscilla-
tor Hamiltonian.
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1.0
R 0 ' R 2fm ' R 4fm ~ R=6fm ' R Sfm

\ \

P(s)=As "exp( —as'+ ), (14)

0.0
R~10 fm ' R 12fm ' R 14fm ' R 16fm ' R 1Sfm

\ \

where a=[1/1 ((2co+1)/(co+1))]"+' and
A =(1+co)a . The co=0 and 1 limits are the Poisson
and GUE results, respectively. The Berry-Robnik distri-
bution generalized to interpolate between the Poisson and
GUE result can similarly be expressed as

P(s)= [p~, [I, sI—Iexp( —p,s)+2p2p, I exp( —p, s)
th 05

where

+p2s exp( —p, s)exp( —4p2s /m. )], (15)

0..0
0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 3

s s s s s

FIG. 2. The nearest-neighbor-spacing distribution P(s) for
the two-center shell potential (continuous curve) for various
values of the parameter R. The Poisson and Wigner distribu-
tions are also shown. A regular-irregular-regular transition is
evident.

In order to get a more quantitative picture of the spac-
ing distribution at R =0 and 18, we have obtained the
best-fit Brody distribution [19]

P (s)= As exp( —as '+ ), (13)

where a= [I'((co+2)/(co+ 1)) ]"+', A =(1+co)a, and
parametrized by co. The two extreme cases at co=0 and 1

are Poisson and GOE results, respectively. The plots are
shown in Fig. 3. The fits, though far from satisfactory,
give an indication of the closeness to the Poisson distribu-
tion. The parameter values are 0.287 at R =0 and 0.309
at R =18.

At R = 10 fm where the repulsion is maximum, the dis-
tribution shows considerable deviations from the GOE
result. The fits to Brody and Berry-Robnik distributions
are, however, good but with parameter values larger than
unity leading to problems in interpretations. We have
thus generalized the ideas of Brody and Berry-Robnik in
order to get a transition from the Poisson distribution to
that of GUE with a variation in parameter. We only give
the final results since the algebra is straightforward. The
generalized Brody distribution (Poisson ~ GUE) reads

I, =f x exp( —4p2x /n. )dx,
S

I2= f x exp( 4pzx—/n)dx,
S

and p, +p2=1. The Poisson result is obtained for p, = 1

and the GUE result for p2= 1.
Figure 4 shows the best fit to the numerically obtained

values of P(s) at R =10 fm with Eqs. (14) and (15). The
generalized Brody distribution gives an excellent approxi-
mation for all values of s with the parameter co=0.794.
Equation (15), however, shows a poor fit due to the fact
that for values of p, ( 1, P (s) has nonzero value at s =0.
These results have a great significance in view of our con-
clusions in the following section. If one is to accept the
presence of an effective underlying classical dynamics, the
presence of a substantial GUE component does indicate
the absence of antiunitary symmetries in the classical sys-
tern.

The regular-irregular-regular transition can be seen in
the spectral rigidity as well. We have evaluated 53 for
2 L ~5 so as to remain in the region of universality.
The averaging has been carried out in an interval

[e—bE, c.+b,e], where e=85 and be=65 Our res.ults
are displayed in Fig. 5 for values of the separation R con-
sidered in Fig. 2. The gradual shift towards the GOE re-
sult is evident as R increases from zero. Moreover, for
6 R 10, the rigidity distinctly falls below the GOE
curve (but remains above GUE values) before finally re-

gistering a shift towards the Poisson result.
A plot of the variation in the best-fit parameter with R

shows the transition more clearly. For the nearest-

1 0

0.5

R=O—CALC.
----- FIT

R=18 fm—CALC.
---- FIT

1.0

0.5

FIT TO GOE+POISSON FIT TO GUE+POISSON

Q.o
0 1 2 3 0 1 2 3

s s

0.0
0 1 2 3 0 1 2 3

S S

FIG. 3. The numerically obtained P(s) at R =0 and 18 fm
(continuous curve) along with the best-fit Brody distribution of
Eq. (13).

