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Driving systems with chaotic signals
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Negativity of the conditional LyapunoU exponents is a necessary and in many cases a sufficient condi-
tion for the occurrence of synchronization between a chaotic drive and the response subsystem. Treat-
ing one of the variables of coupled logistic maps as the drive, our numerical simulations show that the
negativity of the conditional Lyapunov exponents does not always guarantee synchronization and, addi-
tionally, the domain of initial conditions for the drive variables needs to be specified in which case the
synchronization occurs. Additionally, an example showing the pitfalls of the numerical study of synch-
ronization when the conditional Lyapunov exponent is positive is presented.

PACS number(s): 05.45.+b

I. INTRODUCTION

A composite, nonlinear dynamical system comprising
two subsystems that are internally coupled, such that the
behavior of the second system is dependent on the first,
but not vice versa, is termed driue-decomposable. The
subsystem providing the chaotic signal is called the drive,
and the one being driven is called the response subsystem.
Consider an m-dimensional system describing the
discrete-time map given by

v„+,=f„(tt,w) .

Vector U represents the drive variables that are used in
the response. The k-dimensional vector u denotes those
drive variables that are not part of the response subsys-
tem and can be defined as

an+1 —g„(V,Q)

We can construct the l-dimensional response vector w as

In this report, a system of two coupled logistic maps
has been studied to seek the synchronization effects. The
coupled system is given by

X& =(1 e)pX—, (1—X, )+F2n+1

X~ =(1 e)pX2 (1——X2 )+EX,n+1 (5)

Here, we have considered a case of homogeneous driv-
ing where m =k =i= 1. Out of the two (X„X2)system
variables, one (X2 ) has been treated as the drive, and the
response system corresponding to the remaining variable
(X, ) is constructed. In the strict sense, the coupled sub-
systems (4) and (5) are not drive-decomposable. Howev-
er, in the situation when e is small, the CLE's do predict
correct synchronization behavior. Treating X2 as the
drive, the response subsystem can then be written as

X3 =(1 e)pX3 (1——X3 )+eX2n+1

It can be easily seen that Eq. (6) is a replica of Eq. (4).
w„+,=h„(v,w) . (3)

The overall dimension of the composite system (1)—(3) is
equal to m +k + l.

Pecora and Carroll [1] have treated a special case of
homogeneous driving when k =l and f=h. In such a sit-
uation, the response is the same as in that part of the
drive that is not providing the drive signal and, therefore,
their functional forms are identical. Pecora and Carroll
studied [1,2] continuous-time, differential, nonlinear
dynamical systems such as the Lorenz model, the Rossler
model, and hysteretic circuits, and found that when the
Lyapunov exponents of the response subsystem (termed
the conditional Lyapunov exponents ) are negative, the
response variables will synchronize with the drive vari-
ables. This happens even when the subsystem has
different initial conditions from that of the drive. Nega-
tivity of the conditional Lyapunov exponenets (CLE's) is,
therefore, stated to be a necessary condition and, in many
cases, also a sufficient condition. The adjective condition-
al has been used to signify the Lyapunov exponent's
dependence on the drive vector U.

II. RESULTS AND DISCUSSION

The coupled system represented by (4) and (5) can ex-
hibit unique stable, periodic, or chaotic behavior as the
coupling strength e is varied. To ascertain that the drive
is chaotic, the parameter space was scanned to obtain a
region wherein the largest Lyapunov exponent becomes
positive. Figure 1 shows a plot of conventional
Lyapunov exponents versus coupling parameter e
wherein the two exponents have been computed using the
algorithm proposed by Wolf et al. [3]. Initial conditions
of X& =0.4 and Xz =0.2 have been used for the simula-

tion. For p=3.7, and 0.045 (e(0.056 or e) 0.467, the
coupled system exhibits periodic behavior. For the sub-
sequent simulations, parameter values of p =3.7 and
E =0.09, for which the positive Lyapunov exponent con-
dition is realized, have been used.

