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Diffusion in models of modulated area-preserving maps
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We investigate the diffusion in the action variable when the frequency of an integrable isochronous

map is modulated. Purely stochastic, hyperbolic, or periodic deterministic modulations are considered.
The diffusion coefficient in the invariant for the unperturbed map is exactly determined and shown to be

nonzero, except in the last case, when the modulation is smooth and nonzero, due to the presence of to-

pological barriers.

PACS number(s): 03.20.+ i, 05.60.+w

The diffusion in chaotic regions of phase space still
remains an open problem, whose implications are physi-
cally quite relevant [1—7]. Indeed, the lifetime of many
physical systems, such as a spinning planet, a beam in a
circular accelerator, or the toroidal surfaces in a confined
plasma, seems to depend critically on the existence of a
diffusion process of the orbits in phase space.

It is usually believed that for large perturbations with
respect to the integrable case a smooth map exhibits
diffusion and that the quasilinear approximation holds
[1,2]. This is equivalent to assuming that the angular
variables randomize, driving the diffusion of the action.
At the moment the only exact result is available for the
continuous sawtooth map as proved in [7]: some few re-
sults, in a probabilistic setting, also hold in the discon-
tinuous case [8]. Some numerical experiments have
shown that in an intermediate regime the diffusion
coefficient can exceed the quasilinear value and this new

regime has been denominated superlinear [9].
When the perturbation is small and satisfies some regu-

larity conditions, the Kol'mogorov-Arnol'd-Moser
(KAM) curves confine the orbits and no large-scale
diffusion can exist. However, if the map is coupled with a
hyperbolic degree of freedom a slow (Arnol'd) diffusion
can appear, even though no rigorous results are yet avail-
able for a generic four-dimensional map [10—12].

In this Brief Report we propose a simple model ob-
tained by modulating an integrable area-preserving map
with constant frequency with a stochastic, hyperbolic, or
periodic modulation. In the first case, describing the
effect of an external noise on the system, a process with
independent, identically distributed variables whose dis-
tribution is absolutely continuous with respect to the Le-

besgue measure and a Bernoulli process are considered.
In the second case, describing the coupling with a hyper-
bolic degree of freedom, the deterministic map T(a) =2a
mod 1 modulates the frequency. In almost all the cases,
the diffusion is proved to exist and the diffusion
coefficient is rigorously computed [13,14]. The asymptot-
ic behavior for small and large modulation amplitudes e
is found to behave as e as e~O and to reach the quasi-
linear value as e~ ~, except for the Bernoulli modula-
tion where asymptotic oscillations prevent the conver-
gence. Still, in this case and for particular values of the
parameters, one can also prove the existence of ballistic
motions. The intermediate region crucially depends on
the particular process, and superlinear regimes are ob-
served. When the modulation is periodic and smooth
(analytic), then the existence of 2-tori on the associated
volume-preserving map is proved, preventing any
diffusion, if the frequencies satisfy a diophantine condi-
tion. If the modulation is not sufficiently smooth then
the diffusion exists and the coefficient is the quasilinear
one if e is an integer.

We consider an integrable map with modulated fre-

quency

0„+&
=0„+ to+ ef(a„) mod2tr,

j„+,=j„+V(0„}.

We recall that a perturbation of the 0 motion was first

proposed in [15] in order to compute the diffusion

coefficient for the standard map. The following particu-
lar cases for the modulation o.„are considered:

(1) Stochastic modulation: o.„are independent identi-

cally distributed random variables and f (a)=a, the dis-
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+"
ik8 (2)

The potential V(8) is assumed to be with zero mean and
analytic in a strip

I
lmHI ~ b, so that its Fourier—ay kl

coefficients Vk decay as e . We determine the
diffusion coefficient, which is defined as usual

D (Jo, e ) = lim ( (J„+,—Jo ) ),1
(3)

n~oo 2n

where the average is taken over the initial angle Oo and
the distribution of the process in the stochastic case, and
over the initial angle Oo and the initial value ao in the
deterministic case. For the models (la) the diffusion

tribution dp(x) of the process being (a) absolutely con-
tinuous with respect to the Lebesgue measure on
E; (b) atomic dp(x)=gk, pk5(x —qk), where pk are
positive weights with unit sums and qk are in [0,1], name-
ly, a Bernoulli process. The e„are the iterates of a
dynamical system T,a„+&=T(a„) that we choose as the
following.

(2) Hyperbolic modulation: f(a)=a, VaE[ —
—,', —,'[

and T(a) =2a mod [0,1[——,'.
(3) Periodic modulation: T(a)=a+0 mod [0,2m[,

where the frequencies are strongly nonresonant, namely,
cu, Q satisfy a diophantine condition. Here also we con-
sider two distinct possibilities: (a) the modulation
f(a)=a —m. , VaE[0, 2~[,f(a)=f(a+2'), VaEE, with
e integer; (b) the smooth modulation f(a)=f(a+2m),
a EE, where f is analytic in a strip IlmaI ~ b, .

We consider the diffusion of the invariant J for the un-
perturbed map (e=O), which is given by

coefficient is positive, independent of Jo, and has the fol-
lowing behavior:

D-e for E~O, limD=D
~

—=
—,
' g V„,g~ oo k = —oo

(4)

where D
~

is the quasilinear coefficient. In particular, it is
given by

+-
I VkI',„.[1—q(~k)]'D = g . Re 1 —y(Ek) —e'

„ Ie~k~ —1 I' 1 e'" y—(Fk)

(5)
where y(x) is the characteristic function of the probabili-
ty distribution.

For a Bernoulli process (lb) with states s„.. . , s and
its. k

weights p„. . . ,p, defining Q» =g =tp e ' we have

Q e lkcd

D=Dq~+Re g IVk (6)
1 —Qke'"

provided that a sort of diophantine condition
& p.p. sin ke2 '(s. —s~ )I '~yIkI" for some y,p)0

is satisfied: in this case D is still independent of Jo and
positive. Moreover, it behaves like the first expression in
(4) whenever e~O. Instead, when e~+ oo, the diffusion
coefficient does not tend to any limit, as is easy to deduce
from Eq. (6); this means that we cannot expect the
random-phase approximation be true in the limit of large
perturbations, as is usually believed to happen for stan-
dardlike maps. If conversely es +co are rationally depen-
dent, a ballistic motion is observed (J„grows linearly
with n) and the diffusion coefficient is infinite.

For the hyperbolic modulation [case (2)) the result
reads

D =Dq&+ g I Vk I g cos[kco(r+ I )]
r=0

ke 1
sin 1—

2r+1

ke 1

27+1

I'+ 1

] 2
(7)
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FIG. 1. Diffusion coefficient D vs perturbation parameter e
for the case of V(0) =&2cos(0). The quasilinear estimate is 2.
Gaussian case with mean a =0.09 and standard deviation
o =0.08.

FIG. 2. Diffusion coefficient D vs perturbation parameter e
for the case of V(0)=&2 cos(0). Gaussian case with mean
a = —0.09 and standard deviation o.=0.05.
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FIG. 3. Diffu
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i usion coefficient D vs ertp p
cos(0). Tw-
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=0 d =0 375s] = .375, s2= —0. 125.

FIG. 4. Diffu
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iffusion coefficient D v p
2 cos(0).
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