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The statistical operators of those isolated nonrelativistic quantum systems that are presumed to exhib-

it intrinsically irreversible evolutionary behavior are shown to be capable of undergoing only discontinu-
ous changes that occur at successive instants of time that are suggestive of possible temporal discreteness
and that result in "mixed-state" conditions of the systems. Presuming such discrete temporal structure,
a temporally asymmetric difference equation is derived for these statistical operators that suffices to im-

ply their irreversible discontinuous evolution and from which both predictability and retrodictability of
their temporal behavior are possible, but the latter cannot be extended indefinitely into the past.

PACS number(s): 03.65.—w, 05.30.Ch, 11.30.Er

INTRODUCTION

From antiquity to the present, considerable attention
from an enormous number of viewpoints has been devot-
ed to time [1—5]. During the past century and a half, in
particular, it has been devoted increasingly to the
irreuersibility which presumably [6] is characteristic of
naturally occurring physical and chemical processes and
to the time directedness [7] which is implied thereby. The
attention to be given here is to expose a relationship ex-
isting between the two: how the irreversible behavior
which may be exhibited by isolated quantum systems is
involved in characterizing the times with which they are
associated [8] and, conversely, how the times so designat-
ed are involved in characterizing the presumed [6] ir-
reversible behavior of the systems. Our ultimate concern
is the effects that their irreversibility may have on the
equation of motion of their statistical operators.

Many aspects of irreversibility will not be addressed by
the theory which is to be described here. However, it
does establish a basic association of intrinsically irreversi-
ble evolutionary changes of isolated quantum systems
with a discreteness of time. Furthermore, by yielding a
temporally asymmetric equation of motion for their sta-
tistical operators, it also provides a direct and desirable
conciliation of their irreversibility with their dynamics.
These results of the theory motivate the exposition of the
present paper. There are also others.

In the section that follows, we consider the time depen-
dence of statistical operators of an isolated nonrelativistic
quantum system. Two essentially kinematic basic as-
sumptions are made regarding the temporal transformers
which determine their evolutionary behavior; they are (i)
the major premise of Huygens's principle due to Ha-
damard [9] and (ii) an axiom of noninvertibility of tem-
poral transformers [6]. It then follows that all evolution-

ary changes in the resulting statistical operators must
occur discontinuously at characteristic times compound-
ed of consecutive discrete intervals of finite, nonzero, and
indivisible duration [10] rather than of continua of dura-
tionless instants [11].

The intrinsic irreversible behavior of the resulting sta-
tistical operators, free of any additional constraints or
external influences, is verified and illustrated in the next
section. Two of the examples involve properties which
consist solely of functions of the statistical operators.
With passing time of finite duration, their expectation
values can change only monotonically; in the usual
quantum-mechanical description, they would never
change. One of them shows that, contrary to convention-
al anticipation, a changing statistical operator originally
in a "pure-state" condition cannot maintain such a condi-
tion but must evolve to form statistical mixtures"; the
other fulfills the well-known decreasing behavior of the %
function of Boltzmann [12]. It is further shown that the
mean-square fluctuation of the expectation value of an ar-
bitrary time-independent observable about its temporally
asymptotic value must vanish as time increases
indefinitely; it would not do so in conventional quantum-
mechanical terms [13].

In the succeeding section, a basic dynamical assump-
tion is made regarding the temporal transformers; it is
(iii) a conjecture of temporal-structure independence of
laws of evolutionary dynamics. The result is a discrete
temporally asymmetric equation of motion for statistical
operators that reflects their discontinuous evolution.
Formal solutions of the equation consist of Laplace aver-
ages of solutions of von Neumann's original temporally
continuous equation [14]. Despite the noninvertibility of
the resulting temporal transformers, the discrete equation
of motion is readily "reversed. " As a result, prior statis-
tical operators can be calculated from a knowledge of

46 6805 1992 The American Physical Society



6806 SIDNEY GOLDEN 46

later ones, with an accompanying retrodictability
[15—17]. The latter, however, cannot be extended
indefinitely into the past. In particular, retrodiction from
a statistical operator in an evolving "pure-state" condi-
tion to yield any prior proper statistical operator proves
to be impossible.

The time intervals which are characteristic in irreversi-
ble evolutionary processes are considered in the next sec-
tion. A lower bound similar to a time-energy uncertainty
relation is obtained for them in terms of the dispersion in
the energy, the changes in a property used to determine
them, and the precision of the latter. As a result, any re-
liable direct determination of them does not appear too
promising, although the possibility of doing so from the
changing properties of a two-state system is examined.

A brief summary is given in the final section concern-
ing some of the results of the theory, together with per-
tinent comments. In particular, we note the supplemen-
tal role that idealized measurement processes have in pro-
moting the irreversibility of the isolated systems con-
sidered here [6]. Similarly, the supportive bearing that
the reversal of time, particle-antiparticle interchange, and
spatial inversion (TCP) theorem of relativistic quantum
field theory [18] may have on the present theory is con-
sidered. In a highly speculative vein, the possibility is
mentioned of the limited retrodictability of the present
theory being applicable to justify the currently held view

of the finite age of the universe. Several appendixes con-
tain various mathematical details of the theory which is

developed here.

