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Quadric solitons and breathers of n-dimensional nonlinear wave equations
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For the n-dimensional nonlinear wave equations i3 8 q=dF;(y)/dy, i =1,2, . . ., a kind of general
soliton solution is obtained. It contains some interesting specific solutions, such as N multiple solitons
and the quadric solitons. The discussion of their properties shows that there exist some motional sphere
solitons with a definite radius and some quadric breathers which have various shapes.

PACS number(s): 03.40.Kf, 03.65.Ge, 02.30.+g, 11.10.Lm

The multidimensional nonlinear wave equations are a
kind of common equation. They may describe many im-
portant physical phenomena. Concerning the solutions
of the equations, many interesting results have been ob-
tained in several previous articles [1—4].

In the present paper, we study further the equations by
using the method of function transformation. Let any
solution tp of the equations be a function of another func-
tion g. The equations are changed into a system of equa-
tions for g and g. The general solution of the equations
of g leads to a general soliton solution of the equations of
y. They include some well-known results [5—7]. In addi-
tion, we find many interesting soliton solutions such as X
multiple quadric solitons and quadric breathers.

Let us consider the n-dimensional nonlinear wave
equation

dF; (tp)
a aV' d( )

where a =a/ax, xo=it, and F;(tp) for i =1,2, . . .
denote some functions of y. Here and throughout the pa-
per we adopt a summation convention for repeated in-
dices: a greek index runs from 0 to n —1 and any other
index runs from 1 to n —1, unless it is particularly stated
otherwise.

Setting y=p(g) to be a function of another function g,
we easily calculate the following:

a p=a g
8)0

By simply integrating this equation, we have a solution in
the form

g
—go=+f, go, c =const,

+2F; (tp)+c

which contains some well-known plane soliton solutions.
Obviously, (4) may have multidimensional solutions. Ap-
plying these solutions to (6) will give many interesting
soliton solutions to Eq. (1).

We now solve Eqs. (4). We know that the general solu-
tion, the complete solution, and the singular solution in-
clude all of the solutions for a equation. For Eqs. (4), the
complete solution is a simple hyperplane solution.

(=a x +go, a a =l.
There does not exist a singular solution of the equation
explicitly. Therefore we only take interest in the general
solution. Consider a kind of general solution of (4) in the
form

g=f(g, )+d x, g, =b,~ +e, , d, b, ,e, =const,
(&)

where f(gj) denotes an arbitrary function of g . Com-
bining (4) with (8), the direct calculation gives

a.a.q =a.ga.g
" 'p+a.a.g „".
dg

Substituting (2) into (1) yields

(2) a (a g=b, b„+2d b +d d

The arbitrariness of the function f(g )leads to the condi-.
tions

, +a.a.g
d' d dF;(tp)

(3)
bj bi(t' ~ 0 bj d 0 8 8 1 (10)

Given (3), we can show that if g satisfies the system of
equations

a.a.g=o, a.ga.g=l,
then (3) becomes an ordinary diiferential equation

Taking f(g, ) to be a function of g for j=1,2, . . . , N,
(10) implies —,'(N+1)(N+2) equations with (N+1)n con-
stants b-, d . Hence the integral number N must satisfy
the inequality

dF, (tp)

dg dy

—,
' (N+ 1)(N+2) ( (N + 1)n .

(&)
Equation (11) shows that
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N=1 for n =1, N ~2 for n =2,
N~4 for n =3, N&6 for n =4,

and so on. For the N = 1,n =2 case, (10) implies

b, ob =0, b,odo+b1, d, =0, d +d =1

It gives a solution

(12)
then (8) becomes

g=f(g )+d x =ln e g e '
j=1

=Inge'
j=l

(13}

b, o=b„=0, do=+1 —d,

Inserting these into (8) leads to g= d x +const, which is
the complete solution (7). For the n ~ 3 cases, (8) denotes
a general solution with arbitrary function f(g ). It
makes (6) a kind of general solution of the n-dimensional
nonlinear wave equations. They contain some interesting
specific solutions, such as the plane solitons, the N multi-
ple plane solitons, the quadric solitions, the N multiple
quadric solitions, the quadric breathers, and so on.

