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Flute instability of an ion-focused slab electron beam in a broad plasma
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An intense relativistic electron beam with an elongated cross section, propagating in the ion-focused
regime through a broad, uniform, unmagnetized plasma, is shown to suffer a transverse flute instability.
This instability arises from the electrostatic coupling between the beam and the plasma electrons at the
ion-channel edge. The instability is found to be absolute and the asymptotic growth of the flute ampli-
tude is computed in the "frozen-field" approximation and the large skin-depth limit. The minimum

growth length is shown to be much less than the betatron period, with the consequence that focusing is
rendered ineffective. It is further shown that growth is much reduced when the beam propagates
through a narrow channel where the ion density greatly exceeds that of the surrounding plasma. In this
limit, a modest spread in betatron frequency produces rapid saturation. The effect of plasma electron
collisions is also considered. Results of beam breakup simulations are noted.

PACS number(s): 41.75.Fr, 52.40.Mj, 52.35.Py, 52.50.Gj

I. INTRODUCTION

The "ion-focused" regime [1,2] (IFR) of transport for
intense relativistic electron beams typically refers to
propagation in a narrow plasma channel which is less
dense than the beam core ("underdense"). All plasma
electrons are expelled to large radii or to the beam pipe,
and the remaining ion column provides the strong focus-
ing required to transport intense beams over long dis-
tances. In this form IFR transport has been employed
experimentally with great success to exceed the limita-
tions of conventional magnetic focusing [3-8].

However, in some proposed applications of the IFR,
the plasma channel may be much broader than the beam,
or may be surrounded by a broad region of lower density
plasma. For example, applications of the IFR (including
focusing [9,10], emittance damping [11],and acceleration
[12,13]) have been proposed for beams typical of an

electron-positron collider [14], i.e., a pulse length
T-1—10 ps, peak current I-0. 1 —10 kA, and a spot size
a —1 —1000 nm, with plasma densities in the range
n —10' —10 cm . In this extreme parameter range,
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rapid ionization of the gas by the beam and secondary
electrons can lead to the formation of a broad ionized re-
gion [15]. As another example, recent experimental work
by Miller et al. [16] has focused on the propagation of a
1.7-MeV, l-kA, 10-ns beam in a laser-created underdense
channel embedded in a broad discharge plasma, with
n —10 cm . In these examples the plasma may still be
suiticiently tenuous that no plasma electrons remain
lL)ithin the beam volume and one may rightly refer to the
focusing as ion focusing. However, the pure ion channel
is surrounded by a quasineutral plasma. Recently [17,18]

we have shown that a cylindrical beam injected into a
broad plasma channel of uniform density is subject to a
dipole transverse two-stream instability [19,20) ("electron
hose") with growth length less than a betatron wave-
length.

In this work we show that an ion-focused slab beam,
while stable against plasma electron-coupled dipole per-
turbations, is subject to a rapidly growing flute instabili-
ty, analogous in character to the electron-hose instability.
As for the cylindrical beam, the minimum growth length
is less than a betatron wavelength. This transverse two-
stream instability seriously complicates use of the IFR
for the intense asymmetric beams typical of high-energy
applications.

In Sec. II two coupled equations are derived, describ-
ing the linear evolution of the flute instability for a slab
beam in a uniform underdense collisionless plasma. The
dispersion relation is examined, and asymptotic growth is
calculated. The result is shown to be disastrously unsta-
ble. In Sec. III we go on to show that growth may be
greatly reduced when the ion density is peaked on axis.
Results of beam breakup simulations are noted. In Sec.
IV we include the effect of plasma-electron collisions and
note the condition for stability resulting from the com-
bined effects of collisions and a distributed betatron reso-
nance. In Sec. V a discussion and conclusions are offered.
Calculations of asymptotic forms are detailed in the Ap-
pendix.

II. TRANSPORT IN A BROAD
COLLISIONLESS PLASMA

First, we summarize our approximations. We assume
that the beam current varies at most adiabatically on the
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time scale for electron-plasma oscillations, i.e., co T„)&1,
where co is the plasma-electron frequency,
ro =4nn e /m, rn is the electron mass, —e is the elec-
tron charge, and T„is the current rise time. The initial
plasma density n is assumed to be uniform and under-
dense, i.e., n & n&, where the beam density on axis is n&

and is a function of ~=t —z/Vb, where t is time and z is
axial displacement. The beam axial velocity is Vb-c,
with c the speed of light. In this limit, plasma electrons
are adiabatically expelled from a slab volume ("ion chan-
nel") of width 2b 2-a(nbln~), where 2a is the beam
width, as depicted in Fig. 1 [21]. We will neglect ion
motion, and this entails the assumption that co; T«1,
where T is the beam duration and ~,. is the ion plasma
frequency, and ro; =4nn e /m;, with m; the ion mass.
This also entails neglect of the more rapid "slosh" motion
of the strongly focused ions near the beam. Thus, we as-
sume co, T «1, where the slosh angular frequency co, is
given by ~, =4m.e nb /m;. We further assume a large col-
1ision 1ess plasma skin depth kp c /Q)p ))b. In this
limit the axial plasma-electron current may be neglected.
Finally, we impose the Budker or ion-focusing condition
[1]on the plasma density, n ))nb /y, where mc y is the
beam energy. The Lorentz-force equation then shows
that beam electrons undergo transverse oscillations with
betatron wave number

V' + — A = —4mp2 2 g 2 z b1 (3)

where A, is the perturbed axial vector potential and
t}'j=—A, —

P is the "pinch potential, " with P the perturbed
scalar potential. We compute these potentials in the
"frozen-field" approximation, in which the
D'Alembertian is replaced by the transverse Laplacian V~
and radiative effects are neglected. In addition, there is a
transverse vector potential which may be neglected in the
frozen-field approximation and provided Vt))k~ (just
the large skin-depth approximation).

The perturbed plasma-electron charge density p, 1 is
determined from the potentials through the electron
cold-fluid equations

~Pe 1 + V~ (p,oV, ) =0,
at

(4)

the y direction, as depicted in Fig. 2. The perturbation to
the beam charge density is then

p» = —enbg[5(a —y) —5(a +y)] .

