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Three-dimensional theory of the small-signal high-gain free-electron laser
including betatron oscillations
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We have developed a three-dimensional free-electron laser (FEL) theory in the small-signal high-gain
regime based upon the Maxwell-Vlasov equations including the effects of the energy spread, the emit-
tance, and the betatron oscillations of the electron beam. The radiation field is expressed in terms of the
Green's function of the inhornogeneous wave equation and the distribution function of the electron
beam. The distribution function is expanded in terms of a set of orthogonal functions determined by the
unperturbed electron distributions. The coupled Maxwell-Vlasov equations are then reduced to a matrix
equation, from which a dispersion relation for the eigenvalues is derived. The growth rate for the funda-
mental mode can be obtained for any initial beam distribution including the hollow-beam, the water-bag,
and the Gaussian distribution. Comparisons of our numerical solutions with simulation results and with
other analytical approaches show good agreements except for the one-dimensional limit. We present a
handy interpolating formula for the FEL gain of a Gaussian beam, as a function of the scaled parame-
ters, that can be used for a quick estimate of the gain. The present theory can be applied to the bearn-

conditioning case by a few modifications.

PACS number(s): 41.60.Cr, 41.75.Fr, 52.75.Ms

I. INTRODUCTION

Various analytical approaches have been proposed for
the calculation of the gain in a free-electron laser (FEL}
operating in the high-gain regime before saturation. It is
widely known that transverse emittance and betatron os-
cillation can significantly reduce the gain in this regime,
due to a spread in the longitudinal velocity of electrons.
One approach to study these effects is based on an
integro-differential eigenvalue equation involving the ra-
diation field alone, derived by reducing the coupled
Maxwell-Vlasov equations [l]. However, the inclusion of
the emittance and the betatron oscillation effects makes it
very difficult to solve the equation exactly. Recently, Yu,
Krinsky, and Gluckstern [2) have used a variational
method to solve the equation approximately for the
water-bag distribution of the beam. The principle behind
this method is the fact that the error in the eigenvalue de-
pends quadratically on errors in the trial function. How-
ever, the success of their analysis depends largely on the
electron-beam distribution and the choice of the trial
function.

In this article, we present an approach based on an or-
thogonal expansion of the electron distribution function.
This method has been widely used in the study of beam
instabilities in particle accelerators [3]. Starting with the
Maxwell-Vlasov equations and equations of motion for an
electron, we combine them into a single integral equation
for the electron distribution function Since the betat. ron
oscillation, the emittance, and the energy spread are al1

beam parameters, it may be simpler to find the change in

the beam distribution due to these effects rather than in
the radiation field. The radiation field is expressed explic-
itly in terms of the Green's function of the inhomogene-
ous wave equation and the electron distribution function.

The perturbed distribution function is then expanded in
terms of a set of orthogonal functions determined by the
unperturbed distribution function. This expansion con-
verts the integral equation into a matrix equation, from
which a dispersion relation for the eigenvalues is derived.
This dispersion relation has a form similar to that in plas-
ma physics. The present method has the advantage that
the higher-order terms in the expansion can in principle
be determined in a systematic fashion. The series expan-
sion converges very quickly, unless the Rayleigh range is
much longer than the gain length of the one-dimensional
theory (in which case the three-dimensional effects are
unimportant}. As a matter of fact, one can obtain an ac-
curate eigenvalue by taking only the lowest-order expan-
sion term. In this approximation, the dispersion relation
becomes a scalar equation.

Recently, the idea of electron beam "conditioning" has
been proposed to reduce the longitudinal velocity spread
within the beam by correlating transverse oscillation am-
plitude and the electron energy, in order to enhance the
FEL gain [4]. The present theory can be applied to the
beam-conditioning case by a few modifications of the for-
mulation.

This article is organized as follows. In Sec. II, starting
from the Hamiltonian, we derive equations of motion for
a single electron in the FEL system and construct the
Vlasov equation. In Sec. III we calculate the vector po-
tential for the radiation field, and present an explicit ex-
pression of the vector potential. In Sec. IV we expand
the transverse electron distribution function with respect
to the azimuthal angle in the transverse phase space and
obtain an integral equation for the radial distribution
function of electrons. %'e solve this integral equation in

Sec. V by using the orthogonal-expansion technique. The
matrix form of the dispersion relation is derived. In Sec.
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VI we consider the approximation of taking the lowest
order in the expansion, and show that the resulting scalar
dispersion relation for the hollow-beam distribution of
the electrons reduces to the well-known results in both
the small- and large-beam size limits when the betatron
oscillation is neglected. In Sec. VII we show numerical
results of the FEL gain as a function of the four scaling
parameters. They are compared with simulation results
and analytical results obtained by other approaches. We
present a handy interpolating formula for the FEL gain
of a Gaussian beam as a function of the scaled energy
spread, the betatron frequency, and the transverse emit-

tance, that can be used for a quick estimate of the FEL
gain. In Sec. VIII we turn our discussion to the planar-
wiggler case. So far, we have assumed that the FEL radi-
ation takes place in the helical wiggler. However, the
FEL with a planar wiggler can be treated in parallel with
the preceding formulation with a few modifications. The
more general results for the asymmetric focusing case are
summarized in Appendix D. In Sec. IX we briefly dis-
cuss how to apply the present theory to the beam-
conditioning case. The paper is concluded in Sec. X.

II. VLASOV EQUATION

X=xg +Xp,

where

(2)

and

~x Pg slnkwz +1&Tg coskwz

PP0
xp=xp coskpz+ sinkpz,

0 kp
(4)

To construct the Vlasov equation, one first writes down
equations of motion for a single electron. A rigorous way
to derive equations of motion is to start with the Hamil-
tonian. The detail of the derivation is described in Ap-
pendix A. We here mostly refer the results from there.
We consider the electron beam moving in the z direction
through a periodic helical wiggler with wave number k
and peak wiggler parameter K. We choose z, the distance
from the wiggler entrance, as the independent variable.
After averaging over the fast wiggling motion, the trans-
verse electron motion can be described by the harmonic
betatron oscillation in the spatial transverse vector xp and
its canonical momentum conjugate pp.

dxp dpp
dz

'
dz

=Pp, = k pxp,

where k& is the betatron wave number. (In the absence of
external focusing ktt =Kk /y&2, where y is the electron
energy in units of its rest mass energy, mc, and c is the
speed of light. ) The transverse variables to be used in the
Vlasov equation are those xp and pp. Here, we neglect
the nonlinear terms in the betatron focusing. This is a
good approximation, since the betatron wavelength in
practice is typically longer than the power gain length by
one order of magnitude. The total transverse trajectory
of the electron, x, includes the helical motion x& around
the betatron motion:

where

x& =x&(z =0) and p& =p&(z =0) .

Here, r„=Ec/(yk v~~ ) is the radius of the helical
motion, v~~

is the longitudinal velocity of the electron, and
i and i are unit vectors in the x and y directions, re-
spectively.

With z as the independent variable, the time t denotes
the longitudinal coordinate. For convenience, we define a
new longitudinal coordinate ~, as the arrival-time
difference of an electron at the position z relative to that
of the reference electron. The reference electron arrives
at z at time t„=z/v„, where v„ is the longitudinal velocity
of the reference electron. The electron of concern arrives
at the position z at time t. The new coordinate r is
defined by

z
7

V„

The quantity ~v, gives the internal longitudinal position
of an electron relative to that of the reference electron.
An equation of motion of ~ is approximately given by

d 1 k r r, —
dz c ki y, 2

where y, is the resonant energy of the reference electron
with zero transverse oscillation amplitude and
k, =2k y„/(]+K ) is the resonant radiation wave num-
ber corresponding to the energy y, . The energy change
is produced by the interaction of the electron's helical
motion and the radiation field. An equation of motion of
the energy y is

2 dy dxh BA„'
dz

'
dz Bt

where e is the electron charge and A„= A„(x,z, t) is the
vector potential for the radiation field.

