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Diffusion in models of modulated area-preserving maps
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We investigate the diffusion in the action variable when the frequency of an integrable isochronous
map is modulated. Purely stochastic, hyperbolic, or periodic deterministic modulations are considered.
The diffusion coefficient in the invariant for the unperturbed map is exactly determined and shown to be
nonzero, except in the last case, when the modulation is smooth and nonzero, due to the presence of to-

pological barriers.

PACS number(s): 03.20.+1, 05.60.+w

The diffusion in chaotic regions of phase space still
remains an open problem, whose implications are physi-
cally quite relevant [1-7]. Indeed, the lifetime of many
physical systems, such as a spinning planet, a beam in a
circular accelerator, or the toroidal surfaces in a confined
plasma, seems to depend critically on the existence of a
diffusion process of the orbits in phase space.

It is usually believed that for large perturbations with
respect to the integrable case a smooth map exhibits
diffusion and that the quasilinear approximation holds
[1,2]. This is equivalent to assuming that the angular
variables randomize, driving the diffusion of the action.
At the moment the only exact result is available for the
continuous sawtooth map as proved in [7]: some few re-
sults, in a probabilistic setting, also hold in the discon-
tinuous case [8]. Some numerical experiments have
shown that in an intermediate regime the diffusion
coefficient can exceed the quasilinear value and this new
regime has been denominated superlinear [9].

When the perturbation is small and satisfies some regu-
larity conditions, the Kol’'mogorov-Arnol’d-Moser
(KAM) curves confine the orbits and no large-scale
diffusion can exist. However, if the map is coupled with a
hyperbolic degree of freedom a slow (Arnol’d) diffusion
can appear, even though no rigorous results are yet avail-
able for a generic four-dimensional map [10-12].

In this Brief Report we propose a simple model ob-
tained by modulating an integrable area-preserving map
with constant frequency with a stochastic, hyperbolic, or
periodic modulation. In the first case, describing the
effect of an external noise on the system, a process with
independent, identically distributed variables whose dis-
tribution is absolutely continuous with respect to the Le-
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besgue measure and a Bernoulli process are considered.
In the second case, describing the coupling with a hyper-
bolic degree of freedom, the deterministic map T(a)=2a
mod 1 modulates the frequency. In almost all the cases,
the diffusion is proved to exist and the diffusion
coefficient is rigorously computed [13,14]. The asymptot-
ic behavior for small and large modulation amplitudes €
is found to behave as €? as e —0 and to reach the quasi-
linear value as e— o, except for the Bernoulli modula-
tion where asymptotic oscillations prevent the conver-
gence. Still, in this case and for particular values of the
parameters, one can also prove the existence of ballistic
motions. The intermediate region crucially depends on
the particular process, and superlinear regimes are ob-
served. When the modulation is periodic and smooth
(analytic), then the existence of 2-tori on the associated
volume-preserving map is proved, preventing any
diffusion, if the frequencies satisfy a diophantine condi-
tion. If the modulation is not sufficiently smooth then
the diffusion exists and the coefficient is the quasilinear
one if € is an integer.

We consider an integrable map with modulated fre-
quency

0, 1=0,to+ef(a,) mod27 ,
(D
jn 'rl:j71+ V(en) .

We recall that a perturbation of the 8 motion was first
proposed in [15] in order to compute the diffusion
coefficient for the standard map. The following particu-
lar cases for the modulation «a,, are considered:

(1) Stochastic modulation: «, are independent identi-
cally distributed random variables and f (a)=a, the dis-
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tribution du(x) of the process being (a) absolutely con-
tinuous with respect to the Lebesgue measure on
R; (b) atomic du(x)=3, —, ,,px8(x —gq; ), where p, are
positive weights with unit sums and g, are in [0,1], name-
ly, a Bernoulli process. The «, are the iterates of a
dynamical system T,a,,;=T(a,) that we choose as the
following.