NONINVERTIBLE TEMPORAL TRANSFORMERS

A quantum system of interest here is an isolated
member of a Gibbsian ensemble of identical nonrelativis-
tic systems; it has a finite number of degrees of freedom
and is confined to a region of space of finite extent. The
measured values of its properties are to be identified with

the expectation values of corresponding observables of
the system. The operands of the latter are elements of a
relevant Hilbert space [19]. A particularly important ob-

servable is the statistical operator of the system, which
conforms to all the symmetry requirements of the system
and contains all the information about the ensemble

needed to determine the various expectation values. How
this observable changes with the passage of time is our
central concern.

To deal with this, we let p(0) be an arbitrary statistical
operator at some initial instant of time, designated as 0,
which evolves [20] to yield a statistical operator p(t) at a
later finite instant of time t [21]. To express this, we sup-

pose that there exists a linear identity-preserving tem-

poral transformer T [r; ] of the system's statistical
operators such that, for t ~ 0,

Trp (t) ~Trp(t)=1 . (4)

As shown in Appendix A, the most general temporal
transformer then must have the following form [23]:

T[r; . . ]=+A, „S„(r)[ . - ]St(r), (5)

where

g k„=1, A, „*=A,„~O, all n,

g A.„S„(r)S„(t)=g A, „St(r)S„(r)=I,

and

S„(0)=S"„(0)=I, all n . (8)

T[—t; T[t;p(0}]]AT[0;p(0)], t )0 . (10)

Since the left-hand side may be interpreted as represent-
ing a statistical operator that has presumably undergone
an evolutionary process which has been followed by its
detailed reversal without the action of any external agent,
the axiom is equivalent to an assumption of intrinsic ir-
reversibility [6] of the temporal evolution of isolated
quantum systems.

To obtain the consequences of these assumptions, we

get from Eqs. (5) and (9),

g A,„S„(r)p(0)St(r)

A, „S (t —t')S„(t')p(0)S„(t'}S"(t —t'},
n, m

t &t'&0 . (11)

Since the left-hand side of this equation is independent of
t, so is the right-hand side. Then since the initial statisti-
cal operator is arbitrary [but conforms to Eqs. (2)—(4)],
we must have the time independence expressed by

We now introduce two basic assumptions.
(i) The major premise of Huygens's principle due to

Hadamard [9]. In the present context, a statistical opera-
tor p(r}, which has evolved from an arbitrary initial sta-
tistical operator p(0), may be regarded equally well as
having evolved from an intermediate statistical operator
p(t'), r ~t'~0, where p(t') has evolved from p(0). Ex-
pressed mathematically, we suppose that

T[t;p(0)]=T[t —t', T[t',p(0)]], t +t' 0~.

(ii) An axiom of noninvertibility of temporal trans-
formers. In the present context, a statistical operator
p(t), which has evolved from an arbitrary initial statisti-
cal operator, p(0), t ~ 0, cannot have its temporal behav-
ior formally inverted to yield the original one. Expressed
mathematically, we suppose that

T[t;p(0)]=p(t),

p (t) =p(t),
0 ~p(t),

and [22]

(2)
5, [S (r —r')S„(r')p(0)S„(r')S (r —r')]=0,

all m, n, t & t' ~ 0 . (12)

If the transformation operators were to be continuous
functions of nonconstant t ', it would follow that
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S (t —t')S„(t')p(0)S„(t')S (t —t')= A „(t),
all m, n, t ~t'~0. (13)

(t)p(0)S (t)= A „(t)=S„(t)p(0)S„(t),

all m, n, t &0 . (14)

As a result, we would obtain from Eq. (5),

T[t; ]=$ A,„S„(t)[ ]S„(t)

Then, by Eq. (8}and with t'~0, t, it would further follow
that

XSg(r„)S)(r„)p(t„ i) j . (22)

As a result of straightforward manipulation, it can then
be readily verified that

tibility of its temporal transformers, we examine three of
its properties. It is to be emphasized that the demon-
strated irreversibility requires neither the exploitation of
any detailed dynamics pertaining to the system nor the
incorporation of any external influences to act on it.

The first property, by Eqs. (5), (20},and (21), is

Trp (t„}=+AJAk Tr[S~(r„)Sk(r„)p(t„&)
j, k

where

=S(t)[ )S (t), t &0,

S(t}=S (t), all m, t &0,

and, by Eq. (7),

S(t)S (t)= I, t & 0 .

Since

S (t)=S '(t)=S( —t),

(15)

(16)

(17)

(18)

Trp (t„&)—Trp (t„)
=

—,
' QAJAkTr[[S (Jr„)S k(r„),p(t„,)]

j,k

X[p(t„&),S k(r„)S (Jr„)]]&0. (23)

As shown in Appendix B, the equality cannot be realized
at any finite time. Hence Trp (t„) must be a monotonic
decreasing function in any finite time interval, viz.

the resulting temporal transformers would evidently be
invertible [24] and would thus be incompatible with as-
sumption (ii), Eq. (10).