The Vlasov equation for the electron distribution
f (xt3, p&, r, y;z) is as follows:

df dxp df dpi' Bf dr df dy df
Bz dz Bxp dz Bpp dz B~ dz By

(9)

Here, f is normalized such that

f "f" f" f" f(x,, p~, r, y;z)d xP pgrdy=N,

(10)

where N is the total number of electrons in the beam.
Throughout this article, we apply a rule that the integra-
tion signs in the multiple integrals are paired with the
differentials from the inside to outside, unless otherwise
specified.

We solve Eq. (9) by the perturbation method. The dis-
tribution function f can be decomposed into the unper-
turbed part f0 and the perturbed part f, , respectively:

f =fo+f&
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The unperturbed distribution function fQ satisfies

BfQ df df d df—k x + (12)

G(r, t ~r', t')
ik (r —r')

=I d ke dc' .
(2m )

— — k —(co/c)

In this article, we assume that the focusing in the wiggler
is matched to the electron beam so that fQ is a function

of xti+ptilk& and y only (i.e., fQ is uniform in the longi-
tudinal direction). Furthermore, for the cases considered
in this article, the distribution in y is sharply peaked
around an average value. It is then a good approxima-
tion to assume that fQ can be factorized as follows:

fQ
=fQj (xp+ pti/k p )f

Q~~
( y ) (14)

III. VECTOR POTENTIAL FOR RADIATION FIELD

where we have substituted Eq. (1). The perturbed distri-
bution function f i is a solution of the linearized Vlasov

equation

~fi ~fi, ~fi d~ ~fi dy ~fQ

az
+ ~ax, ' 'ap, dz B~ dz By

(13)

The transverse current density Ji(r, t) in Eq. (15) is

given by

dx;
Ji(r, t)= g e 5(x—x;}5(z—z;),

i=1
(19)

where (x;(t),z;(t) } describes the orbit of the ith electron
as a function of time t. Equation (19) can be rewritten us-

ing z as the independent variable as

dx;
Ji(r, t) = g e 5(x—x; )5(w —~; ),

dz
(20)

where ~;(z} is the arrival-time diff'erence of the ith elec-

tron at z relative to that of the reference electron. We
can express Ji(r, t) in terms of the density distribution of
the betatron orbit, p, (x&,~,z), given by

p, (x&, r;z)= f f f, (xtt, p&, ~, y;z)d pttdy . (21)

The vector potential A„(r, t) for the radiation field
satisfies the inhomogeneous wave equation

8 A„P'A„, ,
" = —pQJi(r,t—)

c2 t2
(15)

A„(r, t)=pQf f G(r, t~r', t')Ji(r', t')d r'dt' . (16)

where Ji(r, t) is the transverse current density, pQ is the
permeability of free space, and r is the three-dimensional
vector r=(x, z). The solution of Eq. (15) can be written
as

This is done below:

N dX
Ji(r, t}=g e 5(x—x;)5(r ~;)

'=1 dz

dx;= g e 5(x—xi,
—(x; —xh)}5(7' &;)—

i=1
N dXi= g e 5(x&—

x& )5(~ ~,)—
i=1

dX=e p, (x~, r;z) .
dz

(22)

Here, the Green's function G(r, t ~r', t') satisfies

The vector x includes both the rapidly oscillating helical
orbit xh and the slowly varying betatron orbit x&. By re-
taining only the helical motion x„ in dx/dz, we have an
approximate expression of Ji(r, t):

where I is the unit dyad (identical to the unit matrix in

this case). The solution of G in free space is well known

[5] and is given by

dxt, (z)
Ji(r, t)=e p, (xtt, ~,z) .

dz
(23)

By inserting Eq. (23) into Eq. (16) and changing the
volume element from d r'dt' to d xPz'd ~', we obtain

A„(r, t)=epQ f f f G(r, t~r', t')
d x'„(z')

p, (xp, r', z') d xttd ~' dz' .
dZ

(24)

For the later use, it is convenient now to seek an alternative expression of A„ in terms of the Fourier-Laplace trans-

form of p, (x&,r;z) with respect to x&, ~, and z. After lengthy calculation (see Appendix B), we obtain the expression for

the vector potential for the radiation field:

qo+i oo

A (r t)=eIJQf f f H (ki, z)p q(ki)e'" "d ki e~dq e ' d~Q, (25)

where H (ki, z) is given by
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Qo e V (ki)
(2m. ) )'„(k k—~)' ~ „q —i[pk +(k —kj )' —co/v„]

(26)

where k =cole, k~ = ~kj ~, and p„(k~) is the Laplace-Fourier transform of p&(x&, r;z), which is related to

f, ( xp, pp, r, y;z) by

p (k~)= I I I f f f, (x&, p&, r, y;z)d pPy e ' sd x& e ~'dz e'"'dr . (27)

The integer p represents the harmonic number of the radiation. The positive value p &0 and the negative value p &0
corresponds to the forward and the backward radiations in the electron rest frame, respectively. The vector V (k, ) in

Eq. (26) is defined by

i Ok
—se„V (kz)=( —1)r e i [e— J +&(kyar&)+e J &(kyar&)]+i —[e J +&(kyar&)

—e J &(k~r&)]x 2 P 21
(28)

where J (x) is the Bessel function and 8k =tan '(k /k„).
Now, we can calculate the energy change by the radiation field, with use of the vector potential A„(r, t) given by Eq.

(25). After some algebra (see Appendix B), we obtain

q +&cc

f . I f P z(kz)p q(kz)e' "sd kz e~dq e ' de . (29)

Here

oo f
P„(k~)= „2mc y„

P

(
—1Y Jp(k~rq )

lfh

'2

+J' (kj rq )

[1—(k~/k) ]' [q i [pk +(—k —k~)'~ —cv/v, ]]
(30)

where r, =e /(4n eomc )
. is the classical electron radius, eo is the permittivity of free space, and J'(x) is the derivative

of the Bessel function. The quantity P (k~ ) is proportional to the total radiation power emitted from a single electron
into the transverse angle 8=sin (k~/k) with the transverse wave number kj in the frequency range (co, co+dcv).
Equation (30) contains all the higher-harmonic components of the radiation. We are mostly interested in only the
lowest-harmonic term in the forward direction, p =1. If we retain only this term in the summation and note that
8«1, Eq. (30) becomes

P (ki)=—

J, (krl, 0) +JP(krqS)
r, I(. (kr„9)

2~c y„k—k, k 2q+ik — +i—8
k) 2

(31)

IV. AZIMUTHAL MODE EXPANSION

Now, let us come back to the linearized Vlasov equa-
tion (13). If we substitute Eqs. (29) and (30) into Eq. (13)
and take its Fourier-Laplace transform, the linearized
Vlasov equation becomes

f, ( px, p&, y)

& x&, p&, z, y;z e q'dz e™d~.—oo O

(33)

dr df.. . df.,
Eco f +pp kpxp

Bp&

dfp~~ it, .xs 2
fog d JP.q(ki)p. q«—i)e ' 'd ki

dy

(32)

In Eq. (32) we did not include the Fourier transform of
the initial distribution at z =0, because we consider only
the eigenvalue problem in this paper. (If we retain this
term, the problem becomes an initial-value problem. )