Maxwell's equations in the Lorentz gauge are

~ V~+ — $=.4vrp„,
Bz c Bt

k
1/2

y

()V, =—VP
m

(5)

With these assumptions, the equilibrium plasma-electron
charge density is

p,o= en [H—(y b)+H( —y——b)] .

We take the beam charge density to be

pbo= enbH(a y—)H (y +a)—,
with H the step function. (This choice is for convenience
only, since the results are independent of the form of pbp,
provided it is confined to the channel. )

A. Coupled flute equations

We consider next the effect of a perturbation to the
beam centroid in the form of a small displacement g(x) in

where V, is the plasma-electron velocity. From Eqs. (4)
and (5) it is straightforward to show that in the linearized
small-amplitude limit, p, 1 consists entirely of surface
charge layers at y =+b. Thus,

p„=en~ r)[5(b —y) —5( b +y )],
where g(x) describes the displacement of the channel
wall.

To solve Eqs. (2) and (3},we change variables from z, t
to z, v and Fourier transform in x, so that

g(z, r, x)~g(z, r, k„)exp(ik,x) .

For brevity, we suppress notation distinguishing quanti-
ties, g, g, etc. , from their Fourier transforms. In terms of

) plasma I

2b 2~':::' -:ll: '-::-
]beam J

::) ion channel k:

I plasma I'
-'

!E

FIG. 1. In equilibrium, a relativistic electron beam of width
2a propagates in the z direction (out of the page) through a
channel of unneutralized ions. Plasma electrons have been ex-
pelled to lyl ~ b

FICx. 2. A beam slice in the ion channel is displaced by an
amount g{x}in the y direction, inducing a displacement r}{x)of
the channel wall. This image "flute" then deforms follow-on
portions of the beam, resulting in instability.
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(, g, and k, (assumed positive, i.e., k, ~ ~
k

~
), the poten-

tials are

4~enbj

k
X '

exp( —k„a)sinh(k„y), 0&y &a

exp( —k„y)sinh(k, a), a &y

4~„e& exp( —k b)sinh(k„y), 0&y &b
X '

exp( —k„y)sinh(k b), b &y .

The linearized cold-fluid equations may then be ex-
pressed as

for the flute amplitude alone:

y +ykp g(z, r, k„)a a 2

BZ BZ

= f ds'8'(k„,r r'—)g(z, r', k„).
0

The Green's function or "transverse wake" [28] is

W(k, , r) = W(k )sin[A&(k„)r],

with amplitude [29]

(13)

(14)

B2

, +Q~(k„) g=ca k, be
a~2

(8)

—2k bc'k k, be
p x

0 (k, )
(15)

where

II (k„)=—,'co (1 —e "
) (9)

y +ykp g=k rie
—I, b

az CIZ
(10)

and k a «1 is assumed. Thus, q responds as a simple
harmonic oscillator with characteristic angular frequency

to the electrostatic field of the beam.
The Lorentz-force law for the beam is

g(z =O, r, k„)=g(k )H(r) (16)

and consider two limits, summarizing the results of calcu-
lations given in the Appendix.

In the long-pulse limit,

Equation (13) can be solved as an initial-value problem
by Laplace transform, and the resulting integral can be
evaluated by steepest descents in various limits. We take
initial conditions

This describes the deformation of the ion-focused beam
by the plasma-electron image polarization on the ion-
channel wall. Equations (8) and (10) provide a complete
description of the linear evolution of the flute instability.

B. Asymptotic growth

For an infinite beam and beam line taking a perturba-
tion varying as g ~ exp(ik, z —ivor), Eqs. (8) and (10) may
be combined to yield the dispersion relation

k
1 — =6 (k b),x

p

pZ

and the flux envelope varies as

g 1/2

(z, r, k„)='g(k„), , e

Xsin[Q~r 3' 2, —vri12j, —

where the exponent is

31/2
A, = jA (kpz) (II r)I'

=0 921 (k ) ( )'pZ COp 7

(17)

(18)

(19)

where

2p
g2( )

2pe
P

1 2p
(12)

=0.18
A.p

(~ r)'l2 I (k b)
y

W'( k„lr

This may be expressed in terms of a characteristic growth
length as 3, = (z /L

&
) ~, where

= 23 1/2

9/43
and p—= k b. This is the general form of the cold-beam
single-mode beam breakup dispersion relation, and, in the
limit of small p, b, ~1, so that Eq. (11) is identical to the
familiar cold-beam two-stream dispersion relation
[22,23]. In general the system is unstable for real co such
that 1 —6 & co /0, & 1, or real k, such that
1 —5 & k, /kp & 1. The growth rates go to infinity for
~ ~B, or k, ~kp from below, and the result is an in-

stability which is absolute in both the beam and lab
frames [24—26]. Growth vanishes in the limit k, ~0 cor-
responding to a rigid dipole displacement of the beam
centroid. This is expected since the field of a one-
dimensional dipole vanishes outside the source.

The asymptotic variation in z and ~ can be determined
from a saddle-point analysis proceeding from Eq. (11)
[24]. Alternatively, it is instructive to combine Eqs. (8)
and (10) to obtain a single "beam breakup" equation [27]

(20)

The k, dependence is subsumed in

I,(p) =2[1—exp( —2p) )
' p' 'exp( —p), (21)

as depicted in Fig. 3. Here, A,p=2~/kp is the betatron
period. Equation (17) corresponds to 0 ~ &) 3

1
)& 1.

This result is essentially the "long-pulse, weak-focusing*'
limit familiar from beam breakup theory [30] or the
"weak-beam" limit in two-stream theory. The maximum
growth rate I,—1, occurs at kxb -0.322, and this corre-
sponds to a resonant flute frequency 0 -0.49co and
minimum growth length

L, -0.2kpl(co r)'~'&&Ap .

Thus, while a beam fiute perturbation is focused by the
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For typical parameters of interest, co ~& 10, and the
amplitude grows many orders of magnitude in a single
betatron period. For example, for ~-3 ps and n —10'
cm, the fastest growing mode is amplified by seven or-
ders of magnitude in one betatron period. Thus the beam
will be disrupted after propagating a short distance, while
still in the long-pulse regime. Nonlinear effects may satu-
rate the instability as the beam begins to fill the equilibri-
um channel, but this would entail at a minimum a large
increase in beam emittance.

