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A variant of KauÃman's NKC model for the coevolution of haploid organisms is shown to have two
phases: a frozen phase in which all species eventually reach local fitness maxima and stop evolving,
and a chaotic phase in which a fraction of all species is at local maxima, while another fraction
evolves towards maxima. In doing so, they set other species back in evolution, thereby maintaining
a steady fraction of evolving species. The evolutionary activity of the steady state is a natural order
parameter for the ecosystem. Closed expressions are given for this order parameter and for the
system's relaxation time. The latter quantity diverges at the phase boundary, showing the system
is critical there. All results were obtained analytically for the maximally rugged case of K+ 1 = N,
and to leading order in N, the number of genes in a species.

PACS number(s): 87.10+e, 05.40+j, 05.50+q

I. INTRODUCTION

In this second of two papers, we discuss a variant of
Kauffman's NKC model for the coevolution of haploid
organisms [1—4]. It has been suggested [3] that this
model self-organizes dynamically to criticality [5]. It
thereby provides a model for the intermittency of ex-
tinction events observed in biological evolution by Raup
[6]

We study the NKC model with maximally rugged fit-
ness landscapes, and demonstrate analytically that it
possesses two phases, one phase with dynamics governed

by attractive fixed points, and another phase with chaotic
dynamics. The phases are separated by a critical line in
the (N, C) plane at C N/lnN. Here N, K, and C
parametrize the number of genes in the evolving organ-
isms, the roughness of the fitness landscapes they evolve
in, and their mutual dependence, respectively. To ob-
tain the maximally rugged landscapes we study, one must
choose K = N —1, so K does not occur as an independent
parameter in the present paper.

The ultimate goal of our analytical investigation of
the NKC model is to demonstrate its capacity for self-

organized criticality, if it is there. The present paper
reports on some progress in this direction, inasmuch as
we show that the first prerequisite, critical behavior, is

there in the model. We may hope then that a more real-
istic version of the model, having C and N as dynamical
variables, may self-organize by driving these parameters
to critical values. Whether this is the case is not ad-
dressed in the present paper. Here we keep N, K, and C
fixed, and common to all species, during the dynamics.
Also, all such necessary partial results, which pertain to
the evolution of a single species in isolation, have been
derived and collected in the preceding paper [7], hereafter
referred to as paper I.

In Sec. II we briefly describe and motivate the version

of the NKC model studied here. In Sec. III we write down
a master equation for its time evolution, correct to lead-
ing order in an expansion in 1/N. In Sec. IV we develop
a qualitative understanding of the model's dynamics, be-
fore we describe it in quantitative detail in Sec. V. The
different phases are characterized by the asymptotic dy-
namics of the model. The relaxation to this asymptotic
behavior is described in Sec. VI. Section VII contains a
summary of our findings, a discussion of the conditions
under which they were found, and some ideas for future
work.

II. THE SYSTEM

We already described and motivated the NK model in

paper I. So, since the NK model is the NEC model with
C = 0, we can be brief here.

We consider an ensemble of mutually dependent and
evolving species, an ecosystem, so to speak. At any time,
the state of any species is given by the state of its genome.
This genome contains N genes. We shall assume the
genes are binary variables, i.e. , there are only two alleles.
We do not expect our results to change in any significant
way if the number of alleles is changed, as long as it is
small compared with N in results based on expansion in

1/N.
As in paper I we do not distinguish between pheno-

types and genotypes, and also neglect variations in type
within a species. In real life variation is responsible for
the very existence of evolution. In the NKC model, how-

ever, only this consequence of variation is modeled: evo-
lution takes place and is driven by a constant rate of mu-

tations of individual, randomly chosen genes. If a mu-

tation increases the fitness of a species, it is accepted,
and the entire species is changed. If a mutation does
not increase the fitness, it is rejected, and the species re-
mains unchanged. If the time scale that selection works
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on is much faster than the time scale for mutations, this
lends some justification to our "all or nothing" dynamics
neglecting variations [8]. Proliferation and extinction of
species are both neglected in the present paper.