Since the betatron motion of the electron is a simple
harmonic oscillation, it is natural to introduce polar
coordinates in the transverse planes as

where f is the Fourier-Laplace transform of
f, (xp, ps, r, y;z): x&=r„cosP„, y&=r cosP (34)
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5'px . Ppy=r„sing„, = r sing (35)
decomposed with respect to it), and it) into an infinite

series of modes:

Then, the second and third terms in the left-hand side
(LHS) of the Vlasov equation, Eq. (32), are written as f q(x&, p&, y)= g F q'" (r„,r», y)e "e

m, n = —oo

(37)

af.. . af, af., af„,
'ax, ' 'ap, (36)

Now, due to the periodic boundary condition for f„ in
the azimuthal angles P„and it)», f q

can be Fourier

where I and n are integers. If we insert the above equa-
tion into Eq. (27), the Fourier-Laplace transform of the
charge density can be expressed in terms of
F' '"'(r, r», y ) as follows:

p (kz)= f g f f f f F' "'(r„,r, y)e " "" e ' ' ' "»k&r„dr„dit) k&r»dr»dit) dy

= 2qrk
Qo oo

m, n = —oo 0 0

where we have used the formula [6]

1 f eil'
—ix cosgdit) &

—lJ (x)
2% 0

Combining Eqs. (32), (37), and (38), we obtain an integral equation for F' q'"',

(38)

(39)

q iso — ik&(m—+n) F' "'(r„,r, y)
dz

fo)(r )
—
d f g f f K q™")(r„,r ~r„', r»)F'q '" '(r„', r', y')r„'dr„'r'dr' dy',
dr 1 ~ ~ 0 0

(40)

where the kernel K'„'"' '" ' is given by

=il~+I"I —il~ I+I" l)(2qrk&) f P (ki)[JI (k„r„)JI l(k r )][J (k„r„')Jl ' (k r')]d~k~

and r = (r„+r )'» is the amplitude of the electron position in four-dimensional transverse phase space.

(41)

V. GENERAL SOLUTION

By inspecting Eq. (40), it can be seen that the y dependence of F' '"' is such that

dfoll(r )

q i o) ( r, y )—i k ( m +—n )
dv
dz

It is then useful to define a radial function R' '"' as the r integral of F' '"' to eliminate the obvious r dependence:

Ri '")(r„,r )=f F™q'"(r„,r», y)dy .
1

Dividing the Vlasov equation (40) by

[q io»(dr ldz—) ik&(m +—n)]

and integrating over r, we obtain

(42)

(43)

fo)(r )f
dfo~~~(r )

drdr & f f Ki ™n')(r„,r ~lr„', r')R' ''"'(r„', r')r„'dr'r'dr' .
d7 0 0

q ice (r, y) ik—(m+n)—
dz (44)
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The integral equation (44) can be solved in a general way as follows [3]. We expand the radial function R ' '"' using a
complete set of orthogonal functions fi(, ' " '(r„r ) as

R (m, »)(r r )
—W (»2) ~ &(m, «)»(lml, l«l)(r r )r lmlr I»

k=0

Here, the weight function Wi(r ) is defined by

Wi(r )=Cfoi(» ),

(45)

(46)

where C is a normalization constant to be chosen. The functions fi, ""'(r„, r~ ) are determined so as to satisfy the fol-
lowing orthogonality relationship:

W (»2)f( m, l» )(r r )f(lml, l«I)(r r )»2 ml+i»2 «I+id» dr —g (47)r k rx & ry l
' rx & ry rx ry rx ry kl

Using fi(, """(r„,r ), we expand the Bessel functions as

JImI(k„r«)JI«I(k), rz)= g Clm I« i, (k„,ki, )fi, ' " '(r„, ri )r«ri"
k=0

where

CI
I I„I i, (k„,k )=f f Jl (k„r„)JI„I(kr )Wi(r )fi, ' " '(r„,r )r +'r " +'dr„dr

0 0

(48)

(49)

For many models of the unperturbed transverse distribution foi(r ) [or the weight function Wi(r )], the corresponding
orthogonal functions f)(, ' " '(r„,r ) can be expressed in terms of the well-known analytical functions. In Appendix C
we present explicit expressions of fi, '" '(r„,r~) and C

I I„ i, (k„,k~) for the hollow-beam and the Gaussian-beam
models of foi(r ).

The lowest-order term CI „I 0(k„,k~) has a simpler expression, since the corresponding lowest-order orthogonal
function fo ' " )(r„r~) is just a constant. In this case, the integration over the angle g„=tan '(r /r„) can be carried
out in Eq. (49), with the result,

(g k )
—f(lml, l«l)coslmlg s;„l«lg

- 'I- +I I+i "i"
W (»2)„ml+I«l+3dr (50)

where gi, = tan '(k~ /k„).
Inserting Eqs. (45) and (48) into Eq. (44), multiplying by fi( ' " '(r„,r )r„+'r " +' and integrating over r„and r, we

have a matrix equation for the coefficients ak

a(rn, n)+ ~ ~m, nMm, n, l &(m', n') 0ak ~ ~k, l m', n',j aj
m', n', Ij

where

(51)

k, l drx dry d p
1 0 0 dv

q ice —(r, y) ik (m +n)—
dz

and the matrix elements are given by

i .
I +I I (I

.I+I.l)(2~kP)~:"„,', =i + "-' '+"' f" f" P„q(ki)CImI „I i(k„,ky)CIm «.I, (k„,k»)dk dk» .

(52)

(53)

The matrix equation can be symbolically written as

(I+PM)a=0, (54)

det(I+PM) =0 . (55)

where a is the vector of the coefficient ak '"', I is the unit
matrix, and the matrix elements of P and M are given by
Eqs. (52) and (53), respectively. The nontrivial solution
of Eq. (54) requires that

This dispersion relation gives eigenvalues q as a function
of co or vice versa.

The matrix P represents the Landau damping due to
the energy spread and the betatron oscillation via the lon-
gitudinal velocity spread. If the variation of the longitu-
dinal velocity due to the betatron oscillation is negligible,
the integration over r„and r can be carried out readily,
noting the orthogonality relationship, Eq. (47). As the re-
sult, the k and i dependence of the matrix P becomes just
the Kronecker's Ski. The matrix M expresses the rest of
the interaction between the electron beam and the radia-
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tion field.
In principle, all the eigenmodes can be obtained by

solving the above dispersion relation. For example, for
sufficiently large electron-beam radius, many modes are
excited, and the degeneracy problem of the growth rates
of the self-similar modes arises [7j. This problem can be
analyzed by taking large matrices of M and P. In this ar-
ticle, however, we are concerned about the FEL operat-
ing in the high-gain regime where the electron-beam size
is relatively small and the full transverse coherence is
achieved. In this regime, only a few modes, or even a sin-
gle dominant mode, are needed to describe the beam-
radiation system.

VI. THE LOWEST-ORDER DISPERSION RELATION

It is straightforward to seek zeros of the dispersion re-
lation by computer and the computation requires little
CPU time, if the matrix size is not too large. Numerical
studies show a quite rapid convergence of solutions as a
function of the matrix size. As a matter of fact, we have
found that one can obtain an accurate eigenvalue for the
functional mode by taking only the lowest-order term
m =n =k =0 in both the azimuthal and the radial ex-
pansions [see Eqs. (37) and (45)]. In this case, an approxi-
mate expression for the dispersion relation can be written
in a general form as

k. k re K
k) C p„ f„ 0 1

f0~~(r }dr

+2 k
k

~ X. . 1
kkq pr,

. 22m kaf zo(r }r dr

f n/2

0

k L9d8 J, (kr'8)
f 2n kgoz(r' ), r' dr'

k —k) kg2 0 kr'0
q+ik +i

2

2

(56)

where f0~(r ) is normalized such that

f f f0~(x~+p~/'kf3)d xP p&= f 2m kgoz(r )r dr =1 . (57)

Here, we have used the approximated expression of P ~(k~), Eq. (31},and have approximated

+JP(krq8)= —,
(krh8)

(58)

assuming that the radius of the helical orbit rz is much smaller than the beam size.