Taking all of b „in (10) to be equal to zero, (8) becomes
the plane solution (7), and (6) gives some plane solitons.
The plane solitons are simple but stable since they are
equivalent to some solutions in one-dimensional space.

The N multiple solitons of n-dimensional wave equa-
tions are known from previous results [5—7]. We will

easily show that they are included by the general solution
(8) and (6). Selecting

where a =d +b and N satisfies (11). The conditions
(10) are simplified into

a ak =1. (14)

Taking N to be 1,2, . . . , N, respectively, (13) gives N
multiple wave solutions. This assertion has been proved.

Any concrete soliton is a four-dimensional soliton. Its
shape is probably one of the quadrics. Now we solve for
the quadric solitons. Setting (8) in the form

it describes a general quadratic surface at any definite
time. Then we make a coordinates transformation

n —1

Xk =CkyXy cky =1 (16)

g=g, g, +d,x =b, b, 13x xg +(2e, b, +d )x +e)e, ,

j=1,2, . . . , N (15)

f(g)=ln g e '=ln g e '
j=1 j=1 such that

k=1

g=b, , b,kx;x„+(2b,, b,oxo+2e, b,;+d;)x;+b,ob, oxo +(2e, b,o+ d ) ox+o, e, e

=b, , b,„c,,ck X,X +(2b;b Oxo+2ejb, +d, )c,,X, +b,ob Oxo+(2e, b 0+do)xo+e e, , j=1,2, . . . , N

b;bkc ckr=5sy, j=1,2, . . . , N .

(17)

(18)

For the four-dimensional case, (17) and (18) denote a

sphere with radius

d
b;b oxo+e b, +-

J Jl

l

The center of the sphere obeys the equation

d
X, = — b, b oxp+ejb;+ —c;, ,J Jt 2 Is

j=1,2, . . . , N, S=1,2, 3 . (22)

dr
X bk bkpxp+Fkbky+ C sCysr Z

bjob Oxo
—(2e—d 0+do)xo ee—

1/2

(19)

It denotes a space curve. Thus (17) and (6) give a sphere
soliton solution which has definite radius and motional
center. It seems to be a motional particle. On the other
hand, if the transformation (16) makes (18}the following

when R )0. Let the constants satisfy the equations

ji jp ky kp is ys jp jp &

bji bJkCisCky 0 fOr S&y

j jk i1 k1 j jk is ks

(23)

(20)

Inserting (20) into (19) leads to
j,k=1,2, . . . , N .

dr
2bj'bj o ~k bky+ c cy 2~jdj Q+ dp

then (17) and (6) will lead to some ellipsoid solitons and

hyperboloid solitons.
Further, by appropriately selecting ck, we let the

transformation (16) make (15) into the equation

/=ax, +bzxc+x3~2+f zxx32+g ,xx32+h ,x~x

d;R= e b--+—
2

dy
r + c' cr ~j~j

2

1/2
+2P ( t)x, +2q( t)x 2+ 2r( t)x 3 +d ( t)

=const, j,k = 1,2, . . . , N . (21)
= AX +BX +CX + (24)
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a h g p
b f 0 h g

D= h b f
pqrd .gfc

(25)

I=a+b +c, J =ah+bc+ca f ——g —h (26)

When A =B =C and b,(t)/D &0, (24) denotes a sphere
whose center is inmovable X, =0 and radius is variable:

where A, B, and C are the characteristic values of the
equation U —IU +JU —D =0; 6, D, I, and J are the in-

variants of transformations

N ~2

g=lnge'+d x

d x (b. x +e-)N
=ln e ge

j= 1

N= ln g exp[(b, ~ +e, ) +d„x ] . (28)

According to the discussions on (13) and (15), it is clear
that substituting (28) into (6) will yield the X multiple
quadric soliton solutions. We take interest in the quadric
breathers [8]. In order to obtain them, we discuss the
n =4,%=4 case. In this case, setting (8) as