The itness of any of the evolving species is a random
function of its N genes and of C other genes belonging
to other species [9]. These C other genes are chosen at
random among the genes of other species. For a given
sample of the kind of ecosystem described here, the par-
ticular choice for these C genes and the random fitness
function define the sample, and remain fixed during evo-
lution —the randomness is quenched. The choice of a
random fitness function is motivated as in paper I.

(i) We conjecture that any fitness landscape with a
finite correlation length will be indistinguishable from a
random function on a sufliciently coarse-grained scale. So
by choosing a random landscape we avoid the particular
and treat a whole class, in principle.

(ii) It is technically convenient because the absence of
correlations allows us to derive a number of analytical
results, as shown below.
As explained in paper I, we may assume that the values
of the random fitness function are equidistributed in the
interval [0, 1] with no loss of generality.

III. MASTER EQUATION

Because each species evolves by mutation of randomly
chosen genes in a random fitness landscape, its path of
evolution through configuration space can be replaced by
a random walk, to leading order in N. This point was
discussed in detail for isolated species in paper I. It re-
mains valid for interacting species, because each species
essentially is given a new random fitness landscape to
evolve in each time a change occurs in one of the C genes
in other species it depends on. This observation causes
vast simplifications in the description of the system's dy-
namics, which, on the other hand, is exact then only to
leading order in N. But that is a small price to pay, as
we imagine N is large anyway.

We include two additional simplifications in the de-
scription: instead of keeping fixed the C randomly chosen
foreign genes that any species depends on, we rechoose
them at random any time we need them, i.e., we exchange
"quenched" randomness for "annealed. " If the total num-
ber of species in the ecosystem is effectively infinite-
and this assumption is the second simplification we add
to the description —then there is no difFerence between
results based on quenched (annealed) randomness. This
is because the set of species that any species depends on,
directly or via other species, forms a C-branched tree,
each node of the tree representing a species, each ori-
ented branch a dependency. So while our exchange of
quenched for annealed randomness amounts to a mean-
field approximation, we nevertheless expect the mean-
Geld theory to be exact, because the system effectively is
infinite dimensional through its random connections.

The second assumption, an effectively infinite number
of species in the ecosystem, makes a description in terms
of density functions possible: let pM(F; t) denote the rel-

e(F;t) = dF'P(F', t),

where

N

p(F', t) =,) (1 —M/N) pM(F', t)F' M=o-

is the contribution to this probability from species with
fitness F'. This contribution does not depend on F as
long as F & F'. This is so because we have assumed
the fitness landscape is uncorrelated. The factor 1/(1—
F') in this expression is the normalization factor for the
constant distribution for F with F & F'.

With this notation we can easily write down the master
equation for pM(F; t):

pM(F; t) =——
~

1 ——
~ pM (F; t) + BM iv (F)C (F; t)

8
Bt '

q N)

——~(t)pM(F t) + —~(t)BM.iv(F) (4)

This nonlinear integro-differential equation expresses
that the relative number of species with fitness F, and
M less fit one-mutant neighbors, changes for four dif-
ferent reasons, corresponding to the four terms on the
right-hand side of Eq. (4). The time scale in Eq. (4) has
been chosen such that in one unit of time one mutation
is offered per species —to be accepted or rejected.

The first term on the right-hand side of Eq. (4) is the
rate at which species with fitness F, and M less-fit neigh-
bors, mutate to higher fitness.

The second term on the right-hand side is a rate of
change of less-fit species into species with fitness F and
number of less-fit neighbors M. The function BM iv(F)
is the binomial distribution with mean F:

BM,iv(F) = F (1 —F)

It represents the probability that M out of N one-mutant
neighbors to a genome with fitness F are less fit than F.
This probability is binomially distributed because the Gt-

ative number of species which have fitness F and M less
fit one-mutant neighbors at time t. A change in a ran-
dom gene will then lead to higher fitness —and therefore
be accepted —with probability

N 1

A(t) = ) (1 —M/N) dFpM(F;t)
M=O 0

because 1 M—/N is the probability that the change of one
random gene leads to higher fitness in a species which has
M less fit one-mutant neighbors. We note that A(t) also
is the rate at which mutations are accepted by the ecology
from the constant rate of mutations offered. So A(t) is a
measure of the evolutionary activity in the ecology. We
shall find it a useful quantity below, and refer to it as the
activity.