In what follows, we write down the above equation in a more specific way for various models of fo~(r ). Longitudi-

nally, we assume a Gaussian distribution with the rms energy spread, cr:
N 1 ~ r r„ I'/2r „'~'„—

fo~~ r =—„r &2no r„
where ~ is the length of the electron beam in time units.

For the hollow beam,

(59)

1

(~Rk )
0~(r )= 5 1

r
Ro

2'

we have

(2pk )
1=2i

k,
q +2i k o t —i—kk~R0

. k
2

f n/2

J(kR 0)8
(kRO) 8d8

kR00

k —k, kg2
q +ik +i

1

(60)

For the water-bag beam,

, e 1—2

(~R okp) Ro

we have
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(2pk~ )
1=2i

k, v'2~ — o

x'e ' "dx dt
2

q+2i k 0. t —i —kkpRox
. k . 1

2

k k1 kg2+'
2

q+ik
1

4J~(kRo8)
2 (kRo) 8d8

(kRo8)
(61)

For the Gaussian beam,

1 —
~

(r/~ )

(2no k )
foj(r )= e

we have

q+2i k cr t —i—kkpcr„x
. k . 1

2

—(k0„8)
e " (ko'„) 8d8

0 k k1 kg2
q+ik +i

1

(62)

In the above equation, p is the Pierce parameter [8]
defined by f J)(x)

0 X

1

2
' (65)

k„
(2pk ) =2nr, no

7r fr
(63) it follows that

k —k,
q +~k

1

. k—i (2pk ) =0.
k1no is the peak volume density on axis, cr is the rms

transverse beam size, e(x) is the step function e(x)=1
for x )0 and e(x) =0 for x & 0.

Let us investigate the dispersion relation (60) for the
hollow-beam model to obtain a physical picture of how
the gain is determined. The integral over t characterizes
the Landau damping due to the energy spread. In the
hollow-beam model, the electron beam has a uniform
transverse distribution inside a circle with the radius Ro
in the x-y plane. The function in the 0 integral,
[J&(kRo8)/(kRo8)], is the diff'raction pattern of a plane
wave by a uniform source of circular shape with the ra-
dius Ro. The factor

Introducing p, =iq/k, Eq. (66) becomes the well-known
cubic equation of the high-gain regime [8]:

k —k1
IM P k,

k (2p)'=0 .
k,

(67)

The maximum growth rate as the solution of the above
equation can be expressed using Moore's scaled growth
rate

g =q/[(2pk )
i (2k, R o~ )'i ]

and scaled beam size
I/[q+ik (k —k, )/k, +ik8 /2]

is related to the angular distribution of the radiated
power from a single electron into the transverse angle 8.
Equation (60) implies that the amount of overlap between
the angular spectrum of radiation from a single electron
and the angular diffraction pattern of the radiation wave
by the electron beam plays a key role in determining the
FEL gain.

In the limit of large beam size, Ro —+ao, when o.&=0
and k&=0, the dispersion relation (60) for the hollow
beam reduces to the well-known cubic equation of the
one-dimensional theory. This can be shown as follows.
In this limit, Eq. (60) can be approximated by

8=(2pk ) (2k)Ro)

as [7]
V'3

28
(68)

g oo

o 2 'g~2

2J,(x)
dx =0.

X
(69)

In the limit of small beam size, Ra~0, when 0.~=0
and k&=0, the dispersion relation (60) also gives the
correct asymptotic growth rate derived by Moore [7]. In
this limit, the dispersion relation (60) when k =k, can be
approximated by

(2pk„)1=2i
k, q2

J, (x)
k —k, fo x

q+ik
1

x dx By performing the partial integral in Eq. (69) and neglect-
ing the lng term, we obtain Moore's expression,

' 1/2
g 1 2 1 2=—ln —or g = —ln—
2 4 g 2

Using In Fig. 1 we plot numerical results of the scaled growth
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Dispersion relation (60)

(71)

Here, LG' ' is the power-gain length of the one-
dimensional theory given by

expressed in a scaled form using four dimensionless scal-
ing parameters. One form of such a scaling relation, that
which can be derived by inspecting Eq. (56), is

Re(q) LR o
y kp k —k)

kp LG' ''
p

' k p' k)p

0

L (1—D) 1

2v'3pk
(72)

10 10 1O' 1O'
A
a

1O' 10 10

FIG. 1. Scaled growth rate g=q/[(2pk )'~'(2kIRO)'~'] vs

the scaled beam size & = (2pk )' (2k I R 0 )' for the constant-
beam-current case. Here, the energy spread o.

y
=0 and the beta-

tron wave number k&=0. The solid curve shows the result ob-
tained by the present dispersion relation (60), while the dashed
curve denotes the work of Moore. The dot-dashed lines on the
right and on the left show the analytical results obtained from
Eqs. (68) and (70), for the two extreme cases, respectively.

As Yu, Krinsky, and Gluckstern [2] have pointed out,
the growth rate of the fundamental guided mode can be

rate g versus the scaled beam size & for the constant
current case, when o.&=0 and k&=0 are assumed. The
solid curve shows the result obtained by the present
dispersion relation (60), while the dashed curve denotes
the work of Moore. The dot-dashed lines on the right
and on the left show the analytical results obtained from
Eqs. (68) and (70), for the two extreme cases, respectively.
As anticipated from the above argument, they are in ex-
cellent agreement in the entire range of beam size.

The truncated dispersion relations (61) and (62) for the
water-bag and the Gaussian models do not converge to
the cubic equation of the one-dimensional theory in the
limit of large beam size. In fact, it can be shown that the
growth rate calculated from Eq. (56) in this limit is given
by the one-dimensional theory multiplied by —', ' =87%
for the water-bag model or —,

'' =79% for the Gaussian
model. This is because the truncation of the matrix
(I+PM) in Eq. (55) at the lowest-order term no longer
provides a good approximate eigenfunction if the beam
size is sufficiently large. In this limit, a large degeneracy
of the growth rates of the self-similar modes happens, and
a single (fundamental) mode does not dominate [7]. (In
the hollow-beam model, all the radial functions R ' "de-
generate into the 5 function, so that the lowest-order ra-
dial expansion term, which is also the 6-function, gives
the exact eigenfunction. ) As the beam size increases,
therefore, more expansion terms are needed to achieve
the correct one-dimensional result. However, it is found
that the critical beam size in which the truncation at the
lowest order breaks down is so large that the expression
(56) remains a good approximation to the exact disper-
sion relation (55) for most of the practically interesting
parameter ranges. We investigate this problem further in
the Sec. VII.

VII. NUMERICAL RESULTS

Also, L„ is the Rayleigh range given by

2X~ k)Xq
(73)

where X~ is the transverse beam area defined by

Ip
X~=

ecn p

(74)

where Ip is the total beam current and np is the peak
volume density on axis. The transverse beam area can be
calculated from the unperturbed distribution fo(x&, p&, y )

as follows. The transverse density distribution n(x&) is

obtained by

n(xp)= f "f" f" fo(xp, pp, y)d p(3drdy

=nog (x&), (75)

where g(x&) is normalized so that g(0)=1. Then, the

transverse beam area X~ is given by

X~= f g(xp)d xp. (76)

The quantity Xj can be also calculated from fo~ as

foi(xi=0, pp)d pp
oo

=2wkp pg r r dr (77)

Re(q) err kp k —k~

k D D k D k&D
=F 2k, e„ (7g)

where e is the rms transverse emittance of the electron
beam which is related to the square of the rms beam size
(x') as

e„=kp&x') .