C. Discussion of mitigating effects

While a variety of techniques are commonly used to
ameliorate beam breakup instabilities, none appears terri-
bly effective for the equilibrium of Fig. 1. In the long-
pulse limit, reduction in growth requires a mitigation of
the resonance at cu-A, for example, by axial variation
of the plasma density. However, this variation must
occur on a length scale of order L, , which is quite short.
In the long-range limit, growth could be controlled by
disrupting the resonance at k, =k&. This might be ac-
complished by Landau damping due to a spread in energy
within a beam slice [26], energy-sweep damping due to a
sweep in energy from head to tail [33], or phase-mix
damping due to nonlinear focusing, arising from a radial-
ly nonuniform plasma [3]. However, it appears that
beam disruption will occur before the beam propagates
far enough to reach the long-range regime; thus, these
techniques are not relevant except for very short pulses.

We have assumed up to this point that the plasma skin
depth k ' is large compared to the channel dimension b
so that the plasma return current may be neglected. For
a slab beam this requires Nb & (n /mr, ), .where

Nb = f nbdy is the beam number density per unit area in

the x-z plane and r, =e /me is the classical electron ra-
dius. Equivalently, this condition may be written as

(28)
IO 7T a nb

where a is the beam half-width in x, I is the beam
current, and Io=mc /e —17 kA. In this limit, the force
exerted on the beam by the plasma sheath is essentially a
strong "image-displacement" effect [34] and it is ap-
propriate to neglect the plasma return current. If Eq.
(28) is not satisfied, the magnetic force on the beam due
to the dipole image current will partially cancel the elec-
trostatic force due to the image charge. This will reduce
the beam-sheath coupling and, therefore, the instability
growth rate.

We conclude that the broad plasma, collisionless equi-
librium depicted in Fig. 1 is quite precarious and at best
can result in stable propagation only under rather limited
circUmstances. Next, in Secs. III and IV, we consider
modifications to this equilibrium which will tend to
reduce growth, namely, a nonuniform plasma (Sec. III)
and the effect of plasma-electron collisions (Sec. IV).

III. TRANSPORT IN A NARROW
COLLISIONLESS CHANNEL

In Sec. I and II we considered a beam propagating in a
broad, uniform plasma. In such a system, there is no pre-

ferred direction for beam propagation, and perhaps it is
not surprising that the beam is subject to a strong insta-
bility that disrupts directed transport. In this section we
consider a beam guided by a preexisting, narrow under-
dense plasma channel, surrounded by a broad region of
plasma of still lower density. In this situation the beam is
focused and guided along the channel axis, and we shall
see that the instability can be much weaker.

For definiteness we assume that the ion density takes
the form n; =n +n„where n is constant and n, is lo-
calized within Iy~ & d, as depicted in Fig. 5. We also as-
sume f =N, /Nb &1, where N, = f n, dy is the channel

number density per unit area in the x-z plane. In this
case the beam will exclude plasma electrons from a neu-
tralization region ~y~ & b, where

b =(1 f)—Xb

2np

We assume b )d.

(29)

A. "Flat-top" channel

We consider first the case in which n, is uniform and
a &d, i.e., the channel is "Aat-topped" and broader than
the beam. In this case, Eqs. (8) and (10) are replaced by

a2 +0 (k„)r)= ro k„be (30)

2 2
—k„b

y +yki3 g=k r)e
az az

(31)

with the betatron wave number now determined by the
ion density within the channel. Equation (1) is thus re-
placed by

k
1/2

(32)

where R = 1+n, ln . Combining Eqs. (30) and (31), the
dispersion relation, Eq. (11), is recovered, with Eq. (12)
replaced by

&'(p) = 1 2 e

R(1 f) (33)

n
pl BSlYla

I

y=0

FIG. 5. Finding that propagation in a uniform plasma is

highly unstable, we consider a nonuniform plasma with ion den-

sity n; = np +n„where n is constant and n, is localized within

~y &d. We will consider the case of a "flat-top" channel (uni-

form channel density n, ) and a "rounded" channel, as depicted

here.
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For large R, b, is small and from Eq. (11) one can see

that the range of unstable wave numbers is reduced.

Identifying the wake amplitude

}' I3 ~13 R (I f—)

W(k„)r (39)

c k k„be
1 f— Q, (k„) (34}

However, in this limit, where the growth length is
longer than the betatron period, phase mixing due to a
spread in betatron frequency can damp growth
significantly, as we show next.

it is straightforward to show that the asymptotic forms

Eqs. (18) and (23) may be taken over directly, with the

modified exponents

I 2/3

R 1/3( I f)
1/3

I 1/3

R 1/3(1 f)1/3

(35)

(36)

g(z, r, k„)=, e 'sin( Qzr —k&z ), (37)

where

33= Id, (klutz)(Q r)]'

R 1/2( 1 f)
1/2

In terms of a growth length, this is A3=(zlL3)'
where

(38)

Thus for a sufficiently high density ratio (R &&1},propa-
gation over many betatron wavelengths is feasible. To il-
lustrate this reduction in growth, we consider as an ex-
arnple: Rn —1 X 10' cm, y —1 X 10, p -0.3, and
~-3 ps, corresponding to k&-1 cm. Depicted in Fig. 6
are the numerical solutions for ~g~, for several values of
R. Evidently, for large R, growth is reduced by several
orders of magnitude.

In fact, when R is sufficiently large that L, & A,&, a third
regime appears in the limit 0 ~))1. In this strong-
focusing, long-pulse limit [35], the asymptotic form is

B. Distributed betatron resonance

g(z, r, k„)=J dQf3g(Qp)g(z, r, k„;Qp), (40)

where the normalization condition fd Q@(Q&)= 1 is as-
sumed. Equations (30) and (31) are replaced by

82

a
+Q (k„)rI(z, r, k„)

co k„be " g(z, r, k„), (41)

y +yQ& g(z, r, k„;Q&)=k~e " rl(z, r, k„).
az az

(42)

If the beam is not monoenergetic, or if the focusing
force is nonlinear (e.g., in an ion channel with a rounded
density profile), there will be a distribution in betatron
wave numbers. In the strong-focusing limit this will
spread the betatron resonance and lead to a significant
reduction in growth. The instability is then convective,
rather than absolute; this is the result of "phase mixing"
which converts the coherent flute energy into thermal en-
ergy (beam emittance growth).