The probability that such a mutation is accepted and
results in fitness F for the changed species is
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IV. ESTIMATING THE PHASE STRUCTURE

Clearly, a static solution to Eq. (4) is provided by

pM(F; t) = ~M, Np(F),

for any distribution p(F). This solution corresponds to
all species being at local fitness maxima. In the lan-

guage of [1—3], borrowed from economics, the system is
at a Nash equilibrium. Whether this fixed point for the
dynamics is attractive or repulsive with respect to per-
turbations of pM(F) depends on the value of C. For
C = 0 it is attractive, since in this case each species
evolves in a fixed landscape, and consequently arrives at
a local maximum, as described in paper I. At the other
extreme, C/N )) 1,

pM(F; t) = BM N(F)

is a static solution to leading order in N/C. It corre-
sponds to totally random fitness F, and maximum activ-
ity A = —,'.

At intermediate values of C, we can easily imagine the
existence of a static solution with a finite activity A cor-
responding to a certain fraction of all species being in

states that evolve. The activity is maintained by a bal-
ance between the rate at which species evolve towards fit-
ness maxima and the rate at which species are set back
in evolution by their dependence on other species. We
expect the activity A to increase with C.

On the other hand, we can also imagine that C can be
too small to sustain a finite activity. In paper I we found
that isolated species on the average change

pi = ln N + 0.099 13... + O(N ) (9)

genes in their evolution to a local maximum. So do
species in the NKC model studied here, if they are not set

ness landscape is random, with fitness F equidistributed
in the interval [0, 1] [10].

The third term is a rate of loss of species with fitness
F, M. This loss is not caused by a change in the genes
of the species lost but by a change in its fitness due to
genetic changes in other species. Since the C genes in
other species that any species depends on are randomly
chosen, this change is the product of the probability A(t)
that a mutation in a random species is accepted and the
probability C/NpM(F; t) that the gene it occurs in is a
gene on which a species with fitness F, M depends.

The fourth term on the right-hand side of Eq. (4) is,
like the second term, a rate of change of species into
species with fitness F, M. It complements the third term:
species that change fitness due to genetic changes in other
species can change their fitness to F with equidistributed
F. When they have done that, they have M less-fit neigh-
bors with probability BM,N(F).

We note that Eq. (4) conserves the total probability,
as it should:

N

dF ) pM(F;t) = 0.
M=O

back in evolution by their dependence on other species.
Thus p, q is the minimal number of genetic changes per
species by which the NK| model can evolve to the fixed
point Eq. (7). If, in doing so, each species on the av-
erage sets back less (or more) than one other species in
evolution, the fixed point Eq. (7) will (or will not) be
attractive.

We can make the argument more precise by making
it perturbative: suppose for a given value of C the sys-
tem has been arranged to be at the fixed point solution
Eq. (7), and we change the fitness of one species to a
random value. Since the other species do not evolve, the
one singled out evolves as an isolated species, and arrives
at a fitness maximum after having changed typically p, ~

of its genes. But the fitness of other species depend on
the state of genes in the species that evolved; typically
C other species will each depend on one gene. If any of
these C genes were among the p, y genes that changed, the
species depending on them were set back in evolution and
are now evolving, possibly setting back yet other species
in their evolution. The question then is, if the chain re-
action set off this way is sub- or supercritical. Will it
die out or run away? The value for C which separates
these two situations we call critical, and write it C„;t.
It is the value for which, on the average, one out of C
randomly chosen genes is among the p, ~ changed genes.
Thus 1 = C „i,pi/N, or

Ccrit = N/pl ~

We conclude that the species collectively evolve each to
their own local fitness maximum and remain there with
vanishing activity A for C ( C„;&, while they evolve to
a state with finite activity A ( 2 for C & C„;t. The
asymptotic value of the activity A for t ~ oo can conse-
quently be used as an order parameter distinguishing the
two phases.