FIG. 4. A comparative study of the fits at R =10 fm using

the Brody (Poisson plus GOE) and Brody (Poisson plus GUE)
distributions. The parameter co exceeds unity in the former

case.
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0.4"
R=O R=2 fm R=4 fm R=6 fm R=8 fm GOE or GUE as the case may be. Thus

~3(L ~pl ) ~3(LPI )+3(LP2) ~ (17)

0.0

0.4"
R~10 fm R 12 fm R=14 fm R=16 fm R 18 fm

0.0.
2 3 4 2 3 4 2 3 4

L L L
2 3 4 2 3 1 5

L L

FIG. 5. The numerically obtained spectral rigidity 53(L) for
various R values (continuous curve) along with Poisson (L/15)
and GOE predictions.

neighbor-spacing distribution, we have considered Eqs.
(13)—(15) as well as the Berry-Robnik distribution [20] for
the Poisson ~ GOE case,

I'(s) =p, e ' erfc(&mp2s/2)

3
—

(p&s +np&s /4)+ (2p (p2+ n p2s/2)e (16)

1.0.

0.5.

0.0

0.0

where p&+pz= 1 and p, = 1 gives the Poisson distribution
while p, =0 is the Wigner distribution of Eq. (9).

For the spectral rigidity, arguments similar to those of
Berry and Robnik for P(s) lead to one-parameter distri-
butions displaying a transition from Poisson (L/15) to

where pz=1 —p, and the superscripts P and G refer to
the Poisson and GOE-GUE expressions, respectively.

The variation of the fitting parameter (p2 or co, both of
which measure the degree of irregularity in the system)
with R is displayed in Fig. 6 for both the nearest-
neighbor-spacing distribution [Figs. 6(a) and 6(b)] and the
spectral rigidity [Fig. 6(c)]. (The parameter has been
denoted by a in the figure for uniformity. ) In all three
cases, the trend is similar, indicating a regular-irregular-
regular transition. However, for R in the interval (6, 10),
the fitting parameter for the Poisson ~ GOE transition
in each case exceeds unity as mentioned earlier leading to
problems in interpretation. Fits using the Poisson ~
GUE transition give a more meaningful result and in
some cases (R = 10 fm for Brody type) the agreement is

indeed excellent.

IV. EXISTENCE OF AN EFFECTIVE UNDERLYING
CLASSICAL DYNAMICS

The existence of universalities in the spectral measures
is now known to be related to certain collective proper-
ties of the periodic orbits belonging to the underlying
classical system. Though the presence of the spin-orbit
interaction in the present Harniltonian makes it difficult
to identify an obvious classical analog, its existence has
nevertheless been demonstrated analytically by Littlejohn
and Flynn for multicomponent systems in general [7] and
integrable systems with spin-orbit coupling in particular
[9]. Thus it would be of interest to explore the signatures
of classical dynamics in the present system as an exact
analytical form of the classical Hamiltonian for nonin-
tegrable systems with spin-orbit coupling is yet to be ob-
tained.

The saturation of the spectral rigidity for large L is one
of the remarkable predictions of the periodic orbit theory
[3]. It has been observed in a number of systems, both in-

tegrable [24] as well as chaotic [25] and the saturation
value itself was found to have excellent agreement with
theoretical expectations. Random matrix theories, how-
ever, do not predict such a behavior. The saturation of
b,3(L) is thus a clear signature of an underlying classical
system.

The analysis of b3(L) in terms of periodic orbits has

1 0-

0.5'
1.0

R=2 fm

0.0
0 5 10 15 20

R (fm)

FIG. 6. Parameter variation with R. Fits to P(s) are shown
in (a) and (b) for the Brody and Berry-Robnik distributions
while (c) shows fits to 53(L). Dots denote a Poisson plus GOE
form while open circles are for the Poisson plus GUE form of
the fitting function.

~ 0.5--
CI

O.Q

10 15

FIG. 7. The spectral rigidity at R =2 fm shows saturation
near L =15.
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R=12 fm
TABLE I. Values of level density d,„(E)and the outer scale

L ax for various values of the parameter R.