The quantity D is the scaling parameter defined by
1 /2

8 K IpD=
y„ 1++ Ig

(79)

(g0)

where Iz =ec/r, =17.05 kA is the Alfven current. The
parameter D was originally introduced by Yu, Krinsky,
and Gluckstern [2]. However, the value of D defined here

The scaling relation (71) is convenient when the
current density is constant. An alternative form of the
scaling relation is convenient when the total beam
current is constant:
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is smaller than that defined by Yu, Krinsky, and Gluck-
stern by a factor of &2 [9,10]. The scaling parameter D
is related to p as

2&2
31/4 L (1—D)

G

' 1/2 I 1/2

=2. 15 „, . (81)I (1 D)

It should be emphasized that D is independent of the
model for fo~(r ) and that the scaled growth rate
Re(q)/(k D) is identical to Moore's scaled growth rate g
when the same physical parameters are used:

Re(q) (82)

The dispersion relation for the Gaussian-beam model, Eq.
(62), for instance, can be written in the above scaling
form as

kp

k D

4v'p~ 2k, e„

e " x e ' dxdt
2 2

+2i t ——2k1e xq
0. ; kp

xf" Xe xdx

q k —k, x2 kp+l +l
k D k1D 2k1e k~D

(83)

where we have replaced k by k, except in the detuning
term (k —k, )/(k, D) to a good approximation. Since we

are interested in the constant total beam current case in
this article, we mostly use the scaling relation (78) in
what follows.

For the convenience of readers, we summarize the ex-
plicit expressions of the square of the rms beam size,
(x ), and the transverse beam area X~ for the hollow
beam, the water-bag model, and the Gaussian distribu-
tion in Table I. The ernittance and the Rayleigh range

TABLE I. Expressions of (x') and X~ for the hollow beam,
the water-bag model, and the Gaussian distribution.

Quantity
Hollow
beam

Ro
4

Ro

Water-bag
model

Ro
6

Ro
2

Gaussian
distribution

2~x

2x

can be calculated from (x ) using Eqs. (79) and (73), re-
spectively.

We have solved the dispersion relation numerically.
The results are as follows: First, let us compare the
growth rate obtained by the dispersion relation (61) for
the water-bag model with the results obtained by Yu,
Krinsky, and Gluckstern's variational method for the
same water-bag model. The solid curves in Fig. 2 show
the scaled growth rate Re(q)/(k~D) as a function of
2k, e„ for several values of k&/(k D). Here, the energy

spread o.~/D is set to 0. The detuning parameter
(k —k, )/(k, D) is chosen to yield the maximum growth

rate. Generally, the optimal detuning depends on the
quantity k, e„(k&/k D) and the energy spread cr /D.
This detuning is the result of the reduction of the average
longitudinal velocity of the electron beam due to the
transverse emittance, the betatron focusing force, and the
energy spread. The dashed curves show the numerical
results from Yu, Krinsky, and Gluckstern's variational
method for the water-bag model. Good agreement is
found. It is known that the growth rates for the water-

bag model obtained by the variational method agree well

with the simulations [11].
Now, we consider the case of the Gaussian distribu-

tion. In Figs. 3(a), 3(b), and 3(c), we plot Re(q)/(k D)
against 2k, e, for several values of k&/(k D), for

az/D =0, o.~/D =0.2, and a&/D =0.4, respectively.
These figures cover most of the practical range of FEL
parameters. The solid curves show exact solutions of
dispersion relation (62), while the dashed curves show ap-
proxirnate values calculated with a pair of empirical ex-
pressions of the dispersion relation (62) which agree well

with the exact solutions for cr z/D ~ 0.5 and

kp/(k D) S 10. The pair of expressions is given by

ln = —(0.759+0.238y+0. 0139' ) 1+ 2k e
Re(q) 2 "p
k D

1t-'x
k D

2

0. 149+0.02681n
kp

k D

2 4 6 ' 1/2

+ (44.03+3.32y+5.45' )
Oy

D D D
—0.713 +68.65

and

k D kp
for 2k1t ~0.05 and ~ 1

p k D
(84)
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Re(q)
k D

=(0.0628 —0.219'—0.000568' )'/ exp

2
kp

2k, e„' "k.D
kp

1.091+0. 1345
k., D

—(11.92+2.202y+0. 1414' )
D

2

k.D kpfor 2k& e &0.05 or & 1,
kp kD (85)

where

k„D
y=ln 2k& e (86)

The parameter 2k&e„(k D/kp) is a function only of the
ratio of the Rayleigh range to the one-dimensional gain
length:

2&2 (x')
2k e

33/4 g /~ L (1 —D)
P G

3/2

(87)

1.4 I I I I I I I

1.2

D
0.8

0.6V

CC

0.4

0.2

This pair of expressions can be used as a handy formula
for a quick estimate of the growth rate.

Comparing Fig 2w. ith Fig 3(a)., we notice that the
Gaussian distribution shows a considerably smaller
growth rate Re(q)/(k D) due to Landau damping than
the water-bag model for large k&/(k D) when

2k, e„)0. 1 [compare k&/(k D)=10 curves, for exam-

ple]. This is also the case with the parabolic distribution
of f0~(r ) in phase space, which is not shown here; how-

ever, it gives similar curves to those of the Gaussian mod-
el. This observation implies that the FEL gain for the
strong focusing and the large emittance depends sensi-
tively on the details of the transverse distribution. In
contrast, we notice that the two figures show more or less

identical values of Re(q)/(k D) for the small emittance
region 2k&e„&0.1. In this region, the variation of the
longitudinal velocity inside the beam due to the betatron
oscillation is small, and the effect of Landau damping due
to the transverse motion becomes negligible. The similar
behavior of Re(q)/(k D) in Figs. 2 and 3(a) implies that
the FEL gain becomes insensitive to the shape of the
transverse distribution of the electron beam for the small
beam size, and therefore, it is convenient to calculate the
FEL gain using the rms beam size or emittance in the
small beam size region. Then, the FEL gain becomes in-
dependent of the transverse beam distribution.

We have compared the above results obtained by solv-
ing the dispersion relation with those obtained by simula-
tion using the computer code TDA [12]. The nominal
FEL parameters used in the simulation are given in Table
II. Here, we have chosen the FEL parameters such that
the scaled betatron wave number k&/(k D)=1, a value
large enough to show clearly the effects of Landau damp-
ing due to the betatron focusing and the emittance. The
detuning parameters used for the simulations are identi-
cal to those for the analytical results which yield the
maximum growth rates. In Fig. 4(a) we plot the scaled
growth rate Re(q)/(k D) as a function of 2k&e„ for the
zero-energy spread for the Gaussian and the water-bag
beam distributions. The agreement is excellent. The
benchmark for the nonzero-energy spread o r/D =0.2 is
shown in Fig. 4(b) for the Gaussian-beam distribution.
The agreement is also excellent.