Accordingly, we must conclude that an isolated quan-
tum system of which the temporal evolution is intrinsical-
ly irreversible [6] not only must have noninvertible tem-
poral transformers of the form of Eq. (5), but they must
also not be continuous nonconstant functions of time
[25]. The statistical operators must change only discon-
tinuously as they evolve, which behavior can be expressed
by

p(t)=p(0)+ g [p(t„)—p(t„, )]e(t —t„),
n=1

t„)t„1,t0=0,
with

(19)

p(t„)=T[t„t„,;p(t„, ) ], —n & 1, (20)

t= g (t„—t„,)e(t t„)—
n=1

where e is the Heaviside unit function of its argument.
Since these statistical operators have values only corre-
sponding to those at the instants [t„],Eqs. (19) and (20)
indicate a discreteness of time that correlates with the
changes that occur in the system [8] as a consequence of
their irreversibility —or, possibly, the converse [26]. Ac-
cordingly, the time involved is expressible as

Trp (t„)&Trp (t„,), t„& co . (24)

This is in marked contrast to the constancy it would
maintain in terms of the usual quantum-mechanical
description. Furthermore, an asymptotic statistical
operator

p( oo ) =— lim p( t„)
—+ oo

n

(25)

must exist. This is also contrary to the behavior that re-
sults from conventional quantum theory, but is usually
expected from irreversibility [27,28].

Equation (24) has an important consequence: if it
changes at all, any statistical operator initially consisting
of a projection, corresponding to a "pure-state" condition
of the system, cannot continue in such a condition as
time passes, but must evolve to form "mixtures" [29].
This follows from Eq. (24) since, then,

Trp (t„)&Trp (0)=Trp(0)=Trp(t„), all t„&0 . (26)

As a consequence, the usual quantum-mechanical time-
dependent equation of Schrodinger [30] will not have a
fundamental role in the present theory. (It will have an
important one, nevertheless, as we shall see later. )

As another property, we consider the long-term mean-
square fluctuation of the time-dependent expectation
value of an arbitrary time-independent observable a
about its long-term average value, which we express by
[23]

r„e(t —t„), r„&0, all n
n=1

NONINVKRTIBILITY AND IRREVERSIBILITY

(21) @(a;t„)—= g wk [Tr {p( t„+k~a ]
—Tr [p( ao )a ] ]

k=0

where

(27)

To verify that irreversible behavior is indeed exhibited
by an isolated quantum system which manifests noninver-

w„=l, 0 w„*=wk 1 .
k=0

(28)
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Since the series of Eq. (27) is bounded from above by its
maximum term, whatever the distribution may be, Eq.
(25) immediately yields

0~ lim 4( at„ ) ~ lim max[Tr[p(t„+k)al

(t„) =Trp(t„)lnp(t„) =g p, (t„)lnp, (t„),
J

(30)

where [p (t„)] is the set of eigenvalues of p(t„) which
satisfies

—Tr[p( ~ )a] ] =0 . (29) (31)

Thus expectation values of those time-independent ob-
servables that do not even exhibit monotonic temporal
changes must ultimately achieve genuine asymptotic
values, in marked contrast to the ceaseless fluctuations
expected of them from the usual description of isolated
quantum systems [13,27,28].

Finally, we consider the & function of Boltzmann
[12,23],

Upon introducing the eigenvalues Ipi(t„, )l of p(t„&)
which satisfy

(32)

we can obtain, after straightforward manipulation with
the aid of Eqs. (5},(20), and (21),

~g.gg~ I&@,IS (~. )leak&I'pk«. ()»gg~ I&&JIS (r. )leak&I'.

+g g g & I & q, IS (r„)Ipk & I Pt (t„&)lnpk(t„&)
j k m

(33)

the inequality resulting from a general convexity inequali-

ty [31]. Since, by Eq. (7),
TEMPORALLY ASYMMETRIC

EQUATION OF MOTION

we obtain

k m

%(t„)+ g p (tk„&)l pn(tk„&):—&(t„&),
k

(35)

in agreement with the celebrated & theorem of
Boltzmann [12], originally obtained on the basis of
classical-mechanical considerations [32]. However, be-

cause of Eq. (24), we evidently must have the monotonic
behavior

So far, the temporal transformers we have considered

have conformed to essentially kinematical constraints

which have been imposed on them. We now examine the
eft'ect of imposing a basic dynamical restriction.

(iii) A conjecture of temporal-structure independence

of laws of evolutionary dynamics. In the present context,
when expressed in integral-equation form, the dynamical

laws which determine the evolutionary changes that pro-

duce a statistical operator p(t), from an arbitrary initial

statistical operator p(0), t ~0, are independent of wheth-

er time is continuous or discrete in structure. In
mathematical terms, we suppose that [34]

%(t„)(%(t„,}, (36) T[t;p(0)]—T[0;p(0)]=f dt'K[t';p(0)], t +0, (37)

which is sometimes referred to as the generalized A
theorem [33].