The arguments used in this section were based on av-
erage values. While we would not expect fluctuations
to change the qualitative picture, they might change the
coefficient in a scaling law like Eq. (10). Actually they
do not. The perturbative result is exact, as we see in the
next section, where we also find the activity as a function
of C.

V. CALCULATING THE PHASE STRUCTURE

Let us denote a stationary, or fixed point, solution to
Eq. (4) by pM(F). With the notation A* = A[p*], p' =
P[p*], C* = O[p'], and c = C/N, the time-independent
version of Eq. (4) can be rewritten

pM (F)=,BM,N (F) [cA + 4*(F)].

Since A* and 4' both depend on p*, Eq. (11) is a nonlin-
ear integral equation for pM(F). We can solve it, never-
theless, by temporarily treating A* as a constant, to be
determined by self-consistency in the end. This is done in
the following way: By multiplying both sides in Eq. (11)
with (1 —M/N)/(1 —F) and summing over M, one finds
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gP (F) = g(F; cA*)[cA* + C '(F)],
where we have introduced the function [11]

0.5

1 . N —M

M=O
N —1

BM,w —s(F)
- N —M+Nx

0.4

For later use we also introduce 0.2

G(F;x) = dF' g(F'; x) (14)

and
1

g(z) = dFeG(F;*)
0

(15)

Since g and G have simple poles at x = —1, —1+ 1/N,
—1+ 2/N, . . . , 1/N, th—e function g has essential sin-
gularities at these points. The graph for g(z) is shown
in Fig. 1 for the case of N = 10. For x &) 0(1/N) or
z ( —1, g simplifies to

g(x) = (1+x)ln(1+x ')

to leading order in 1/N. The graph for this approxima-
tion is shown as the dotted curve in Fig. 1. The approx-
imation has a cut in the interval [

—1, 0] where g(z) has
N essential singularities.

Now, remembering P'(F) = &+4'(F), we see Eq. (12)
is solved by

0.1

0.0
0

FIG. 2. The asymptotic activity A' vs the connectivity c
for N = 10 and 100 according to Eq. (19) (full curves) and
Eq. (21) (dotted curve).

activity, we finally arrive at a self-consistency equation
for A', given c:

A' = cA*[—1+g(cA')].

This equation is solved by A* = 0 and by A' satisfying

4~(F) = Ac*( Ge( FcA') —1). c = —1+g(cA'). (19)

Inserting this solution in the definition Eq. (1) of the
The last equation gives A' as an implicit function of c.
It has a real, positive solution A' only for

c & c„;t——[
—1+g(0)] ' = p, ', (20)

where pq is given in Eq. (9). For cA' )& O(1/N), Eq. (19)
simplifies to leading order in 1/N to another implicit ex-
pression for A'(c),

c ' = —1+ (1+cA') in[1+(cA') ']. (21)

According to Eq. (19), A' oc c —c,»q for c c„;t, i.e. ,

the critical exponent for the order parameter A" is 1. At
the other extreme, for c ~ oo, Eq. (19) gives A' = s,
as we expect from Sec. IV. Figure 2 shows A*(c) for
N = 10 and 100 as fully drawn curves. The approximate
expression in Eq. (21) is shown as the dotted curve.

For c ) cc„.t, Eq. (11) then gives

t A*
pM (F)=,BM,~(F) exp[G(F; cA')],

while for c & t"„;q we have

pM(F) = bM, NF exp[G(F; 0)].

(22)

(23)

FIG. 1. Graph of the function g(z) defined in Eq. (15) in
the case of N = 10 (full curve) and its approximation given
in Eq. (16) (dotted curve).

So, as already seen in Sec. IV, the long-term dynam-
ics of the coevolving species can be of two qualitatively
different kinds, depending on whether the parameters C
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and N have values making c = C/N smaller or larger
than c«,~ given above. In the first case, the activity A(t)
dies out because all species stop evolving as they reach
local fitness maxima. This is frozen dynamics, charac-
terizing the frozen phase. In the second case the activity
converges to a nonzero value A*, signaling chaotic dy-
namics, characterizing the chaotic phase. In this phase
species also evolve towards local maxima in fitness, but
in the process of doing so, they change the fitness of other
species, typically setting them back in evolution. After
a transient time, a balance is reached where a certain
fraction of species evolve, while another fraction remains
at local fitness maxima, with individual species passing
from one fraction to the other every so often.