(2) Hyperbolic modulation: f(a)=a, Va€[—1, [
and T(a)=2a mod [0,1[— 1.

(3) Periodic modulation: T(a)=a+Q mod [0,27][,
where the frequencies are strongly nonresonant, namely,
, ) satisfy a diophantine condition. Here also we con-
sider two distinct possibilities: (a) the modulation
flay=a—m,VYa€[0,27[,f(a)=f(a+27),VaER, with
€ integer; (b) the smooth modulation f(a)=f(a+27),
a ER, where f is analytic in a strip |Ima| < A.

We consider the diffusion of the invariant J for the un-
perturbed map (e =0), which is given by

ot Ve
TR e @
The potential V(6) is assumed to be with zero mean and
analytic in a strip |Im@)| SA,r so that its Fourier
coefficients ¥, decay as e A We determine the
diffusion coefficient, which is defined as usual

.1
D(Jy, €)= lim ;((J,,H—JO)Z) , (3)

n— o0
where the average is taken over the initial angle 6, and
the distribution of the process in the stochastic case, and
over the initial angle 6, and the initial value a; in the
deterministic case. For the models (1a) the diffusion

coefficient is positive, independent of J, and has the fol-
lowing behavior:

D~¢* for e—0, limD=D,=; 3 Vi, 4)
k=—w

€—> o0
where D is the quasilinear coefficient. In particular, it is
given by

+ | Vk |2

p=3

k=—o

ko [1—X(ek)]
1—e*“y(ek)

(5)

where y(x) is the characteristic function of the probabili-

ty distribution.
For a Bernoulli process (1b) with states s, . ..

WRC 1—x(ek)—e

»S,, and

k
weights p,, ..., p,,, defining Q, =2]'»":,pjem’ we have
F oo eikw
D=D,+Re I |Vk|2—Q—’f—.k , (6)
k=—o 1—Qe™

provided that a sort of diophantine condition
|3 <;pjpjsin’ke2 ™ (s;—s;)| ~' < y|k|* for some y,u>0
is satisfied: in this case D is still independent of J, and
positive. Moreover, it behaves like the first expression in
(4) whenever €—0. Instead, when €e— + o, the diffusion
coefficient does not tend to any limit, as is easy to deduce
from Eq. (6); this means that we cannot expect the
random-phase approximation be true in the limit of large
perturbations, as is usually believed to happen for stan-
dardlike maps. If conversely €s; + are rationally depen-
dent, a ballistic motion is observed (J, grows linearly
with n) and the diffusion coefficient is infinite.

For the hyperbolic modulation [case (2)] the result
reads

sin | K€ |1
+ o0 ) © 2 2r+1 r+1 € 1
D=Dq1+k—§£ [Vl zcos[kw(r-i-l)] P I]cos Ek 1—;]—. , (7)
=—o0 r=0 K€ _ j=1
2 2r+1
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FIG. 1. Diffusion coefficient D vs perturbation parameter €
for the case of ¥(6)=V"2cos(8). The quasilinear estimate is %
Gaussian case with mean a=0.09 and standard deviation
o=0.08.

FIG. 2. Diffusion coefficient D vs perturbation parameter €
for the case of V(6)=V2cos(f). Gaussian case with mean
a=—0.09 and standard deviation o =0.05.
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FIG. 3. Diffusion coefficient D vs perturbation parameter €
for the case of V(8)=V"2cos(0). Two-state Bernoulli perturba-
tion with p; =0.25, p, =0.75 and 5, =0.375, s, = —0.125.

and the positivity of D can only be checked numerically;
the asymptotic behaviors are still of the type (4). For a
periodic modulation the diffusion is present when in case
(3a) and D =D .

When the modulation is smooth and the frequencies
are nonresonant [case (3b)], two-dimensional tori are
proved to exist and the diffusion is absent.