From the foregoing examples, it is clear that the evolu-
tion of statistical operators expressed by Eqs. (5) and
(19)—(21) is manifestly irreversible, but in a stronger sense
than is usually understood. Especially in the case of the
% function, one ordinarily expects that statistical fluctua-
tions can occur on occasion in macroscopic systems to re-
verse the pertinent monotonic behavior, although the
fluctuations are presumed not to be very likely [32,33].
No such reversal is possible for the expectation values
considered here.

where the kernel K[t';p(0)] is an operator which is as-

sumed to be independent of the structure of time and is

yet to be determined; the integral is a Stieltjes integral

[35], the evaluation and ensuing consequences of which

do depend on the structure of time.
Because conventional quantum theory treats time as

continuous in nature, we can determine K[t;p(0)] since

Eq. (37) must then reduce to the equation of motion of
von Neumann [14] for the statistical operator, viz. [34,36]

(38)
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where H is the time-independent Hermitian Hamiltonian
of the system of interest [36]. In temporally continuous
circumstances we obtain

ap(t) = lim {T[t*;p(0)]—T[t;p(0)]j/{t' t ]-
at p(t„)—p(t„,)= —ir„[H,p(t„)], n ~1 . (43)

Now it is evident, despite an intrinsic continuity required
of p, that the consequent p(t) must have the step-function
behavior expressed by Eqs. (19) and (20), whereupon it
follows that

= lim f dt'K[t';p(0)] /{ t' t j-
r

=K[t;p(0}], (39)

This is the discrete temporally asymmetric equation of
motion that we seek, which rejects the irreversible evolu-
tionary behavior of isolated quantum systems.

Since

so that

K[t;p(0)]=—i[H,p(t)], (40)

where p is presumably a continuous function of its argu-
ment.

Hence, after appropriate transcription, Eq. (37) be-
comes

lim Tr[H, p( t„)][p( t„},H]
—+ oo

= lim Tr[p(t„) p(t„—, )] /r„
r ~oo
n

=0,
by Eqs. (21) and (25), it now follows that

(44)

p(t) —p(0)= i H—, f dt'p(t')
0

(41) [H,p( ~ )]=0 . (45)

From this, we see that the irreversible evolutionary be-
havior that may be anticipated for statistical operators is
to be ascribed directly to the discreteness of time, Eq.
(21), rather than to any intrinsic discontinuous behavior
of the operators themselves. When, as suggested by Eqs.
(19) and (20), a step-function behavior is also assumed for
p, contrary to the continuous behavior required of it, the
resulting statistical operator proves to be invertible and,
hence, cannot exhibit the irreversible behavior required
of it by assumption (ii); the details are given in Appendix
C. We thus obtain with the aid of Eq. (21),

An immediate dynamical consequence of irreversibility is
thus seen to be that the asymptotic statis-
tical operator of an isolated quantum system p( ~ ) is a
temporal invariant, as might have been anticipated. It is
to be noted, however, that the resulting restriction on the
asymptotic statistical operator is not sufficient to charac-
terize statistical mechanical equilibrium, only necessary.

Equation (43) can be recognized as a Laplace average
of von Neumann's original equation [37], with the solu-
tion

p(t )=f dx {e " p(t„()e
0

p(t) —p(0)= i H, —g r„p(t„)8(t t„)—
n=1

n+1. (46)

= g { i~„[H,p—(t„)]j8(t t„) . —
n=1

(42)

As a result, we can now give an explicit expression for the
temporal transformers that describe the evolutionary be-
havior of an isolated quantum system. It is

T[t; ]=T $ r8(t t );-
n=1

T[r„8(t t„}; ]-
n=1

Z (Z T 8(t t„)H +—IZ 8(Tt —t„)H
jdx e "e

n e
n=1

(47)

{.. . j~f dx e "{ (48)

and
—ix r 9(t —r )H

S w„~e (49}

Because of the form of Eq. (47), it is clear that many

which is evidently a multiple Laplace average of a solu-
tion of von Neumann's equation [14]. To identify with
Eq. (5), we need only represent

properties of an irreversibly evolving isolated quantum
system will be the same as those obtained with appropri-
ate Laplace averages of reversibly evolving statistical
operators [13,37—39]. As a result, the solutions of
Schrodinger s time-dependent equation [30] or its von
Neumann counterpart [14]—either exact or
approximate —provide an important starting point in
describing the actual irreversible behavior of an isolated
quantum system.

The temporal asymmetry of Eq. (43) is reflected in the
fact that changing the sign of ~„ in its solution, Eq. (46),
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without changing the sign of H (since it is presumably in-
dependent of r„), does not produce a statistical operator
for an earlier instant of time from one to which it could
have evolved at a later instant. There is, accordingly, no
possibility of time-reversal invariance, i.e., reversibility,
of the evolutionary processes characterized by these
equations. Nevertheless, the equation of motion does en-
able a prior statistical operator to be determined readily
from a subsequent one, viz.

p(t„, ) =p(t„)+is„[H,p(t„)], n & 1 . (50)

=r„Tr[H,p(t„)][p(t„),H]) 0, oo ) n ) 1, (51)

in accord with Eq. (24); the latter inequalities follow from
Eqs. (21) and (45). We may, therefore, choose an origin
of time tp to correspond to that instant for which

Trp (t, )&1&Trp (to), t, &to=0. (52)

But the lower bound inequality at t, constitutes a viola-
tion of Eq. (4) unless we understand it to mean that no
proper statistical operators, viz. satisfy Eqs. (2)—(4), can
have existed for t„&0 which would have evolved to pro-
duce proper ones for t„0. With this understanding, an
isolated quantum system considered here which currently
undergoes changes can only have a determinable history
that is limited to a finite past.