We will mode1 this effect by representing a beam slice
as a superposition of macroparticles [36) with displace-
ment g(z, r, k„;Q&)and some distribution g(Q&) in beta-
tron wave number Q& [37]. The mean beam displacement
is given by

The dispersion relation is obtained by combining Eqs.
(40)—(42):

(43)

g(Q&}—g(k, )
fdQ

2
6 kp dQp 2 2 ~r+~~i

where A„and A; are functions of k„(through b, ) and k, :

x 00

g(k) Q+ —k, Q +k,+ ln
2k, 0 —k, 0++k, (44)

z (em)

FIG. 6. Depicted is evolution of the amplitude ~g~ of the
beam flute perturbation over five betatron wavelengths as com-
puted numerically from Eqs. (30) and (31). The amplitude is
evaluated at the pulse tail for R =1, 5, 10, and 20. Other pa-
rameters are Rn~ —1X10"cm ', y —1X10', k„b-0.3, T=3
ps, and A,&-1.06 cm. Without some channel enhancement (i.e.,
for R = 1), the system is disastrously unstable.

mA kpA;= g(k, ) .
2k,

(45)

Here, g is assumed to vanish outside a finite interval
[Q,Q+], where Q+=k& with k& given by Eq. (32).
Note that the integral is continued from the upper k,
plane, as is appropriate for the initial-value problem
[38,39]. The lower limit is Q =kI1(1—5), where 5 is the
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fractional width of the distribution.
Up to the quadrature of Eq. (43), the solutions of the

dispersion relation are then determined as functions of
real k, and k, through A„and A; as follows:

I 1 —A„I'i', A, =O, A„&1

Q, i
f
A„—I I'", A, =0, A„&I1/2 (46)

and for A, WO.

(a)

Re
CO

A;
Im =+ [I—A +[(I—A ) +A ]' jQ 21/2 r r

(47)

0
0.0 0.2 0.6

IG /

0.8 1.0

(48)

To make this more quantitative, we consider two specific
examples. The simplest example is a "Oat" distribution,

g (Qp) = H(Q+ Qp)H(Q—p Q), —1

P
(49)

for which the dispersion integral is

kp 0+ —k, 0 +k
5 k, k, —0 0++k,

+i7rH(Q' &k,'&Q~+) '. (50)

For illustration, solutions for co as a function of real k,
are depicted in Fig. 7 for several values of R, with
k b=0. 3, f «1, and a =d. Analysis of the dispersion
relation as detailed in the Appendix shows that for
6 &&6 the length for saturation is

0
0.0 0.2 0.4 0.6 0.8 1.0

mc' 4

Rk y-
2e

(55)

k /

FIG. 7. For illustration, several solutions of the dispersion
relation, Eqs. (43) and (50), are depicted for a fiat distribution in

Qp with a spread in a betatron period of 5=5%%uo. (a) Re(co) and
(b) Im(co) are evaluated for R =1.1, 2, and 5, with f &&1 and

k, b-0.3. The normalization is the angular plasma frequency
COp .

1
Lsat ~P+ 2 ~P ~

Zm'

and the amplitude at saturation is

Q2

with exponent

(52)

where

61/2
R

)1 2

—1/2

(56)

sat 4 p
(53) 1 Os

Depicted in Fig. 8 are the solutions for g, for several
values of R, with 6=5%, for illustration.

As a second example, we consider the distribution in
betatron frequency resulting from a parabolic ion profile:

1 00

2

n, =n +n, (0) 1 — H(d —y), (54)
1 0

z (em)
4 0

and we assume d ~ a (as in Fig. 5), so that no beam elec-
trons oscillate beyond the parabolic channel. The equi-
librium transverse motion of a beam electron is then a
periodic oscillation in the nonlinear pinch potential,

FIG. 8. Depicted is the evolution of the amplitude ~g of the
beam flute perturbation over 40 betatron wavelengths, as com-
puted numerically from Eqs. (41) and (42), for a uniform distri-
bution in betatron frequency of width 5=

5%%uo, i.e.,
0.95k&(Q&(k&. The amplitude is evaluated at the pulse tail
for R = 1, 5, 10, and 20. Other parameters are as in Fig. 6.
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Qp(y )

Qp(0) 2

Jm
d"

E
(d 2 2 )1/2

Pm

is a length characterizing the degree of nonlinearity and
R = 1+n, (0)/n .For R ~1 (vanishingly weak localized
channel), d~oo and the potential reduces to a simple
harmonic-oscillator well. For finite d, the betatron
motion is anharmonic, with a period 2m/0&, depending
on the amplitude y and given by

2 1/2

The distribution g (Qp) is determined by the distribu-
tion F in transverse energy Ht =lt(y ), according to

dip
g(Qp)=F(Ht) (59)

dHi

As an example, we consider F(Ht) ~QT~ H—t, where
Tt =g(a) is a constant proportional to the beam temper-
ature (or emittance). The beam profile is then

r

3 ~m
1 ——

2 d

2 '1/2

(57) n (y)=n (0) 1 — 1—
b b

a a —a
(60)

(58)

obtained by combining Eqs. (56) and (57). Note that for
a =d and R ~oo, 5-13%, the maximum frequency
spread in this model (a consequence of assuming a & d ).

1.00

(a)

where Qp(0) =Q+ =kp, as given by Eq. (32), and K is the
complete elliptic integral of the first kind [40]. The
dependence of 0& on y is well fit by the approximate
form on the right of Eq. (57), as shown in Fig. 9 [41]. In
this model the frequency spread 5=(Q+ —Q )lQ+ is

'2 1/2
1 a 15=1— 1 —— 1 ——
4 d R

g(Qp)=g()Qp(Qp —
—,'Q+)(Qp —Q )'~2,

where the normalization constant is

g '= —'(Q —Q ) (Q +2Q )

(61)

(62)

This distribution is depicted in Fig. 9 for several values
of R.