Treating X2 as the drive variable and X3 as the
response variable, Eqs. (4)—(6) were iterated simultane-
ously. The initial conditions chosen are X& =0.4,
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FIG. 1. Plot of Lyapunov exponents vs the coupling parame-
ter e for @=3.7. Solid and dashed lines represent conventional

Lyapunov exponents k„l2,respectively.
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X2 =0.2, and X3 =0.7. The synchronization between

X, and X3 was monitored only after 10000 iterations.
n n

If, for the last 100 iterations, the mean of the absolute
value of the difference (X, —X3 ) equals zero, then we

assume that the synchronization has taken place. Figure
2 shows the plot of the mean of abs(X, —X, ) versus the

coupling parameter e. Additionally, the conditional
Lyapunov exponent of the response subsystem represent-
ed by (6) has also been plotted. For E)0.21, the synch-
ronization and negativity of the conditional Lyapunov
exponent coincide. A region (0.067 & e (0.103) where the
conditional Lyapunov exponent is negative but X, and

n

X3 do not synchronize can also be seen.
n

FIG. 3. Initial conditions X, ,Xz for which synchronization
0 0

occurs when CLE is negative (p =3.7, X3 =0.7).
0

In order to investigate the influence of drive initial con-
ditions on synchronization, these were systematically
varied. For a=0.09, and X3 =0.7, the initial conditions

0

X, and X2 were scanned at the interval of 0.005, and
0 0

the dynamics of (4), (5), and (6) was examined. The re-
sults are shown in Fig. 3, where the dots represent those
initial conditions for which the synchronization has oc-
curred. It was also found that some of these initial condi-
tions result in the periodic drive.
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FIG. 2. Plot depicting the synchronization behavior and the
conditional Lyapunov exponent {CLE)as a function of coupling
parameter e. Solid curve, abs{X1 —X, ); dashed curve, CLE.
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FIG. 4. Initial conditions X, ,Xz, which evolve to synchron-
0 0

ization when CLE is positive.
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It has been observed that for some set of initial condi-
tions, X& and X3 synchronize, although the conditional

n n

Lyapunov exponent with respect to the response subsys-
tem remains positive. Figure 4 shows the plot of X& vs

0

X2, wherein the dots correspond to those initial condi-
0

tions where such a phenomenon is observed. One can
easily recognize this to be the pitfall of numerical compu-
tations. The flaw arises because of the noninvertible na-
ture of the logistic map and the finite precision of com-
puters. The noninvertibility leads to each value of the
map having two preimages. It is thus possible to begin
with different initial conditions and get mapped to the
same point. The finite precision of the computers in use
also ensures such behavior. Once the two points have the
same value, they will follow the same trajectory thereaf-
ter, regardless of the stability situation. A typical exam-
ple exemplifying an occurrence of such an event is
presented below. Consider a situation where X, =0.3,

Xz =0.19, X3 =0.7, @=0.09, and p=3.7. In the next
0 0

iteration, X, and X3 are mapped to the same values as
X] X3 0.72417 and X2 =0.545 18.

The values of X, and X3 remain equal thereafter.
However, simply changing the last digit in X3 by 1 will

cause the points to diverge, in accordance with the posi-
tive conditional Lyapunov exponent. This occurs at
several Xz initial conditions with X, =0.3 and X3 =0.7,

0 0

as shown by the many points lying on the vertical line at
X, =0.3. Similar apparent synchronization can occur

corresponding to different initial conditions, as seen in
Fig. 4.

Pecora and Carroll [1] based the occurrence of synch-
ronization essentially on the negativity of the Lyapunov
exponents of the response subsystem only. Considering
the composite system under study, this means the compu-

tation of the Lyapunov exponent corresponding to the
single equation (6). We computed the Lyapunov ex-
ponents with respect to the individual drive variables, in
a manner similiar to conditional Lyapunov exponents, to
check whether they have any effect on the synchroniza-
tion behavior. Since the drive vectors are represented by
(4) and (5), the individual Lyapunov exponents are evalu-
ated according to

1 ~f2
lim —g ln

w N, , BX

where f, and fz correspond to (4) and (5), respectively.
An interesting observation about the behavior of A,, and

1

is that they (along with CLE for the response subsys-
2

tern) attain negative values when the synchronization
takes place, whereas, for no synchronization, A,, and A,,2

remain positive.

III. CONCLUSION

It has been stated [1] that the negativity of the condi-
tional Lyapunov exponents is a necessary and, in many
cases, a sufficient condition for the occurrence of synch-
ronization between drive and response subsystems. Our
numerical simulations show that the negativity of the
conditional Lyapunov exponent does not always guaran-
tee synchronization. There also exists a set of initial con-
ditions for the drive variables, within which the synch-
ronization will take place. An example illustrating the
pitfalls of the numerical computations in the case of
synchronization when the conditional Lyapunov ex-
ponent becomes positive has also been presented.

'Author to whom correspondence should be addressed.
[1]L. M. Pecora and T. L. Carroll, Phys. Rev. A 44, 2374

(1991).
[2] L. M. Pecora and T. L. Carro11, Phys. Rev. Lett. 64, 821

(1990).
[3]A. Wolf, J. B. Swift, H. L. Swinney, and J. A. Vastano,

Physica 16D, 285 (1985).