The foregoing limitation is especially striking when a
system of interest is in a changing condition correspond-
ing to a "pure state" at some finite instant of time. With
no loss of generality, we may designate that instant as the
temporal origin, whereupon retrodiction from that in-
stant to yield any proper statistical operator from which
the original one may have evolved is impossible. As we
observed earlier, an isolated quantum system in a nonsta-
tionary "pure-state" condition can evolve only to form
"mixtures. " We have now shown that an isolated quan-

I

As a consequence, it is possible to calculate the past be-
havior of an isolated quantum system [15—17], viz. to re-
trodict its behavior, as well as to calculate its future be-
havior, viz. to predict its behavior, both from a
knowledge of the system's initial statistical operator, its
Hamiltonian, and the characteristic time intervals [r„].
The resulting predictability-retrodictability duality that
exists despite an irreversibility of the basic equation of
motion has long been unexpected [40].

Nevertheless, the present retrodictability has an impor-
tant limitation not shared by the predictability: it cannot
be realistically extended indefinitely. To show this, we
obtain, as a result of straightforward manipulations in-
volving Eq. (50), that

Trp (t„,)
—Trp (t„)

turn system in a nonstationary "mixture" condition can-
not evolve to form "pure states. " The latter can be pro-
duced only by processes which reflect the influence of
external agents of some sort upon the otherwise isolated
quantum system of interest.

DETERMINABILITY
OF CHARACTERISTIC TIME INTERVALS

Qualitative features of the irreversible evolutionary be-
havior that an isolated quantum system is presumed to
exhibit appear to be adequately accounted for by the
theory we have described. The quantitative features of
that behavior, however, are another matter. For the
latter to be dealt with by the theory, knowledge of the
characteristic time intervals [r„j is needed, a knowledge
which is currently unavailable [26].

If time were to be intnnsically discrete in nature, its
constituent time intervals could not be determined with
precision by direct measurement. Any material clock
which might be used to do so would itself be limited by
inherent temporal discreteness: it could not measure reli-
ably any duration smaller than the smallest of its own
time intervals. To determine the latter, also reliably,
another clock that could measure time intervals of even
smaller duration would be needed. These, in turn, would
require additional clocks capable of determining still
smaller time intervals that, ultimately, would be required
to be vanishingly sma11. As a result, time would have to
be intrinsically continuous and the systems that could
serve as clocks to measure it would have to evolve essen-
tially continuously. Just such behavior is exhibited by
systems that can be described in classical dynamical
terms, as is shown in Appendix D. Determination of the
time intervals [r„] pertinent to various isolated quantum
systems is thus possible in principle, although there will

be inherent limitations on their measurability [41—44].
In order to see how the temporal behavior of an isolat-

ed quantum system may be utilized to obtain some mea-
sure of the values of the [r„],we consider solutions of
Eq. (43). Guided by the successes which have resulted
from conventional quantum-mechanical theory in which
time has been treated as continuous in nature, we will

only consider situations where

(53)

In terms of a basis of energy eigenfunctions [leak)],
which satisfy

(54)

we obtain

n

[(I+i (Er, E„)]-
m =1

n

=(Q,. lp(0)leak )exp —g In[1+ir (E, Ek)] ., t„&0 . —
m=1

(55)
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We further restrict our attention to those systems for
which

+ IEJ E—kl~&&1, ~)m, p)0, (56)

m=1
(58}

and

(g&„= g r g r & g r In=r„. (59)
m=1 m=1

( r &„ is an effective characteristic time interval and r„ is
I

i.e., the ~ 's are intrinsically small. We may then expand
the logarithm in a power series and retain the real and
imaginary terms of lowest order to get

&f, lp(t, }lgk &='&g, lp(o}I@k &exp{ it„—(E, E„—)]

X exp { ,' t„—( r—&„(E, Ek—)'],
t„&0, (57)

where

»'m &p, lp«. )leak &=&&, lp(0}10k &8E Ek.
n

(60)

so that Eq. (45) is fulfilled. We also see, as previously
noted, how the solutions of von Neumann's original
equation of motion —the first two factors of the right-
hand side of Eq. (57)—can serve as a starting point in

describing the aforementioned irreversible behavior.
Perhaps the simplest and least ambiguous quantitative

test of the present theory can come from an application
of Eq. (57) to a real two-state system in which the actual
lack of isolation from its surroundings can be properly
taken into account. Then, if cz is an appropriate time-
independent observable, its time-dependent expectation
value would be

a mean characteristic time interval, both of which may
have values that depend on the prevailing distribution of
the ~ 's. This, however, is unknown so that it may be
possible at most only to determine (r&„ from the ob-
served evolutionary behavior of the system.

Before considering how, we note that Eq. (57) gives ex-
plicit expression to the irreversible behavior we have al-
ready described. For example, as t„~ao, we see that

(a(t„)&:—Trp(t„)a

& 0k Ip(0)1(tk & & gk I a I gk &

k=1

+2 Re[ & p& lp(0) 1 &2 & & y2la I p, &exp{ —it„(E, E2 ) ] ]exp {———,'t„(r & „(E, E, )'], t„—& 0 . (61)

[A,B,C]= ABC —CBA (63)

and A, and p are arbitrary parameters. After straightfor-
ward manipulation involving the Cauchy-Schwarz-
Buniakowsky inequality [45] we can obtain

I(a(t„)&
—(a(t„&)& I

&2~„A' (a;t„)h' (H), (64)

Presuming that (r&„ is independent of n, i.e., t„, the
two-state system should exhibit a damped oscillatory de-
cay of the expectation value (a(t„)& to a temporally
asymptotic value (a( ~ ) &. The oscillating frequency and
the decay constant are so related that their determined
values would permit (r&„ to be obtained. All depends,
of course, on being able to surmount the lack of isolation
of the real system from its surroundings.

