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Fluctuations and squeezing in resonance fluorescence emitted near a phase conjugator
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Atomic resonance fluorescence, emitted near the surface of a four-wave-mixing phase conjugator, ex-
hibits squeezing for certain values of the optical parameters of the incident laser field and for a certain
range of the phase-conjugate reflectivity. A condition for the occurrence of squeezing is derived, and it
is shown that the presence of the phase-conjugating medium tends to increase the quantum fluctuations,

thereby diminishing the squeezing.

PACS number(s): 32.50.+d, 42.50.Dv, 42.50.Lc

Electromagnetic radiation with reduced quantum fluc-
tuations has been the subject of many recent studies. In
particular, the generation of squeezed states, for which
the fluctuations are below the limit suggested by the un-
certainty relation, has attracted much attention because
of possible applications in high-precision optical mea-
surements. Two-photon coherent states which are pro-
duced in degenerate four-wave mixing exhibit squeezing
in certain field quadrature components [1-3]. Such
squeezed states can be obtained, for instance, when the
four-wave mixer operates as a phase-conjugating mirror,
and the incident field on the nonlinear medium is com-
bined with its phase-conjugate replica. Another source of
squeezed radiation is single-atom resonance fluorescence
[4-7], provided that the optical parameters are chosen
carefully. Also, many atoms in a cavity [8—11], a linear
array of atoms [12], or a single atom in a cavity [13-18]
are predicted to radiate squeezed light under certain con-
ditions. In this Brief Report we consider a combination
of the two mechanisms. A nonlinear medium is pumped
by two strong counterpropagating lasers with frequency
@. Then the medium will operate as a four-wave-mixing
phase conjugator (PC) for weak incident radiation. A
two-state atom is near the surface of the medium, and is
irradiated by a laser beam of frequency w; which propa-
gates parallel to the surface. The frequency w; is in close
resonance with the transition frequency w, between the
atomic ground state |g) and excited state |e), and
A=w; —w, indicates the detuning from resonance. Part
of the emitted resonance fluorescence by the atom is in-
cident upon the PC, which then generates the phase-
conjugate image of this field. The radiation which travels
into the direction of a detector far away from the surface
is therefore the sum of ordinary fluorescence, emitted
directly towards the detector, and a phase-conjugate im-
age which is produced in the four-wave mixer. It can be
shown [19] that the positive-frequency part of the total
field attains the form

E(t)H-)=,Vt[dT(t)_P*e—2i(T)td(t)] , (1)
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where d =|e ){g| is the atomic raising operator, P is the
Fresnel reflection coefficient for a plane wave (the
efficiency of the phase conjugator), and y* is an overall
constant which includes the projection of the atomic di-
pole moment onto the polarization direction of the detec-
tor. The time dependence of the operators signifies the
Heisenberg picture. Whether the field, as given by Eq.
(1), exhibits any squeezing will depend on the details of
the time evolution of the lowering and raising operators.

At the position of the atom, the driving laser has the
form

E,(1)=EgRee e ') @)
The phase ¢(¢) is a random process which accounts for
the laser linewidth, and we shall take ¢(z) to be the
independent-increment process. This leads to a Lorentzi-
an laser line shape, and it includes the phase-diffusion
model as a special case. Following Collett, Walls, and
Zoller [7], we define the slowly varying amplitude of the
fluorescence field, with respect to the incident field, by

t+¢(1)—8]

Eo()=E (1) e’ +H.c. 3)

In an experiment, the phase 6 can be varied in order to
obtain a maximum reduction of the fluctuations [20]. For
6=0 and /2 this field reduces to the familiar in-phase
and out-of-phase quadrature components of the field, re-
spectively. As it turns out, however, these values of 6 do
not give the maximum possible reduction of phase fluc-
tuations. The uncertainty relation for the variances of
two quadrature components with different 6 is

AEG(AEg(1)= L([Eg(t),Eo ()] ], ()
and with Eq. (3) this becomes
[AEo()HAE ()P = [E ()T, E(8)])%sin%(6—6') .

(5)

For fluorescence, the quantity [E (), E(¢)"’] is not a
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¢ number, and its expectation value is not necessarily pos-
itive. Therefore, the usual definition of squeezing, which
requires the normally ordered variance to be negative
[21], has to be generalized. As suggested by Eq. (5), we
define E4(7) to be squeezed if

[AE() P <[{[E@)' T E@) D] . (6)

Under this condition, the fluctuations in E4(f) are
minimal, but, according to Eq. (5), at the expense of
enhanced fluctuations in the component of the field
which is 90° out of phase with this E4(¢). Note that the
right-hand side of Eq. (6) is independent of 6, as it should
be.

As a measure for the amount of fluctuation in the field,
or the randomness of the phase of the field, we introduce
the parameter r, defined by

_(AEg?  (E,)?

(E3) (E%)
Obviously, the value of r is restricted by 0<r <1. For
r =0 there are no fluctuations at all, and for r =1 we
have (E,)=0, which corresponds to a purely random

phase. Similarly, the amount of squeezing can be ex-
pressed in terms of the normalized quantity

(AE,)?—{[E(t) T E(t) ']
s = .
(E%)

r (7)

(8)

Then the condition for squeezing in E4(¢) becomes s <O0.