Finally, in case (3a), but with noninteger eE€R, no
answer is available. Preliminary numerical computations
seem to show that diffusion is present with D close to the
quasilinear value.

The intermediate types are quite interesting in all the
previous cases in which the diffusion is present. Indeed, a
superlinear regime is observed and the approach to the
quasilinear value can occur in many different ways. In
Figs. 1 and 2 we give an example of such a different be-
havior for a Gaussian process simply by changing the
mean value and variance. It is important to notice that
the qualitative behavior of the diffusion coefficient as a
function of € does not change if we consider other choices
of the probability distribution in place of the Gaussian
one. Figure 3 shows the persistency of the oscillating
trend of the diffusion coefficient for a two-state Bernoulli
perturbation. In Fig. 4 the behavior for the hyperbolic
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FIG. 4. Diffusion coefficient D vs perturbation parameter €
for the case of ¥(6)=V"2cos(6). Case of the hyperbolic modu-
lation (2).

modulation (2) is also shown. The fact that for the
Gaussian processes the diffusion coefficient does not oscil-
late is consistent with a recent work by Ichikawa and co-
workers [16], where the addition of a nonlinear frequency
dependence to the standard map makes the diffusion
coefficient monotonic with respect to the parameter €.

To conclude, the model we have presented describes
the diffusion of a generic Hamiltonian map, in the aniso-
chronous case, close to an invariant curve of frequency o,
if the variation of the frequency with the action is small
in a large region of phase space, so that to replace it with
the isochronous map is (not yet rigorously) justified. The
statistics of the system has not been obtained but certain-
ly deserves to be analyzed; relations with physical situa-
tions such as the electrostatic model for a plasma should
also be explored.

We would like to thank R. Lima and C. Liverani for
useful discussions and A. D. Verga for having pointed
out to us the importance of superlinear diffusion in plas-
ma physics. S. V. was supported by Contract No. CEE
SC 1*0281. S. S. was supported with an MPI grant. G.
T. was supported with a NATO Grant No. 890383.

[1] A. J. Lichtenberg and M. A. Lieberman, Regular and Sto-
chastic Motion (Springer-Verlag, New York, 1983).
[2] B. V. Chirikov, Phys. Rep. 52, 263 (1979).
[3]R. S. MacKay, J. D. Meiss, and 1. C. Percival, Physica
13D, 55 (1984).
[4] V. Room-Kedar and S. Wiggins, Arch. for Rat. Mech. and
Analysis, 109, 239 (1990).
[5] I. Dana, Physica 39D, 205 (1989).
(6] Hyung-tae Kook and J. D. Meiss, Phys. Rev. A 41, 4143
(1990).
[7]1J. R. Cary and J. D. Meiss, Phys. Rev. 24 A, 2664 (1981).
(8] J. Bellissard and S. Vaienti, Comm. Math. Phys. 144, 521
(1992).
[9]J. R. Cary, D. F. Escande, and A. D. Verga, Phys. Rev.
Lett. 65, 3132 (1990).
[10] P. Lochak, Phys. Lett. A 143, 39 (1990).

[11] P. Holmes and J. Marsden, Indiana Univ. Math. J. 32, 2
(1983).

[12] B. V. Chirikov, M. A. Lieberman, D. L. Shepelyansky,
and E. Vivaldi, Physica 14D, 289 (1985).

[13] A. Bazzani, S. Siboni, G. Turchetti, and S. Vaienti, From
Dynamical Systems to Local Diffusion Processes, NATO
Advanced Study Institute Series Volume Chaotic Dynam-
ics: Theory and Practice, edited by T. Bountis (Plenum,
New York, in press).

[14] A. Bazzani, S. Siboni, G. Turchetti, and S. Vaienti (un-
published).

[15] C. F. F. Karney, A. B. Rechester and R. B. White, Physi-
ca 4D, 425 (1982).

[16] T. Hatori, T. Kamimura, and Y. H. Ichikawa, Physica
14D, 193 (1985).