Combining Eqs. (44), (45), and (61), the quantities A„
and A; (and hence the dispersion relation) may be ex-
pressed in terms of the variables Q = ( Q2+ —Q2 ) '~2,

K =
~
Q —k, ~

', and the integral

Since d ~ 6a, this is very nearly a parabolic profile (ex-
actly so for linear focusing). For this model beam distri-
bution, g is well fit by

0.95 Q
—K tan ' —,k &Q

0.90

02 &k,2&02+

r

8(k, )= Q+ —,'K in+in Q K-
+K

0.85
0.0 0.1 0.2 0.3

y/d
0.4 0.5

as

(63)

y 02 (b)
A„+iA;=g b, ok'[(k, ——2Q+)8(k, )+ ,'Q ] . —(64)

1 0'—
bg

R =1.1
For illustration, solutions for co as a function of real k,

are depicted in Fig. 10 for several values of R, with
k, b-0.3, f «1, and a =d. The analysis given in the
Appendix provides an estimate of the length scale for sat-
uration, in the limit 5))6:

R 1L„,=—0 ~ Ap. (65)

Z 00
0.85 0.90 0.95 1.00

The amplitude at saturation is roughly

Q2

SA,,/,'
(66)

FIG. 9. (a) For the rounded channel of Eq. (54), the betatron
frequency Q& as given by Eq. (62) is a function of the betatron
amplitude y normalized by d as given by Eq. (56). (b) Depicted
is the distribution in betatron frequency, from Eq. (61), for vari-
ous values of the channel density ratio R, with the exact results
from Eq. (59) overlayed (they are indistinguishable).

with exponent

Q2
A~t =sm7 Qp'Tsat m p (67)

where co is the maximum of Im(co) on the real k, axis
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and is given approximately by the expression on the
right. Examples of evolution of the flute instability com-
puted numerically with this distribution are depicted in
Fig. 11.

From the work of this section one can see that growth
may be considerably reduced for an enhanced ion profile
due to the stronger focusing and effectively lower wake
frequency. With a spread in betatron frequency, and
large R, the system quickly saturates due to phase mix-
ing. Evidently, the scalings for saturation length and am-

plitude are not very sensitive to the form of the distribu-
tion, as one can see by comparing Eqs. (51)—(53) with

Eqs. (65)—(67). In particular, the logarithmic divergence
in the dispersion relation for the flat distribution is not
inconsistent with a convective solution.

While we have considered only the case in which the

plasma is preformed the situation will be similar if the
beam propagates along a plasma channel formed by rapid
ionization at the beam head. Depending on the dominant
ionization process [42] (collisional, avalanche, tunneling,
or stripping), one could expect a profile similar to that of
Eq. (60), with comparable beam and channel waists,
a-d. Moreover, if any initial ionization is small, then

R &&1, and one may expect significant nonlinearity and

damping.

R=1.1

——R=2

R=5

X=10 „((yfl

1 0 n~~Y""

(ppFI
1 0 R =20

&&~ppqpIgjf(IIAIIMWAIAlltt SNIIIillhppllr qpIppppIipiy

r

l'%II'ItlNIIN~
1 0

1 0 2 0

z (cm)
3 0 4 0

FIG. 11. Depicted is the evolution of the amplitude ~g~ of the
beam flute perturbation over 40 betatron wavelengths, as com-
puted numerically from Eqs. (41) and (42), for the distribution in
betatron frequency of Eq. (61) corresponding to a parabolic
channel. The amplitude is evaluated at the pulse tail for R =10,
20, and 100, corresponding to 5=11.9%%uo, 12.6%%uo, and 13.1%%uo.

Other parameters are as in Fig. 6.

IV. TRANSPORT IN A NARROW
COLLISIONAL CHANNEL

(68)

The resulting flute equations are just Eq. (41) modified
with the addition of a damping term,

Up to now, we have considered a collisionless plasma.
In this section we consider the effect on beam propaga-
tion of plasma-electron collisions. We will model col-
lisions phenomenologically, adopting a constant collision
rate of plasma electrons with ions and neutrals, v, and
modifying Eq. (5) to read

0.2 0.4 0.6 0.8

(b)

co k„be " g(z, r, k„).1— (69)

R=1.1

——R=2

R=5
(70)

and Eq. (42), unchanged. The wake may take different
forms depending on whether the flute oscillations are un-

derdamped, critically damped, or overdamped. The
wake is overdamped for modes such that v) 20; in
terms of flute wave number, this condition is [43]

2
V Vk„b& —

—,'ln 1—
2'&

0.2 0.4 0.6 0.8

FIG. 10. Several solutions of the dispersion relation, Eqs.
(43) and (64), for (a) Re(co) and (b) Im(co) are depicted for
R = l. 1, 2, and 5, with f (( 1 and k, b -0.3, with normalization

co~, the angular plasma frequency. The distribution in 0& is that

of a beam in a parabolic channel, as in Eq. (61).

W(k„,r) = W(k )sin[A (k„)r]exp[——,'vr],

with amplitude

(71)

Typically, one expects such long fute wavelengths to be
far from those giving maximum growth, and we thus
neglect the overdamped and critically damped cases.