As a final matter, we consider a lower bound for the
( r &„ that can serve to expose the limitations on their
determinability, whatever their duration may be. Let a
be an arbitrary time-independent observable. Then, by
Eq. (43) and the properties of the trace, the change in its
expectation value is

& a(t„)&
—

& a(t„,) &

Trp( t„}a—T—rp( t„,)a
= —ir„Tr[(a—AI},p(t„),(H —pJ)], (62}

where

I

where

b,(a;t„)—:Trp(t„)(a —(a(t„)& }

and

b,(H):Trp(t„)(H ——(H &), n &0

(65)

(66)

are the dispersions in the indicated properties, the latter
one in the energy being a temporal invariant. Now, for
the expectation-value change to be determined with ade-
quate precision, we must require that

I &a(t„)&
—(a(t„,) & I

»b, '"(a;t„) .

Hence we obtain

(67)

I &a(t„)&
—&a(t„,) &I(H)), ~2

&)—, n )0 . (68)
2b ' (a;t„) 2'

This relation bears a resemblence to what is sometimes
referred to as a time-energy uncertainty relation [46], but
it is not one [47,48]. Although the precision with which
the energy of a system can be measured is not restricted
by the time interval generally involved in such a measure-
ment [48], the restriction here is justified since it involves
the time intervals which are intrinsic to the changes that
occur in the system [8], i.e., the changing system is acting
formally as its own clock [48]. It involves, in addition,
certain of the changes in the expectation values of some
appropriate time-independent observable that occur and
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exp[ ,'t„(r)„(E——E&)] «—exp[ ,'(t„lr„)]—,— (70)

which, by Eq. (53), will be extremely small. In fact, even
if t„ is just a moderate multiple of ~„, negligible values
would result for the pertinent matrix elements of the sta-
tistical operator. Except for those pairs of energy eigen-
states that differ only slightly in energy, the latter would
then be "almost diagonal in energy" and would appear to
evolve seemingly reversibly —with evident difficulty in
reliably determining the ~„s in such circumstances.

SUMMARY AND COMMENTS

Of the many aspects of irreversibility that the theory
described here does not address [49], we shall take
note —only briefly —of the role played by idealized mea-
surement processes [50]. These impose abrupt, discon-
tinuous changes in the conditions of a system being mea-
sured and so bear some similarity to the basic evolution-
ary behavior accorded it by the present theory. Indeed,
the irreversibility of the idealized measurement process
[51] and that of the present evolutionary behavior are
essential features common to both. The changes accom-
panying the measurements, however, involve the action
of external agents upon the system [52] and so contrast
markedly with those experienced by the isolated systems
considered here. In the present context, idealized rnea-
surement processes can serve only to augment the intrin-
sic irreversibility we have found for them.

The three physical assumptions on which the present
theory is based merit some comment.

(i) The first assumption, the Huygens-Hadamard prin-
ciple premise, seems entirely reasonable in the sense that
it expresses a feature of determinism that a proper physi-
cal theory should have [9].

(ii) The second assumption, essentially an assumption
of evolutionary irreversibility, is a reasonable asymptotic
extrapolation of observed behavior [6].

(iii) The third assumption, that dynamical laws of evo-
lutionary behavior expressed in integral-equation terms
rather than in differential-equation terms are independent

their precision [46). It would appear that when these
changes are to be determined even with moderate pre-
cision, ~„'s of extremely short duration will require the
system to be in a condition that exhibits a large uncer-
tainty in its energy. As a result, the reliable determina-
tion of such characteristic time intervals does not appear
too promising.

An additional indication of inherent difficulty arises
when one examines the time t„ for which the off-diagonal
elements of Eq. (57) become extremely small. For energy
differences that are comparable with or greater than

(H), which certainly includes a good portion of those
possible, we see from Eq. (68} that

—,'&„(r)„(E, Ek)—~ ,'t„(r)—„h(H)

(69)

Assuming that (r)„and r„are comparable, we further
see that

of the structure of time, is clearly a conjecture, but seems
to be a reasonable way to bridge the temporally continu-
ous with the temporally discrete.

Of the three assumptions, the second might appear to
be the primary one, since invertible transformers which
exhibit reversible behavior can easily satisfy the con-
straints of the other two. But that assumption alone can
be satisfied by the transformers which can be associated
with idealized measurement processes, so that all three
assumptions we have made seem to be not only sufficient
but necessary to produce the results we have obtained
[53].

A few of the results which have been obtained here also
merit some comment.

(i) Although the discreteness in time expressed in Eq.
(21}and used to derive Eq. (43) proves to be both neces-
sary and sufficient for the irreversible behavior of the iso-
lated systems considered here, there is no reason at
present to believe that such discreteness is an intrinsic
characteristic of time itself, independent of the actual
quantum system involved [6]. Accordingly, to give rise
to their temporally discrete behavior, a distinct possibili-
ty must be considered that evolving systems may change
on a more fundamental level than the one with which we
have dealt. Perhaps a temporally discrete hidden-
variables theory might accomplish this [54].