The line C/N = c«,t dividing the (C, N) plane into two
phases is critical in the sense that the relaxation time to
asymptotic behavior diverges on this line, as shown in
the next section.

VI. RELAXATION TIMES

[g(F, cA*) —g(F, x)] exp[G(F, cA*)].

(32)

Equation (31) is solved by

AC (F; A) = cAA(A) e
F

d~f —t (F';cA' —A)

x [g(F', cA* —A) —gi(F'; cA' —A)]

=cgA(g)
~

—l + e ~
'~ *l

(33)

where we have used the definition, Eq. (32), for gi to
obtain the last equality. Using

ing section, and the function gy has a similar definition:

1 . N —M
gi(F;*)=1 F ) N M N pNI(F)

M=O

In order to find the relaxation time to asymptotic val-
ues, we linearize Eq. (4) at its fixed point solution. We
write

AA(A) = dF b, C (F; A), (34)

ApM(F;t) = dAe '"ApM(F; A). (29)

AA(t) and EC (F; t) are linear functionals of ApM (F; t)
and therefore commute with Laplace transformation. So
with a self-explanatory notation, the inverse Laplace
transform of Eq. (28) reads, slightly rewritten,

KpM(F; A)

cAA(A)[BM (Fiv) —pM(F)]+ BM ~(F)64(F) A)

1 —M/N + cA' —A

(30)

By multiplying both sides of this equation with (1—
M/N)/(1 —F), and summing over M, one finds

AP(F; A) = cAA(A) [g(F; cA* —A) —gi (F; cA* —A)]

+g(F; cA* —A)AC (F; A), (31)

where the function g(F; x) was introduced in the preced-

pM(F t) = pM(F)+ &pM(F t) (24)

A(t) = A'+ EA(t), (25)
C (F; t) = C '(F) + 64(F; t), (26)

P(F; t) = P"(F) + AP(F; t), (27)

and insert these expressions in Eq. (4). By using Eq. (11)
and keeping only terms linear in b, , we arrive at the
linearized master equation

a ( M
ApM(F;t) —= —

~
1 ——+cA'

~
ApM(F;t)

Bt ' ( N

+c[BM,iv(F) —pM (F)]&A(t)
+BM ~(F)64(F;t). (28)

This equation is more easily solved by writing

ApM (F; t) as a Laplace transform:

integration over F on both sides of Eq. (33) gives an

equation for AA(A) which is solved by b,A(A) = 0, as we

might expect, and by

A
[g(cA* —A) —g(cA')] = 0.

The smallest value for A solving this equation contributes
with the longest relaxation time

~chaotic p
—1

relax

to ApM(F; t) in Eq. (29). An obvious solution is

A = cA*.

(36)

(37)

A survey of g(z) 's graph shows there are N 1 other solu-—
tions to Eq. (35), one in each interval ]cA'+ M/N, cA*+
(M + 1)/N[, where M = 1,2, . . . , N —1. So all these so-

lutions correspond to contributions to GpM(F; t) which

decay faster in time than the mode corresponding to
A = cA*. We conclude that the relaxation time in the
chaotic phase is

~chaotic
"relax c

(38)

where A* is a function of c given implicitly by Eq. (19).
Since A* c —c„;t for c —c„;t 0+, we see from

Eq. (38) that the relaxation time diverges with exponent
—1 at the critical connectivity. This typical mean-field

value for the exponent comes as no surprise; it is after
all a mean-field description we are developing. The value

for this exponent is exact, however, in the limit 8 = oo

of infinitely many species, which we are considering. The
only requirement is that each species depends on a van-

ishing fraction of other species, i.e. , C/S = 0, and that
the species which a given species depends on were chosen

at random. Whether this randomness is quenched or an-

nealed does not matter. This point has been explained in
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detail in [12, 13] for an in this respect identical problem.
In the frozen phase, where the order parameter A' = 0,