In the underdamped case, v & 2Q, and the wake takes
the form
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—2k„b
c k k be

W(k„)= 0 (k„)
(72)

When focusing is strong, the con vecting peak in
growth occurs at

and resonant frequency lowered due to damping,

0 (k )=[0 (k„)——'v ]'/ (73)

I 1 coP

P 23/2 g(1 f) 2 i3 (76)

Physically, one expects collisions to convert the energy
of the coherent flute motion to thermal energy of the
plasma. This damping is exponential in ~, while the in-

stability growth is less than exponential. Consequently,
at a point z along the beamline and after some point r (z}
along an infinite beam, the flute amplitude will diminish
as a function of ~. The peak in growth will convect back-
ward along the beam. For this to be observable in a finite
beam, the pulse length must be suSciently long that
vT- A, where A is the number of exponentiations in the
absence of collisions. In this case, far enough from the
beam head, such that 0 ~&)1, there are two regimes of
asymptotic growth, corresponding to weak and strong
focusing. When focusing is weak, the convecting peak in
growth occurs at

and the peak amplitude varies as exp(z/L 3 ), where

2 R(1 f) v—
~r2 N p

1 p

(77)

2

P P

(78)

Defining the normalized collision rate v—=v/QP, the solu-
tion of the dispersion relation is determined as follows:

Note that with a distribution in betatron period and
collisions, the instability can in principle be stabilized
[44]. This is seen by analyzing the dispersion relation,
Eq. (43), modified by collisions

3/ I1 N
7P 29/4 g 1/2( 1 f)1/2 3/2 i3(k z), (74)

+[1—
—,'V —A„]'' —i —A =0, A &1——'V'

r 4

where ~ (T is assumed. The peak amplitude varies as
exp(z /L 1 ), where

+i[A„—1+'V'}'" A =0 A &1—1V2
r 4

25/4 g 1/2(1 f )1/2

33/4
1 COP

1/2

(75)
and for A, %0,

(79)

=+ [ I —-'v' —A, + [(1—-'v' —A )'+A']'"] '"
p 2

(80)

Im 1V2 A +[(1 1V2 A )2+A2]1/2] 1/2v
(81)

A;v) maxk
[1—A ]

1/2 (82)

The condition for stability is that co be real along the en-
tire k, axis. A bit of algebra reduces this condition to

1 P12
'~ V/COp —1.P

p =p. s

V/CO =P.1

maxk ( A„)& 1 —
—,
' v 2 .

Z
(83}

For the parabolic distribution of Eq. (61), with a =d and
p=0. 3, numerical solution of Eqs. (80) and (81) shows
that this requires roughly v/co ~ 8/R and R ) 10. Thus,
for large R and a significant v/co, the combination of be-
tatron distribution and collisions can stabilize the system.
This is illustrated in Fig. 12 for several values v/co and
R, with a parabolic channel distribution in betatron fre-
quency as in Eq. (61). It should be added that when the
collision rate is appreciable, one should also consider a
possible resistive flute instability at the beam head (i.e.,

1 OO

1P

FIG. 12. To illustrate the combined effect of collisions and a
distribution in betatron period, the maximum in amplitude
(over ~ and z) after 40 betatron periods is depicted for various
values of v/co~ and R, with a distribution as for a parabolic
channel. Other parameters are as in Fig. 6.
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the slab-beam analog of the "resistive-hose" instability
[36]).

V. CONCLUSIONS

We have studied a transverse flute instability arising
from an electrostatic resonance of a relativistic slab elec-
tron beam in a collisionless underdense plasma, with
negligible return current. It is instructive to contrast this
mechanism with other well-known transverse instabilities
of a beam-plasma system. For example, the resistive-hose
instability [36,45,46] arises due to dissipation of eddy
currents in a highly collisional overdense plasma. In this
case, nonlinear focusing and the resulting distribution in
betatron period are intrinsic features of the self-pinched
equilibrium. This is to be contrasted with the ion-focused
regime considered in this paper, wherein nonlinear focus-
ing of the beam occurs only if the radial ion-density
profile is nonuniform. There is a second well-known elec-
trostatic instability of the ion-focused regime, the ion-
hose instability [2]. For the ion hose instability the focus-
ing force on individual ions in the beam fields is intrinsi-
cally nonlinear, and this results in a spread in resonant
wake or "ion-slosh" frequencies, formally akin to
"stagger tuning" [30]. In addition, the ion molecular
weight is a free parameter which may be chosen quite
large, thereby reducing the resonant wake frequency and
bringing the beam into the short-pulse regime of beam
breakup growth.

The electron-coupled flute instability in a broad plasma
is then distinguished from these other transverse instabil-
ities by the paucity of adjustable parameters, the coher-
ence of the plasma response, and the absence of intrinsic
nonlinearity in the beam motion. This instability renders
impractical the ion-focused propagation of a slab beam in
a broad uniform plasma in the large skin-depth limit.

However, when the ion profile is significantly peaked
on axis, focusing is stronger and propagation to a longer
range is feasible. If in addition, the ion-channel profile is
rounded and narrow, falling off within the beam volume,
the resulting spread in betatron frequency introduces
phase-mix damping. The instability is then convective,
and propagation to arbitrarily long range becomes possi-
ble if the beam duration is short enough. It should be
added that for some applications (e.g. , a continuous plas-
ma focus) it remains unclear to what extent one could in-

sure a rounded channel and nonlinear focusing, and
whether the focus would still be useful in this case.

We have also shown that damping due to plasma-
electron collisions will reduce growth. A combination of
a distribution in betatron frequencies and plasma-electron
collisions can in principle stabilize the instability if the
channel enhancement and the collision rate are apprecia-
ble.

This work underscores the importance of a thorough
study of beam and secondary ionization profiles for pa-
rameters typical of high-energy applications. In addition,
the effect of return current in the small-skin-depth limit
merits much further attention.
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APPENDIX: ASYMPTOTIC BEAM
BREAKUP GROWTH

a a 2
y +yk g(z, r)= f ds'W(r —r')g(z, r'),

az Oz ~ '
0

(A 1)

and initial conditions g(z, r)=H(r). The solution up to
quadrature is given by the inverse Laplace transform

+i +o+
g(z, r) = f dp —exp(pr)

27TI ——i ~+0 p
1/2

W(p)X cos ~ kpz 1

ykp
(A2)

where W(p) is the Laplace transform of W(r) and is, in

general, analytic in the right half-plane. It is convenient
to write this as g = (g+ +g ) /2, where

+i oo+0
g (z, r)= dp —exp[y (z, r,p)],

27Tl —i ~+0 p

with cr =+1 and

(A3)