In Fig. 3 it appears that one can increase the FEL gain
by increasing the betatron focusing for a given emittance,
until its increase is overwhelmed by the reduction due to
Landau damping. However, this increase in the FEL
gain is actually originating from the reduced beam size
due to the strengthened focusing. This may be more
clearly seen if one plots the FEL gain as a function of the
beam size instead of the emittance, using a scaling rela-
tion of the following form:

1 0 2
1 0 1

2k c
1 x

10 10 Re(q) ~R ~r 8
( J D) 7 D 7

FIG. 2. Scaled growth rate Re(q)/(k D) as a function of
2k, e for several values of the scaled betatron wave number
k&/(k D) for the water-bag model, where k, is the radiation
wave number and e„ is the transverse emittance. Here, the
scaled energy spread cr~/D =0. The solid curves show solu-
tions of the dispersion relation (61}, while the dashed curves
show the numerical results obtained by Yu, Krinsky, and
6luckstern's variational method.

[Note the similarity of the above equation with the scal-
ing relation (71) for the constant p case. ] In Fig. 5 we

plot Re(q)/k D as a function of Lz /LG' ' for the
Gaussian distribution for o-~/D =0, which is equivalent
to Fig. 3(a). When the beam size is small, all the curves
for different k&/(k D) become identical. As the beam
size increases, the curves for large k&/(k D) start to
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1.4

1.2

I I I I I I I I I I I I I I I TABLE II. Nominal FEL parameters used for the simula-

tions.

Parameter Value

CI
0.8

0.6
CC

0.4

0.2

0

10 10
2k1 ~x

10 10

The Lorentz factor of the reference
electron, y„

The wiggler period k„
The peak wiggler parameter E
The total beam current Io
The resonant radiation wavelength

A, , =2m. /k)
The scaling parameter D
The betatron wavelength

A,~
= 2m. /kg

3 cm
2

53.28 A

7.5 pm

0.014 142

2.12132 m

1.4

12

CO

0.8

0.6
K

0.4

0.2

I I I I I I I I I I I I I I

(b) 0/D = 0.2
Y

1.4

O
0.8

0.6
K

0.4

0.2

I I I I I I I I I I I I I I I I
I

I I I I I I I

(a) o/D =0
T

Gaussian: theory

simulation

theory

simulation

1.4

0

10

I I I I I I I

10
2k1 &x

I I I I I I I

100

I I I I I I IJ

10 0

0.01 0.1

2k1 ~x

I I I I I I

10

1.2 (c) ~/D = 0.4 1.4 I I I I I I I I I I I I I I I I

O

CC

0.8

0.6

0.4

0.2

1.2

O
0.8

0.6
K

0.4

(b) a/D = 0.2

Gaussian: theory

G s '
n s'mulation

10 10
"1'x

10' 10

0.2

0.01 0.1 10

FIG. 3. (a) Scaled growth rate Re(q)/(k D) as a function of
2k, e„ for several values of the scaled betatron wave number
k&/(k D) for the Gaussian model, where k, is the radiation
wave number and e„ is the transverse emittance. Here, the
scaled energy spread o.~/D =0. The solid curves show solu-
tions of the dispersion relation (62), while the dashed curves
show the approximate values calculated by the handy formulas
(84) and (85). (b) Scaled growth rate Re(q)/(k D) as a function
of 2k

& e„ for several values of k&/(k D) for the Gaussian model.
Here, o.~/D =0.2. The solid curves show solutions of the
dispersion relation (62), while the dashed curves show the ap-
proximate values calculated by the handy formulas (84) and
(85). (c) Scaled growth rate Re(q)/(k D) as a function of 2k, e„
for several values of k&/(k D) for the Gaussian model. Here,
o.~/D =0.4. The solid curves show solutions of the dispersion
relation (62), while the dashed curves show the approximate
values calculated by the handy formulas (84) and (85).

2k1a

FIG. 4. (a) Comparison of the scaled growth rate
Re(q)/(k D) with the simulation results for the Gaussian and
the water-bag beam distributions. Here, the scaled betatron
wave number k&/(k D) = 1 and the scaled energy spread
o~/D =0. The solid and the dashed curves show the solutions
of the dispersion relations for the Gaussian and the water-bag
beam distributions, respectively, while the triangles and the cir-
cles show the simulation results for the Gaussian and the
water-bag beam distributions, respectively. (b) Comparison of
the scaled growth rate Re(q)/(k D) with the simulation results
for the Gaussian-beam distribution. Here, k&/(k D)=1 and
o.~/D =0.2. The solid curve shows the solution of the disper-
sion relation for the Gaussian-beam distribution, while the tri-
angles show the simulation results for the Gaussian-beam distri-
bution.
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(1-D)

G
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FIG. 5. Scaled growth rate Re(q)/(k D) as a function of the
ratio of the Rayleigh range to the one-dimensional gain length,

L„/LG ', for several values of the scaled betatron wave num-

ber k&/(k„D) for the Gaussian model. Here, the scaled energy
spread ay/D =0. This figure is equivalent to Fig. 3(a).

imuthal modes (m, n )0) is less than 1%. Next, we con-
sider the radial expansion and keep the azimuthal expan-
sion at the lowest order m =n =0. In this case, the nu-
merical calculations of the growth rate for the Gaussian
model showed that when Lz /LG' ' 30, the changes in
the growth rate of the fundamental mode due to the in-
clusion of the first-order radial expansion term k =1 is
less than a few percent, while for Lii /LG' '-140, it in-

creases to 6.3%%uo. Normally, the change in the growth
rate of the fundamental mode by including the k =1 ex-
pansion term becomes smaller as the beam size becomes
smaller. From this result we conclude that the trunca-
tion of the dispersion relation at the lowest order pro-
vides a good approximated eigenvalue, unless the beam
size is so large that the three-dimensional effects such as
the diffraction effect become negligible. Therefore, in the
practical range of the beam size, the truncated dispersion
relation (56) is a useful and valid approximation.

break away. This figure shows that one can have a larger
FEL gain for a weaker betatron focusing for a fixed beam
size. The scaling relation (88) may be a better expression
for understanding of the physical picture, while the other
one (78) may be more suitable to the practical applica-
tion.

Finally, we examine the accuracy of the truncation to
the dispersion relation at the lowest order of the azimu-
thal and the radial expansions. First, let us concentrate
on the azimuthal expansion and keep the radial expan-
sion at the lowest order k =0. Numerical evaluation of
the matrix M defined in Eq. (53) shows that the off'-

diagonal elements M„'„'() (n )0) are normally smaller
than M o'o'0 by more than one order of magnitude. The
accuracy of the truncation at the lowest order m =n =0
depends on the square of these off-diagonal elements.
Therefore, the inclusion of the higher-order azimuthal
modes are unlikely to change the gain of the fundamental
mode very much. Indeed, we have found during the com-
putation of data for Figs. 2 and 3 that the change in the
gain of the fundamental mode due to the higher-order az-

VIII. PLANAR WIGGLER

So far, we have assumed that an electron beam goes
through a helical wiggler. However, the same formula-
tion can be applied to the FEL using a planar wiggler
with a few changes. We still need to assume that the be-
tatron focusing in the wiggler is matched to the electron
beam, either by the alternating field of the wiggler mag-
net or by suitable external focusing devices. For simplici-
ty, we also assume the betatron focusing is equal in the x
and y directions. [Without this assumption, we need to
introduce different betatron numbers k&, and k& and
different emittances e and e for x and y planes, respec-
tively. Then, the scaling relation, Eq. (78), requires six
independent scaling parameters, 2kIe„2kIE'y (xy/D,
k&, /(k D), k& /(k D), and (k —k, )/(k, D). This
asymmetric focusing case can be treated parallel with the
preceding symmetric focusing case. The results are sum-
marized in Appendix D.] Now, the main change is that
we need a new evaluation of the angular distribution of
radiated power spectrum, P (ki), in Eq. (30). The re-
sult Is

P„(k„k ) =-
27TC

A (k, )

[1—(ki/k) ]' q
—i pk +(k —ki)'

V„

(89)

where

1
oo

&p(k, )=— g g (
—i)"i™J„(k,r„)J (k, r„)p x 4 n= —(x) m = —oo

X [J(i,+„,)~2(S~ )
—J(~+„+,)r2(S~ )][J(~+m, )~~(S~ )

—J( +~+, )r2(S„, )] .