Eq. (35) shows

c +1 =g(—A), (39)

which for a given value of c & c„;q has X positive solu-
tions for A, one in each interval ]cA*+M/PJ, cA*'-', (M -I-

1)/N[, where M = 0, 1, . . . , N 1. —The smallest solution,
which determines the relaxation time, grows from A = 0
to 1/N for c decreasing from c„;t to 0. So the relaxation
time grows from N to infinity when c grows from 0 to
c„;&. This result agrees with the average relaxation time
for isolated species found in the preceding paper, and
the expected increase in relaxation time with increasing
coupling.

We can summarize our results for the relaxation time
in the following implicit expressions for it:

c '+ 1=g(—t,„',„) for c( c„;„
c '+1=g(t I,„) for c) c„;t,

(40)

(41)

where the solution for t„i~ is obtained by using the
branch of g i characterized by 1/N ( x (—oo.

VII. SUMMARY; DISCUSSION; PERSPECTIVES

We have shown analytically that Kauffman's NKC
model has two phases: a frozen phase in which all species
eventually stop evolving, because they all reach local fit-
ness maxima, and a chaotic phase characterized by a
balance between the number of species at local fitness
maxima, and the number evolving towards such max-
ima, and changing the fitness landscape of other species
in the process. As order parameter we used the asymp-
totic activity, the fraction of species changing genetically
per unit of time. We gave a closed expression determin-
ing the asymptotic activity as an implicit function of the
connectivity between species. We also gave expressions
for the system's relaxation time to the asymptotic activ-
ity. On the line separating the two phases in the system's
parameter space, the relaxation time diverges with mean-
field exponent —1.

We obtained these results in a mean-field description of
the model, keeping only leading terms in an expansion in
1/N, N being the number of genes per species. Since N
typically is very large, however, our leading-order approx-
imation in N is very good. We do not expect any qualita-
tive differences between our leading order 1/¹xpansion
results and exact results as concerns the existence of the
two phases, the location of the phase boundary, and the
relaxation time. As for the exponent —1 for the diver-
gence of the relaxation time, we have argued that it is
an exact result. These results all depend on the num-

ber of species S being effectively infinite, and certainly
much larger than both the number of genes N and the
connectsvity C.

It may well be possible to obtain other analytical re-
sults for the NKt model using the methods of the present
paper. For example, one may try to find the Lyapunov
exponents of the chaotic phase.

As for the ultimate goal of our investigation —the
demonstration of self-organized criticality in the NKC
model —we see no way that the maximally rugged vari-
ant studied here can be driven with perturbations from
its frozen phase into a "poised, " critical state, as was

done in [14] with Conway's Game of Life Th. e maximally
rugged variant cannot be "pumped up" to a "poised"
state —at least not in the mean-field description —be-
cause after the model has responded to a perturbation it
is back in the same state as it was before the perturba-
tion was applied. This is not necessarily a shortcoming
of the mean-field description. It willingly describes the
buildup of the self-organized critical state of conserva-
tive sandpile models, for example [15]. Rather it is due
to the maximal ruggedness of the fitness landscape. Its
total absence of correlations makes any perturbation of a
species eliminate all memory of the fitness the species had
acquired before the perturbation was applied. There is,
so to speak, no such thing as a perturbation of fitness in
the maximally rugged case. Genetic configurations may
be perturbed by having just one or a few genes changed.
But that typically results in a finite change of fitness in

a maximally rugged landscape.
On the other hand, maximal ruggedness of the model's

fitness landscape is crucial for our ability to derive an-

alytical results, and these results are important in view
of the difficulty of a numerical simulation of the model.
So we are reluctant to abandon it. That leaves us with
another, biologically appealing possibility: we can make
the model more realistic (and computationally even more
difficult) by treating N and C as dynamical parameters
of the individual species, add criteria for their evolution-

ary change, and ask if evolution drives their averages onto
the critical line found in the present paper. That study
has yet to be done. Methods and results that appear to
make such an undertaking feasible, were presented above.
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