(ii) The temporally asymmetric equation of motion, Eq.
(43), relates the statistical operators at successive instants
of time. By changing the sign of all time instants occur-
ring explicitly and implicitly in that equation, one obtains
its temporal reverse. Should the Hamiltonian here be re-
garded as invariant to such changes, the resulting equa-
tion will be of the same form but will involve a charac-
teristic time interval with changed sign and an inter-
change of the anterior and posterior roles of the statisti-
cal operators. As a result of the latter, the temporally re-
versed equation cannot be arranged to depict the same
evolutionary behavior as the original equation of motion.
Since the latter equation presumably determines all the
observable changes which are possible, those determined
by the temporally reversed equation would appear not to
be observable. If time were to be regarded as intrinsically
nonpositive, later times would be more negative than ear-
lier times, contrary to the usual convention we have em-
ployed [21]. Thereupon, the roles of the anterior and
posterior statistical operators would again be inter-
changed and the original equation and its temporal re-
verse would then be compatible, although with a fixed

temporal convention neither is. Perhaps the most strik-
ing example of the latter incompatibility is the one in
which an initial statistical operator can evolve from a
"pure-state" condition to form "mixtures" but cannot
have evolved from them.

(iii) An obvious limitation of the present theory would
seem to lie in its nonrelativistic formulation. However,
should the systems considered here have relativistic
Hamiltonians and have statistical operators that satisfy
discretized equations of motion which are invariant to
proper Lorentz transformations of the system, the theory
would then have a reasonable relativistic basis [55].
Thereupon, a consequence of some importance emerges.
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Under the foregoing circumstances, which seem reason-
able to assume for isolated quantum systems, it also
seems reasonable to suppose that the necessary condi-
tions that a quantum field theory must fulfill to satisfy the
TCP theorem [18,56] will also be fulfilled by a proper rel-
ativistic version of the present theory. Then the evolu-
tionary behavior of an isolated quantum system should be
invariant to the simultaneous set of transformations: (T)
reversal of time, (C) particle-antiparticle interchange, and
(P) spatial inversion [57—59]. A lack of invariance to any
one of them implies a lack of invariance to the combina-
tion of the remaining two. Since the present theory,
clearly, concludes that T invariance will not be observed,
no invariance to the combined CP transformation also
must be expected. This lack of invariance as is known,
has been predicted [60] and has been observed [61—63].
Although it provides a measure of support for the tem-
poral asymmetry of the present theory, a proper relativis-
tic version of it is required for unequivocal support. Nev-
ertheless, the lack of the time-reversal invariance that re-
sults from the present nonrelativistic theory cannot be
dismissed entirely in its absence [64].

(iv) Finally, it follows from Eq. (52) that the behavior
of any isolated quantum system which is currently under-
going changes cannot be retrodicted beyond a finite time
in the past. Whether such a system has existed before
that time or not is a moot question, but, if so, it could not
then have had a proper statistical operator from which
the current one could have evolved. Accordingly, it
might even be said that the system had no realistic ex-
istence before that time. Supposing that this feature also
will be exhibited by an appropriate relativistic version of
the present theory, we would have to conclude that any
portion of the universe which can be adequately de-
scribed as an isolated quantum system would have a
current behavior that is capable of being retrodicted only
to a finite past. Were this to apply to the entire universe,
it would appear to be in accord with the present views re-
garding its finite age [65]. At present, however, any such
cosmological conclusion is highly speculative.

In conclusion, we must keep in mind that it is un-
known if real physical systems actually exhibit the
discontinuous irreversible evolutionary behavior and the
associated temporal discreteness obtained here. If they
do, we surely have another way to account for irreversi-
bility that differs from the present one of regarding it to
be nonintrinsic and, instead, only the result of our practi-
cal inability to make complete analyses of the pertinent
processes in terms of current temporally reversible physi-
cal laws [7]. Of course, if they do, we shall have to exam-
ine the limitations that may then be imposed on these
laws. If only for that reason, it is clearly desirable —if
not mandatory —that some sort of experimental evidence
be obtained that can discriminate between the two possi-
bilities. It is to be hoped that such will not be long in
coming.

APPENDIX A

general identity-preserving temporal transformer as [23]

T[t; . ]=pa„A (t)[ . ]A„(t), (A 1)

where the [a k ] are time-independent coefficients and the

[ AJ.(t)] are linearly independent transformation opera-
tors that are bounded such that

T[t;I]=I . (A2)

Equation (2) requires that the [a k] comprise an Hermi-
tian matrix which can be diagonalized, so that

T[t ]=gb B (t)[ ]B (t} (A3)

b. +0, all j;
because of Eq. (A2), we must have

gb, B,(t)B,(t)=I;
J

(A4)

(A5)

because of Eq. (4), for arbitrary initial statistical opera-
tors, we must also have

g b, B,(t)B,(t) =I .
J

Now, since

p(0) =g bJBJ(0)p(0)Bi(0),
J

it follows that

(A6)

(A7)

gb Tr[[B (0),p(0)][p(0),B (0)]]=0, (A8)

so that

[BJ(0),p(0)]=0, all j . (A9)

Since p(0) is an arbitrary statistical operator, it further
follows that

B (0)=c I, all j .