Here,

k E
4(1+% /2)

(90)

(91)

k, =2y„k„/(1+K /2),
r =K/(yk )
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[1—(kj/k) ]' q i—pk„+(k —kj )'~ ——
V»

is the radius of the wiggler motion, and E is the peak value of the wiggler parameter on axis. In the limit of small am-

plitude of the wiggler motion, r ~0, P can be approximated by

r [JJ]p /4
P (k„,k )=-

2&C
L

where

[JJ]p J(p —1)/2(S ) —J(p+ &)/2(S ) . (93)

. 22m ki3fo~(r )r dr

q +2i k~ i —kk—&r
r r-,

k, r„

The function P
q

can be further approximated by retaining only the fundamental harmonic term of the forward radia-

tion, p = l. In this approximation, we simply denote [JJ], as [JJ] in what follows. Thus, the dispersion relation for the
fundamental mode, Eq. (56), should be multiplied by the factor [JJ]/2 on the right-hand side (RHS). It becomes

fo~~(r)dr1=2i — [JJ]
k1 C $„$„0 1

y
n/2

0
+'kw

1

k28d8 J,(kr'8)f 2n kafoj(r'), r' dr'
k —k1 kg2 o kr'8

+i

'2

(94)

Accordingly, D is changed to
1/2

4 K ~oD=
I+K /2 ig

(96)

This implies that the same factor [JJ] /2 should be mul-
tiplied to the RHS of Eq. (63) for the Pierce parameter:

k„
(2pk ) =m.r, n o [JJ] (95)

V» V»

is no gain reduction due to the electron-beam emittance.
In reality, however, the electron beam is likely to have a
nonzero initial energy spread. In this case, only the part
of the longitudinal velocity spread due to the electron-
beam emittance is cancelled, and we still have the reduc-
tion of the gain due to the energy spread.

The beam-conditioned FEL can be analyzed in the
present theory with a few modifications. We define a new
longitudinal variable a, instead of y, by

With these changes, the dispersion relations, Eqs.
(60)—(62), and the handy formulas of the growth rate,
Eqs. (84) and (85), are all valid.

a=& —r, — r, —(pp+kpxp) .
k 2

2k

(98)

IX. BEAM CONDITIONING

7»
—(pp+kpxp) .

k 2

2k,

(97)

Therefore, if all electrons have the same energy before
entering the conditioner, they all move with the same
longitudinal velocity after the device. In this case, there

The idea of beam conditioning is an attempt to reduce
the longitudinal velocity spread within the beam by
correlating the transverse oscillation amplitude and the
electron energy, in order to increase the FEL gain [4].
This can be briefly explained as follows. Before entering
the FEL, an electron beam goes through a device, called
a "conditioner, " that consists of a focusing channel and
suitably phased rf cavities operating in the TM2, 0 mode.
This device provides a different energy increment to indi-
vidual electrons with different transverse oscillation am-
plitude so that the RHS of Eq. (7) vanishes in the ideal
case:

da dy
dz dz k 2dz (pp+kpx~)=

1 1 d 2 2 2 dy
dz

2k,

(100)

where we have used the fact that the transverse oscilla-
tion am. plitude p~+k&x~, is the constant of motion.

Now, the electron distribution f is regarded as a func-
tion of x&, p&, ~, a, and z:

The distribution of a is determined by the initial y distri-
bution (before the device) and the performance of the
beam-conditioning device. Assuming an ideal operation
of the beam conditioner, the distribution in a after the
device will be the same as the distribution in y before the
device. Note that the energy distribution will be changed
after the device.

The equation of motion of r, Eq. (7), can be expressed
with a as

dg 2 kw a
dz c k1 y„

The equation of motion of a follows from Eq. (98) that
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f=f (xp, pp, r, a;z) . (101) should be replaced by

Accordingly, the linearized Vlasov equation (13) is
changed to fo =fox(xp+ pp~k p)fo~~(a) . (103)

~fi ~fi „, ~fi dr ~fi da @'o

Zz
+ 'ax, ' 'ap, dz B~ dz de

(102)

Our assumption on the factorization of fo, Eq. (14),

The rest of the procedure closely follows the preceding
formulation except that most of the y appearing in asso-
ciation with the electron distribution function must be re-
placed by a. Finally, we arrive at the general form of the
approximate dispersion relation [cf. Eq. (56)]

k r, K k„f„1=4i
r,

fo~~(a)da

q+2i k
1 ~r

k OdO

kg2
q+ik +i

2

J, (kr'8)f 2vr kafo~(r'), r' dr'
0 kr'0

(104)

Note that we have performed the r integration in the first
line of Eq. (104), since there is no r dependence in the
denominator. Now, the reduction of the gain is solely
determined by the o; distribution. If we assume a Gauss-
ian distribution for a with the rms spread, o. ,

( )
Q 1 —a'/2y„'a',

r &2mcr y
(105)

X. COCCI USIQNS

We have developed the 3D FEL theory in the high-
gain regime before saturation based upon the Maxwell-
Vlasov equation, including the effects of the energy
spread, the transverse ernittance, the angular distribution
of the radiation from a single particle, the betatron focus-
ing and oscillation of the electron beam, and the
diffraction and the guiding of the radiation field. Our nu-
merical results of the FEL gain show good agreement
with results obtained by Moore's approach for the hollow

the dispersion relations for various models of fo~(r'),
Eqs. (60)—(62), are still valid. The only changes are to set
—,'kk&Ro =0 in Eqs. (60) and (61) and to set —,'kk&o, =0 in

Eq. (62), and to replace o by o . As in Eq. (104), we can
carry out the x integration readily. The handy empirical
formulas (84) and (85) can also be used only by deleting
the terms proportional to [2k&e, (k~lk„D)] and replac-
ing o. by o. .

Since the transverse emittance does not contribute to
the gain reduction, the gain is now insensitive to the
shape of the transverse beam distribution. For example,
the dispersion relation for the hollow-beam model, Eq.
(60), can be used for an estimate of the gain, regardless of
the actual transverse beam distribution. (This choice is
convenient, since this dispersion relation keeps a good ap-
proximation even in the limit of large beam size. ) The
handy empirical formulas (84) and (85) without the terms
proportional to [2k&e„(k&/k D)] serve as good approx-
imations to the dispersion relation for the hollow-beam
model.

I

beam (see Fig. 1) and Yu, Krinsky, and Gluckstern's ap-
proach for the water-bag model (see Fig. 2) of
fo~(x&+ p&lk&), respectively. We presented a dispersion
relation for the FEL gain of a Gaussian beam, Eq. (62),
and its approximate expressions, Eqs. (84) and (85), for a
quick estimate of the growth rate with a pocket calcula-
tor. Comparisons of numerical solutions of this disper-
sion relation with the simulation results for the Gaussian
beam show excellent agreement. We have shown that the
present theory can handle the beam-conditioning case
easily by changing the longitudinal coordinate and by im-
plementing a few modifications.