The asymptotic growth of two-stream and beam break-
up instabilities is the subject of a vast literature. The
problem was first studied in connection with the longitu-
dinal two-stream instability by Buneman [22], Briggs
[23,24], and Bers [25]. Subsequently, and independently,
the problem was examined by Panofsky and Bander [47)
in connection with transverse stability in the Stanford
Linear Collider (SLC). Further work on beam breakup
was performed by Chao, Richter, and Yao [31],again for
application to the SLC, and by Neil, Hall, and Cooper
[35,44] for application to induction accelerators. A re-
view of this work from the beam breakup or accelerator
physics point of view has been given by Lau [30]. A
number of review articles on "the" beam-plasma interac-
tion have been written over the decades [48]. In this ap-
pendix we review briefly the relevant steepest-descent cal-
culations and go on to confirm the accuracy of the analyt-
ic forms by comparison with more exact numerical solu-
tions. We then proceed to derive expressions for asymp-
totic saturation in the presence of the flat and parabolic
betatron distributions. These last calculations bear com-
parison to recent work by Takayama [49] for the case of
beam breakup in a structure with "linear detuning. "

Consider the beam breakup equation with uniform
focusing and no acceleration,
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(z, r,p) —p1 +1lJkpz 1
w(p)

ykp
(A4) (A13)

1 1
g (z, r)= . . . exp(y ) . (A5)

Here, cp' ' is the second derivative with respect to p and
all quantities in Eq. (A5) are evaluated at p, .

We will consider first a damped sinusoidal wake,

8'(r) = 8'osin(Q r )exp( —
—,
' vr), (A6}

From the stationary points p, such that dg /Bp -0, one
determines the asymptotic growth using the method of
steepest descents. When at most one stationary point
yields growth and provided g' '%0, the asymptotic form
1S

p~( z)rp)) pr+Lo'kpz 1
%00
2/k p p

(A14)

The stationary points are
1/38'00 z

p 0's
p+

exp( i no—l6). . (A15)

Comparison of this form with a numerical example is ex-
hibited in Fig. 13. The pulse should be short in the sense
that A »0 ~, and the focusing should be weak in the
sense that A »k&z.

In the strong-focusing limit, the influence of the wake
is quite weak, and

p~(z)7)p )=pr+Lo'kpz 1—8'0 0
yk& p +vp+0,

for which the Laplace transform is

0
w(p)= wo

p +vp+0
Then,

(A7)

' 1/2

And applying Eq. (A5), the solution obtained is just that
of Eq. (23). Comparison of this form with a numerical
example is exhibited in Fig. 14.

Next consider the long-pulse limit, which is the subject
of Sec. IIB of the main text. In this limit, one expects a
dominant contribution near one of the poles of Eq. (A8).
In the strong-focusing limit, expanding the square root,
the stationary points are

To determine the stationary points in general requires the
solution of an eighth-order polynomial in p. In various
limits, however, these points are quite easily determined,
and the results are quite accurate within their range of
validity. We consider each regime in turn.

In the short-pulse ("head-tail" ) regime, where 0 r is
small, it is reasonable to neglect the poles in Eq. (A8), in
effect replacing the sinusoidal wake with a linear wake.
In this limit, we have

p = —) o.Q —
—,
' v+

' 1/2
z 0

ykp~
(A16)

The solution takes the form

g(z, r)= 3&2, z exp(A —
—,'vr}

V
X [sin(ki3z —0 r) — cos(k&z Qr)], —

2n,

f~(z) 7)p ) =p7 +l 0'kpz 1
n0 p

ykp p
(A9)

Within this regime we may distinguish the weak-focusing
limit (Panofsky and Bander [47]) and the strong-focusing
limit (Chao, Richter, and Yao [31]). In the weak-
focusing limit, the influence of the wake is much larger
than that of the focusing fields, and

A=
' 1/2

zest'0

ykp

1 06

with the exponent

(A18)

)p (z, r,p ) =pr+i o z

' 1/2
8'oQ

p
(A10)

The only stationary point exhibiting growth is

1/4z' ~o,
p+s

y
(A 1 1)

and carrying through Eq. (A5), the asymptotic form is
4 6

z (cm)
1 0

1
g(z, s) = e

&8~A

where the exponent

(A12}
FIG. 13. Comparison of the weak-focusing, short-pulse

asymptotic form of Eq. (A12) with the numerical solution for
Rnp —1X10"cm, y —1X10, k b-0. 3, T=0.05 ps, R =1,
and kp=0.
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3 0

25

zo t- analytic
—numerical

In the limit v~O, these are just Eqs. (18) and (19). This
result is compared to the more exact numerical result in
Fig. 16.

To compute the asymptotic growth with a distribution
in betatron period, we start from Eqs. (41) and (42):

15

1 0

a2

2 +A~ rl(z, r) =a((z, r),
a72

a2

2
+Ap g(z, r; Ap) =Pr)(z, r ),

az2

(A22)

(A23)

4 6

z (cm)
1 0

FIG. 14. Comparison of the strong-focusing, short-pulse
("long-range") asymptotic form of Eq. (23) with the numerical
solution for Rn~ —1X10"cm ', y —1X10', k b-0. 3, T=0.05
ps, R =1, and A,&-1.06crn.

where we have abbreviated a =—co pe I'/( 1 f ) —and
P=k e /y, and g is given by Eq. (40). Solving Eq.
(A23) up to quadrature and substituting the result in Eq.
(A22), we obtain the following results:

a2

2
+Op 7)(z, v) =ash, +f dz'G(z —z')rl(z', r)

(A19)

The solution takes the form

In the limit v~O, these results reduce to Eqs. (37) and
(38). This result is compared to that obtained numerical-
ly in Fig. 15.

In the weak-focusing limit, the stationary points are
' 1/2

z Wo . 1TO
p = —io.Q —

—,'U+ exp i
8yr2 6

(A24)

which is just a beam breakup equation for the centroid of
the plasma annulus. The driving term (h, is the homo-
geneous solution for the beam centroid in the absence of
interaction, which is just

= f dQpg(Ap)cos(Qg), (A25)

assuming a unit initial offset. The kernel is

23/2 g 1/2

g(z, r)=, exp(A —,'vr)— sin(Q )
G (z) =0 kgb, fd Qpg (Q~) (A26)

X sin 0 ~—3
12

Laplace transforming in z, the solution for the plasma
flute amplitude is then

20 ~ 12
cos(Q r 3' A —— (A20) rl(q, r)=, I I —cos[(Q~ —G(q)) r]I .