(2+ g2 (2+ g2
g= In[go(e ' ' —e ' ')]+d x

R =&Ah(t)/D

which is a sphere wave.
We now take a specific solution of (8) in the form

(27) = in[go(e ' ' ' —e ' ' ' )], go=const, (29)
g+g+d x g+g+d x

we may make a coordinate transformation whose form is
(16) such that

(30)

g/=gj+gj'+2+d x =(b,~ +e, )'+(b/„, ~ +e)+,)'+d x

=a x(+b xz+c,x3+2f,x2x3+2gjx, x3+2htx, x2+2p, (t)x, +2q, (t)x2+2r (t)x3+d, (t)

b,, (t)
A jX &

+8jX2 +CjX3 + j= 1,2 with no sum being taken on jD

where A, B, C, , b, (t), and D have similar definitions,
respectively, to A, B, C, b,(t), and D in (24). Let the
constants satisfy

We consider some particular examples at the end of the
paper. By applying F, (rp)= ,'asap 4(bp—to(—6), we obtain
a general soliton solution of the y field equation as

b, ,(t)
A] = A2, B]=82, C] =C2

1

b,,(t)
D2

(31)

arcsech(&b/2a y)=g —go, go=const . (34)

In the (2+1)-dimensional case, we have a simple solution
of (10)

Inserting (30) and (31) into (29) yields

A(x(+B(xz+c(x3 a((t)/D( —a((t)/D(
e —e

bto=i, b)) =1, b), =b k =0, i,j) 1

b]2 = 1 d)0=d&] =d& =0, i )2
(35)

Inserting (35) into (8) and further into (34), we have an
explicit form of the general soliton solution

Let go and D, be some imaginary numbers so that r sae ch(c&b/2a (p)=g(=f(x —t)+y, (36)

Co=Co

Given (32) we have

t A
1
x

&
+8

1
X2 + C I X3

2 2 2

g= ln 2goe sin
b, , (t)

Di
(33)

which moves along the x direction. Here, any definite
value g, determines a value of (p and a general plane
curve y =g, f(x —t). Therefore (3—6) includes arbitrary
plane-curve solitons with various shapes.

For the (3+1)-dimensional case, a similar result is
given:

Equations (33) and (6) will give some quadric breathers
such as (a) the sphere breathers, when A, =B,=C, ; (b)
the ellipsoid breathers, when A &, B&,C& have the same
sign; (c) the hyperboloid breathers, when A, ,B,,C, have
different signs.

The quadric breathers have many obvious and interest-
ing properties. For example, the sphere breathers behave
like some breathing abdomens. They will describe vari-
ous actual physical phenomena.

rascech(v b /2a rp) =$2=f(x —t)+ (y+z) (37)
1

v'2

Equation (37) manifestly implies some interesting quadric
solitons. For example, taking f (x —t) = [R—(x —t) ]' yields a circular cylindrical surface soliton
with radius R.

Now we come to show that the solitons (36) and (37)
are stable when a (0. We know that the energy of the cp
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In the case of stable field (38) becomes
1—1

Ho= x( ,'r), —ytl,y+ ,'ay—2 ,'—by—)
=fd" 'x &[y,B,y],

and the y field equation gives

(39)

filed can be written in the form

H= fd" 'x[ —,'(t);yt), y —t) yt) y)+ —,'ay —,'b—y ] . (38)

5Ho=0, 6 Ho 00 (42)

a —3by &0, (43)

since 5y )0 and 5(t), y)5(t), y) )0. The solitons (36) and
(37) have the property

make the energy a minimum and the corresponding soli-
tons the stable ones. Given (41) and (42), we have the
condition of stabilization

8;8;y =ay —by (40)

since Boy=0. The application of (39) and (40) leads to
the variation and second variation

5H = d"-'x ~~ —a
By

'
B(r),y)

= fd" 'x(ay by' —
r), r), y—)5y=O,

0 &bf2ay 1.
Inserting (44) into (43) yields

(1—6)a = —5a )0,
that is,

a(0.

(44)

(45)

8Vf52H = d" 'x 5y2+ (5a, y)
r)y t)(B;y)

=fd" 'x[(a —3by )5y +(5B,y5t), y)] .

(41)

According to the principle of least energy [9], the condi-
tions

Thus we obtain the conclusion which, for the y field
equation with F, = —,'ay —

gaby, a & 0, has general soliton
solutions that are stable.

For the sine-Gordon equation with F, = —cosy and
other wave equations, we may give their general soliton
solutions and some interesting properties by using the
above-mentioned method.
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