The various quantities which determine the parameters
r and s can be expressed in terms of matrix elements of
the atomic density operator o (in the rotating frame).
After averaging over the fluctuating laser phase and tak-
ing the steady-state limit, we obtain

(Eg)=y*e %o, +cc., 9)
(ER)=7§1+P}), (10)
([E@)'LEW T D=yi1=Pi)og—0,), (1D

where Py= |P|. In the derivation of Eq. (9) from Eq. (3)

we have used the following identity. If we indicate by

& (1) the stochastically fluctuating density matrix, and by

( ) an average over the laser phase, then it holds that [22]
lim (&(t)exp[ing(t)])=0, (12)
t— 0

for n integer, n70. Notice that the average of the com-

mutator in Eq. (11) vanishes for unit reflectivity (P3=1).

In that case, s =r 20, and squeezing can never occur.
The density operator matrix elements are [22]

1 Qi+t AP§(AT+7?)

=— , (13)
e 2 Qn+ A (1+P3)(A2+7?)
Ugg—_'l_-a'ee ’ (14)
o, =—10 A(A—in) . (15)

eg U0+ A+ P(A+7?)

Here, Q is the (complex) Rabi frequency, Q,=|Q/|, 4 is
the Einstein coefficient for spontaneous decay, and

n=A+ A (1+P%)/2, with A the half width at half max-
imum of the laser profile. The combination of Egs.
(9)-(15) then yields for the parameter r

. 0A4?
(1+PH[Qn+ A(1+PE)A+7?) )
X (A cosB—mnsinf)? . (16)

Angle B is given by B=0+arg(y)—arg(), which de-
pends on the phase of the atomic dipole through both y
and ). By varying the mixing angle 6 we can vary angle
B, and thereby the parameter r. It follows from Eq. (16)
that r is minimal if 3 is chosen as the solution of

tan(B)=—n/A . (17)

Then (A cosB—nsinB)*=A2+n? and the value of r fol-
lows from Eq. (16). For this value of 6, the fluctuations
in the phase of the fluorescence are minimal, given the
optical parameters. The quadrature component of the
field which is 90° out of phase, compared to the solution
of Eq. (17), has a mixing angle 6 for which f3 is the solu-
tion of tan(B)=A /7. Then (A cosf—nsin8)*=0, which
yields » =1. This gives { E,) =0, which reflects that this
out-of-phase component has a completely random phase.

The solution for 6 which follows from Eq. (17) also
minimizes the squeezing function s, because the commu-
tator in Eq. (8) does not depend on 6. For this value of
the parameter s is found to be

_ A(A%+7?)
(1+P3[Qn+ A (1+PH(A%+7H)]?
X[QX A+[1—PE|g)+ 4[1—P|(A2+79)] . (18)

Therefore, squeezing occurs under the condition
(1+P3)[Qn+ A (1+PE)(A +7H)]?
< AAMH9)[Q¥ 4 +[1—PE|y)
+A[1—-Pil(A*+79H)] . (19

In the absence of the phase conjugator we have
effectively P, =0, and Eq. (19) reduces to

A(A—A>P Q3+ A(n—A)], (20)

which is the familiar result for a free atom [5]. Another
interesting limit is the case Q3=0, which represents the
atom near the PC, but without the driving laser field.
This spontaneously emitted phase-conjugated fluores-
cence is squeezed under the condition

(1+P3)?<|1—-P3|, 1)

and it is easy to see that this condition cannot be satisfied
for any value of the reflectively P3. Apparently, in order
for phase-conjugated atomic radiation to be squeezed, we
have to drive the atomic transition with an external field.
Figure 1 illustrates the region where squeezing occurs as
a function of P3 and Q3/A4? (proportional to the laser
power) for the case of resonance (A=0) and zero laser
linewidth (A=0). As shown in the figure, the light will
only be squeezed for small values of the reflectivity and
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FIG. 1. For values of Q3/4?% and P} corresponding to a
point inside the lobe, squeezing occurs. Here we have assumed
A=A=0.

moderate laser power.

The fluctuation parameter r and the squeezing parame-
ter s can be minimized by a proper choice of optical pa-
rameters. For a laser intensity of

Q3= (1+P2)A2 ), (22)
n
the parameter r has a local minimum, which is equal to
A 1
r=l—-—————. (23)

N 4(1+P3)?
On the other hand, the minimum value of s is given by
(4 +n/1—=P3|)?
s=1-— —, (24)
4nA4(1+P2)
which is attained for

A—n[1—-Pj|
A+7|1-Pj]
provided that n|1—P3| < 4. Notice that the extreme
values of r and s are independent of the detuning A.

Given the optimum value for Q3, the parameter r can
be further minimized by setting A=P2 =0, for which we
find r=21. This corresponds to an intensity of
Q2=2A%+ 42/2, which can be obtained for any value of
the detuning. For the optimum Q2, parameter s is also

minimal for linewidth A=0. The parameter s is then
found to be

Q%=-§(1+P3)(A2+172) , (25)
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FIG. 2. Value of the squeeze parameter s as a function of the
phase-conjugate reflectivity P3 for A=0 and the optimum value
of Q3.

(2+[1—P}|)?
s=l—-— (26)
8(1+P2)

for all A, and provided that P2 <V'3 (a larger value of P}
would give a negative value for Q2). The behavior of s as
a function of P} is shown in Fig. 2. The minimum value
of s is equal to —%, which is reached for P(2)=0, and
the corresponding value of the intensity is
Qo=(4A2+ A?%)/6. Furthermore, we have s=0 for
P}~0.04.

It has been shown that the superposition of atomic res-
onance fluorescence and its phase-conjugate replica ex-
hibits squeezing for certain values of the optical parame-
ters, and the condition under which this occurs is given
by Eq. (19). A necessary condition turned out to be that
the atom has to be irradiated by a laser field, e.g., spon-
taneously emitted fluorescence near a phase conjugator is
never squeezed.
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