Hence by Eqs. (A5) and (A6),

(A 10)

(A 1 1)

As a result of Eq. (A4) we may introduce

A,j =b, ~ c, ~

~ 0, a—ll j
and

(A12}

SJ(t)=B~(t)lc~, all j,
whereupon it follows that

(A13)

where the [b~ ]are .real numbers, also independent of
time. The [BJ(t)] are, again, linearly independent trans-
formation operators that are bounded. Because of Eq.
(3), we must have

Taking into account its role in transforming both
Hilbert-space bases and their adjoints, we first express a

T[t;. . . ]=/ A,,S,(t)[. . . ]St(t), (A14)
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as expressed in Eq. (5). Equations (6)—(8) then follow
from Eqs. (A10)—(A13).

APPENDIX B

p(t '= t„}= [p(t+ )+p(t„)]/2, (C2)

which equals p(t„) when p is a continuous function of its

argument. In the present case, in terms of earlier nota-
tion, we write

The equality in Eq. (23) occurs if and only if the com-
mutators there vanish, viz. p(t„)=p(t„) (C3)

[S,( r„)Sk( r~ ) P(t —i)]=0 . (Bl) and

As a consequence of Eqs. (5), (7), (20), and (21},and some
straightforward manipulation, it then follows that

p(t„}=p(t„,),
so that

(C4)

S„(r„}p(t„,)=p (t„)S„(r„), m =1,2, . . . .

It further follows from Eq. (7) that

Trp (t„,)=Trp (t„), m =1,2, . . . .

As a result, we must then have

Trf [p(t„,) }=Trf [p(t„)},

(B2)

(B3)

(B4)

p(t'=t„) = [p(t„)+p(t„ i)]/2 . (C5)

Then, with the aid of Eq. (21), we would obtain

J &t'p(t')= g (r„/2)[p(t„)+p(t„,)]e(t t„) . —
0 n=1

(C6)

where f [x }, O~x ~ I, is any arbitrary well-behaved
function, e.g. , admitting of a Taylor-series expansion in x.
Expressed in terms of the eigenvalues of the statistical
operators [pk ( t„)} and [pk ( t„ i ) },we can then have [23]

&f [pk(t —1}} gf [pk(t ) } . (B5)

With no undue loss of generality, we may suppose that
the statistical operators have matrix representations
which are of finite rank. It then follows, since f jx } is ar-
bitrary, that the eigenvalues [pk(t„, )} and {pk(t„)}are
the same. Thereupon, being Hermitian, the two statisti-
cal operators would have to be unitarily equivalent
which, by Eq. (5), they cannot be. Accordingly, the
equality of Eq. (23) cannot be attained at any finite time,
so that

As a consequence, we would then have

p(t„)—p(t„, ) = ir„[—H, [p(t„)+p(t„,)]/2] (C7)

When combined with Eq. (C7}, it follows that

p( t„r„) p( t„—, ) =i r—„[H,[p( t„r„) p(t„—,—) ]/2],
(C9)

instead of Eq. (43).
Solutions of Eq. (C7) are invertible, as we now show.

To do so, we imagine a temporal transformer which is
implied by Eq. (C7) but with a change of sign for r„and
apply it to p(t„). We then obtain

p(t„—r„)—p(t„)=i r„[H, [p(t„—r„)+p(t„)]/2] .

(C8)

Trp'(t„) & Trp'(t„, ), (B6) which implies that

p( ~ ) = lim p( t„)—+ oo
n

must exist such that

lim Trp (t„)=Trp ( ~ ) .
f ~co

n

(B8)

APPENDIX C

%'hen the operator p is required to have a step-
function behavior, its values at the instants of change
[t„}differ from those in the immediate neighborhoods.
Because [66]

as expressed in Eq. (24}. However, because of Eq. (3) we
can conclude that an asymptotic statistical operator

p(t„—r„)=p(t„,) . (C10)

APPENDIX D

To show that classical dynamical systems must evolve
essentially continuously, express Eq. (43) in conventional
units and rearrange it to obtain

Hence the transformation from p(t„, ) to p(t„) is then
invertible, as asserted.

This constitutes a violation of assumption (ii), Eq. (10),
so that the requirement that p be an intrinsically discon-
tinuous operator cannot be imposed. The consequent
discontinuous behavior expressed in Eq. (19) must be re-
garded as due to the discontinuous behavior of the time
parameter upon which the intrinsically continuous p de-
pends.

1, x)0
e(x)= —,', x=o

0, x(0,
we must then take

(Cl)
[p(t„) p(t„—r„)]/r„=i[—p(t„),H]/h', all n, (D1)

where A=h/2m. , h being Planck's constant. Upon ex-
ploiting the analogy between the commutator and the
classical Poisson bracket [67] and associating the classical
dynamical limit with a vanishing value of Planck s con-
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stant, it is readily established [68] that

[ [p(t„) p—(t„—r„)]/r„],)„„.„(
dp(t„)= lim [i [p(t„),H]IR] =

A~O dt.
(D2)

where the statistical operator has been replaced by its

n ] classical' (D3)

so that systems which can be adequately described in
classical dynamical terms must exhibit essentially con-
tinuous evolutionary behavior, as asserted.

classical counterpart. As a result, we must evidently
have
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