+who

0 —G(q)
(A27)

with the exponent
1/3

z ~8'o
(A21)

where q is the Laplace-transform variable and the tilde
denotes the Laplace transform. Substituting from the
Laplace-transformed version of Eq. (A22), the solution
for the beam flute amplitude is

5 0

1 OS

30 I-

2 0

analyti
numeri

1 06

1 04

1 02

0
0 2

z (cm)
1 0

1 00

0.2 0.4 0.6

z (cm)
0.8

FIG. 15. Comparison of the strong-focusing, long-pulse
asymptotic form of Eq. (A17) with the numerical solution for
Rn —1X10' cm ', y —1X10', k b-0. 3, T=10 ps, R =30,
and k&- 1.06 cm.

FIG. 16. Comparison of the weak-focusing, long-pulse
asymptotic form of Eq. (A20) with the numerical solution for
Rn —1X10" cm, y —1X10', k„b-0.3, T=10 ps, R =1,
and A.&-1.06 cm.
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g(q, r)=gh, (q) cos[(Q —G(q))'/ r)
G(q) —Q

To observe growth, we must have Re(q ) )0, which is evi-

dently possible for small enough z, where qz ~ 3/sz, and
one recovers the result of Eq. (A18). However, for

Q
+ h, (q)

Q —G(q)
(A28) Q2

kpz) Q ~,
~2

(A39)

The last term does not contribute to exponential growth
and will be neglected. Performing the inverse Laplace
transform, we obtain

Re(g) =0, and growth has saturated. This is just the con-
dition z )L„„withL„,as given by Eq. (51). The real

part of the exponent at saturation is just

+i co+0 G(q)
g(z, r) = dq exp(qz)gh, (q)

27Tl —i oo+0 G(q) —Q
Re(q&)= — Q r,

4
(A40)

Xcos[(Q —G(q))' r] .

This may be expressed as g=(g++g )/2, where

+i oo+0
g (z, r)= dq g(q)exp[y (z, r, q)I,

27Tl —i oo +0+

(A29)

(A30)

and this is just the exponent in Eq. (53). To obtain the
remaining algebraic factors in Eq. (52), one must note
that the saturation point is also an inflection point for the
phase (p, (p( '(q0)=0, so that the asymptotic form for the
integral in Eq. (A28) is not Eq. (A5), but

with o. =+1 and

(p (z, r,p) =qz+io(Q G(q)—)' (A31)

r(, )

2/3 1/6 (3) 1/3 ~ qo'
2 3 1r[1p (q )]

(A41)

The algebraic factor is

q-( )=-
( )

G(q}
G q

—Q

where

g (Qp)
G(q)=Q kgb f dQp

Qp+ q

g(Qp)
g„,(q) =q fd Q&

Qp+ q

(A32}

(A33)

(A34)

k& q+lQ+ q
—lQ

Q+p =Q ln~ 2i5 q q
—iQ+ q+iQ (A35)

We proceed with a steepest-descent calculation of the
integral in Eq. (A28) for the two distributions considered
in Sec. III. It is convenient to define

p =io(Q~ —G(q))', so that the dispersion relation, Eq.
(43), may be written as Q +p =G(q) and the exponent

((0 (z, r,p)=qz+pr.
First, consider the flat distribution, for which the

dispersion relation is

Here, I is the I function, so that r( —,')-2.6789. Com-

parison of the resulting analytic expression, Eq. (52), with
numerical results is seen in Fig. 17.

Next, we consider the parabolic distribution. Solving
Eqs. (43), (64), and (65), one can show that Im(co) has a
(finite) maximum co on the real k, axis. The solution for
co as a function of R for a =d is depicted in Fig. 18,
overlayed with the fit

~m
305(R 1)

—0.6062 —0.03769ln(R —1)

COp

(A42)

1 012

For R ) 10, this is roughly 01 -Q b, /5. This yields an
accurate estimate of the log of the saturated amplitude,

lug= A -co r+sat m

The simplest method of obtaining the algebraic factors is
to match this solution to the asymptotic form of Eq. (37),
which is accurate for z sufficiently small that phase mix-
ing is negligible. Equating the exponent of Eq. (38),
A 3 co 7 yields an estimate of the scale length for satu-
ration:

Considering only the long-pulse, strong-focusing limit, we
look for a stationary point such that p =i o Q~ (1+P ), and

q = icrk&(1+q), w—ith p and q small in modulus. The
dispersion relation then takes the form

1
p =— ln 1+—+—5

4 5 q 8

The equation for the stationary point is then
kpz
Qr'

which is just a quadratic in y, with the solution
1/2

Qp7q= ——1+ 1—2, g2 kpz

(A36)

(A37)

(A38)

10O
30 1500 60 90

X2p z

FIG. 17. Comparison of the analytic results, Eqs. (51)—(53),
and the numerical solution, for saturation amplitude, with a flat

betatron distribution, as in Eq. (49). Parameters are 5=10%,
Rn~ = 10' cm, R =30, k b —0.3, and T =30 ps.
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~2
JJ

(A43)

which is just the result given in Eq. (44). The amplitude
at saturation should then be well approximated by

m 1

Q g 1/2 (A44)

FIG. 18. Several solutions of the dispersion relation, Eqs.
(43), (64), and (65), have been collated to depict the maximum of
Im(co) over real k, as a function of R, with a/d =1 and
k„b-0.3 fixed. Overlayed is the (indistinguishable) fit of Eq.
(A42).

FIG. 19. Comparison of the analytic estimate of Eq. (A44),
and the numerical solution amplitude, with a parabolic channel
betatron distribution, as in Eq. (61). Parameters are Rn~ =10"
cm ', R =30, k b-0. 3, and T=30 ps. The corresponding
spread is 5- 13%, and the maximum growth rate is

-0.220~, which is just the slope of the curves.

Comparison with numerical results depicted in Fig. 19 is
seen to be quite good. This simulation was run for 100
betatron periods, which was not quite long enough for
the tail to reach saturation, as is evident in the slight
droop at large ~.
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