~ 0.5"
CI

0.0

~ 0.5"
CI

0.0

R=14 fm

R=16 fm

0
2
4
6

10
12
14
16
18

d,„(E)

1.987
1.902
1.845
1.809
1.810
1.830
1.870
1.963
2.052
2.121

max ~ av ~ min

19.2
17.0
17.8
18.9
20.7
20.9
21.4
22.4
23.4
24.3

0.0
R=18 fm

~ 0.5"
CI

0.0
0 5 10 15

been carried out in considerable detail by Berry [3]. Two
relevant scales in the spectrum clearly emerge. The first
(and the more obvious) is the inner scale given by the
mean spacing between neighboring levels while the
second or the outer scale, denoted by L,„,is determined
essentially by the shortest periodic orbit. Thus

Ad, „(E)
mRx

min

(18)

where d,„(E) is the mean density at the energy E and

T;„is the shortest time period of the closed orbit.
For L )L,„, all periodic orbits have a constant con-

tribution leading to the saturation of b,3(L). Moreover,
the saturation value is dominated by the shortest periodic
orbit.

We have evaluated b,3(L) for values of L in the interval
[0,15] for the R values considered earlier. Saturation,
however, sets in clearly for R =2 alone. Our results are

FIG. 8. As in Fig. 7 for R =12, 14, 16 and 18 fm. The plots
denote a monotonic increase in the value of L ax for R ) 12 fm
(see Table I also).

displayed in Fig. 7. For R =12, 14, 16, and 18 fm, the
quantity L,„clearly increases (Fig. 8) and the saturation
at L = 15 becomes less prominent.

The eigenvalues can indeed be used to extract further
information about the classical dynamics. A Fourier
transform of the spectrum is known to reveal sharp peaks
at the periods of the classical periodic orbits [11—14].
For a system without any obvious classical limit, such a
behavior can well be misleading. Assuming for the mo-
ment that the peaks do correspond to the time periods,
the smallest of these should give a value of the outer scale
consistent with the saturation of the spectral rigidity. We
have thus evaluated the function

g (x ) = g cos(E„x )exp( E„P), — (19)

V. DISCUSSIONS AND SUMMARY

with p=0.02. A total of 165 eigenvalues have been used
in the sum and the value of p is chosen so as to minimize
the errors due to the truncation. Figure 9 shows a plot of
g (x) for R =2 fm. The position of the first peak together
with Eq. (18) and the appropriate mean density evaluated
numerically give a value of L,„=17. This is indeed con-
sistent with our observations in Fig. 7 where saturation
seems to set around L =15. We have also evaluated L
for other values of R as shown in Table I. It clearly regis-
ters an increase for R ) 12 which is again consistent with
our observations of Fig. 8.

We thus have a clear indication of the existence of an
effective underlying classical dynamics which determines
the spectra1 fluctuations.

0.2

0.1

0.0--

—0.1 .

—0.2
2 3

X

FIG. 9. The function g(x) of Eq. (19) for R =2 fm. The po-
sition of the first peak, x;„,is used to evaluate L ax in Table I.

In the preceding sections, we have carried out a de-
tailed investigation of certain spectral measures in the
two-center she11 potential, pararnetrized by the separation
R. The system clearly does not possess any obvious clas-
sical analog due to the spin-orbit interaction but never-
theless has fluctuations similar to those in systems with a
classical limit. %'e have further explored the signatures
of an effective underlying classical dynamics influencing
the spectrum. Our conclusion corroborates the analytical
work of Littlejohn and Flynn [7,9] and can be stated as
follows.

"The saturation of the spectral rigidity, together with
an accurate prediction of its onset using the Fourier
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transform of the spectrum, clearly indicates that a
Gutwillzer-like sum rule for the density of states
[d(E)=d,„(E)+d„,(E) where d„,(E) is an infinite sum
of oscillatory contributions] does exist in this system. In
other words, an effective underlying classical dynamics
does influence the spectrum. "

We have also looked at the variation of P (s) and b,3(L)
with R. A regular-irregular-regular transition for small-
intermediate-large R occurs in both measures. Two re-

markable facts emerge.
(a) For intermediate separations (typically at R =10

fm), the fiuctuations are closer to those of GUE indicat-
ing the absence of (antiunitary) symmetries in the
effective underlying classical dynamics though the full
Hamiltonian does have time-reversal invariance.

(b) At R =0 fm, the effect of the spin-orbit coupling is
similar to the presence of weak nonlinear terms (in action
variables) in the harmonic oscillator Hamiltonian.
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