One eminent advantage of the present orthogonal ex-
pansion method is that an accurate eigenvalue for the
fundamental mode can be obtained by taking only the
lowest-order expansion term, unless the beam size is too
large. As a result, the matrix form of the dispersion rela-
tion can be reduced to just a scalar equation. This is not
always the case with any expansion method. If one uses
an arbitrary set of the orthogonal functions to expand the
electron-distribution function, one normally has to sum a
number of the expansion terms, or one has no guarantee
that the expansion even converges. In the present expan-
sion method, the orthogonal functions are uniquely deter-
mined by the unperturbed electron distribution so as to
satisfy the orthogonal relationship (47). We have found
that this procedure provides a good approximate eigen-
function even if the expansion is truncated at the first
term for a wide range of the unperturbed electron-
distribution function. Once a good approximate eigen-
function is prepared, a relatively accurate eigenvalue is
obtained because the error in the eigenvalue depends qua-
dratically on errors in the approximate eigenfunction. In
contrast with the variational method, however, the accu-
racy of calculation can be determined by evaluating the
higher-order expansion terms, and if necessary, one can
improve the accuracy systematically by including these
higher-order terms.

The present method can be easily extended to the
asymmetric betatron focusing case, which may be more
realistic in a storage-ring FEL system with a planar
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wiggler. The results are briefly summarized in Appendix
D. In this case, the gain of the fundamental mode be-
comes a function of six scaling parameters.
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dxp dpp
dz

'
dzPpy k pXp

where

k
k =K

2y'

(A8)

(A9)

APPENDIX A: EQUATIONS OF MOTION

The Hamiltonian for a single electron is given by

H =mc y=c[(pi —e A) +p, +m c ]'i (A 1)

A=A„+A, . (A2)

For a small transverse displacement from the wiggler
axis, A„can be well approximated by

A =A [i„(1+—,'k y )cosk z+i (1+—,'k x )sink z],
(A3)

where i and i are unit vectors in the x and y directions,
respectively. We derive an expression of A„ in Appendix
B. All the other notations are as follows: c is the speed
of light, e is the electron charge, and y is the electron en-

ergy in units of its rest mass energy mc .
It is convenient to choose z, the distance from the

wiggler entrance, as the independent variable. The new
Hamiltonian is simply p, :

p, =[m c y —m c —(pi —e A) ]'i (A4)

where pi and p, are the canonical momentum conjugates
to the transverse coordinates, x=(x,y) and z, respective-
ly. The vector potential A= A(x, z, t) consists of the vec-
tor potential of the wiggler field, A, and that for the ra-
diation field, A„:

1+@ y yr 1( z kp p)pxp
yr yr

(A 10)

So far, the equations of motion of xp, pp, and ~ were
derived by taking into account the wiggler field only. To
derive an equation of motion of the energy y, it is essen-
tial to consider the interaction of the electron's helical
motion and the radiation field. Hamilton's equation of y
becomes

8 A„(p —e A}
mc = —e'

d, at Pz
(Al 1)

Note that A = A (x,z} has no time dependence. Using
Hamilton's equation of x,

dx Px
—e A

dz Pz
(A12)

is the betatron wave number in the absence of external
focusing and E =eA /(mc} is the peak wiggler parame-
ter.

The equation of motion of r=t —zlu„ is obtained by
carrying out the partial derivative in the first equation of
Eq. (A6), where U„ is the longitudinal velocity of the
reference electron with the zero transverse oscillation
amplitude. It is approximately given by

r

dr 1
1

1+X 1 2 k2 2 1 1+K
dz c 2y& 2 t' e"e c

and

dx ~$' dpi
dz Bp

'
dz Bx

(A5)

Equations of motion for an electron are then given by
Hamilton's equations:

Equation (Al 1) can be written as

x BA„
dz dz Bt

dxg BA„
dz at

(A13)

dt ~Pz dH ~Pz

dz dH '
dz dt

(A6)
where we have retained only the fast-oscillating helical
motion xz in dx/dz, as the first-order approximation.

z+A,
~

z+A. px&= f x dz, p&= f dz,
W z mcy

(A7)

The variables x and pi include the fast-oscillating heli-
cal motion. As variables to be used in the Vlasov equa-
tion, we define slowing varying new transverse variables
xp and their canonical momentum conjugates pp as the
average of x and pi over the wiggler period:

APPENDIX B: DERIVATION OF A, (r, t)
AND ENERGY CHANGE

In this appendix we derive Eq. (25) for A„(r, t), and
Eq. (29) for the energy change by the radiation field. The
starting equation is Eq. (24). First, we introduce the
Fourier transforms of p& and Cx over xp and ~ as
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p (ki, z)=
'3
f" f" p, (x,, r;z)e '""' where

k, = [k' —(k.'+k,')]'" (85)

aI1d

Xe' 'd xtidr

Xd (x —x')d(t t') —.

G k (z~z')= f f" G(r, t~r', t')e '""" " 'e' "

(81)

(82)

If we neglect the small x& dependence of
u~~

in the helical
radius ri, , we find that the convolution law can be applied
to Eq. (24) between G(r, t~r', t') and p, (x&, r, z) over x&
and ~' integrals. It follows that

f f G(r, t~r', t')p, (x&, r', z')d xttd
I

ik~ (x xh )

From Eq. (18), we have an explicit form of G 1, in free

space: I

Xe "d k)d~, (86)
ik (z —z')

G„k (z~z') = If(2'�) Nk—
(83) where we have used x'=x&+x& and t'=7.'+z'/U„.

We also introduce the Laplace transform of p (ki, z)
with respect to z defined by

p ~(k))= f p (ki, z)e ~'dz, (87)
0

%e carry out the integration over k, using the residue
theorem. The contour of integration goes from the nega-
tive infinity to the positive infinity along the real axis and
closed in the upper half-plane. It goes above a pole on
the negative real k, axis and below a pole on the positive
real k, axis. The result is

where the Laplace-transformed function p (ki) is
defined only for Re(q)) qo. The inverse Laplace trans-
form is given by

qo+i oo

p,„(ki,z) = p (ki)e~'dq . (88)ik, (z —z')

G.„(ziz )=i,I'
(2~) k,

(84)
Inserting Eqs. (86) and (88) into Eq. (24), we have

qo+i oo

A„(r, t)=ep&f f f H „(ki,z)p„(ki)e ' d ki e&'dq e ' 'dc@, (89)

where we have defined the integral
I

I

H„(k„z)= f G„„(ziz'), e
0 dz

Xe 'eq' 'dz' .
i co{z' —z) /v

(810)

(814)
ik rkcosk, z'—

n y~h 7

n = —oo

the integration in Eq. (812) can be carried out, with the

result,
Now, our task is to carry out the integration in Eq.

(810). If we insert Eqs. (3) and (83) into Eq. (810), we ob-
tain

I„(k)= g g ( —1) i "J (k„rk)J„(kirk)

. K ir I q(k) —(q+' i,—'k, )H„(ki,z) = —i e)'„(2'�) k,

where

I q(k)= f (i,cosk„z'+i sink z')
0

(q +ice/'v —ik )z' ik r sink z'
r z e x h u

—ik rh cosk z'
Xe ~ ' dz',

(811)

where

y(m+n)

I(m +n) +I(m + n)
+

g(m+n) J(m+n)
+ ly

(i [{+-1—rn —n)k —k +~lv ]+q )z
e ' ' —1

i [(+1—m n)k —k—, +co/v„]+q

(815)

(816)

and we have replaced c/Ui~ by 1 in the helical radius to a
good accuracy. By using the expansion formulas [6]

If we notice that

y(m +n +1) J(m +n —1) (817)

k k
ix) I

e "" = g ( —1) J (k rk)e
™"'2 (813) and change the index from m to p = m + n + 1, Eq. (815)

can be rewritten as
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&„q(k)=
p= —oo n = —oo

+i —[J „+,(k rh) —J „,(k ri, )] ( —1} '( i—)"J„(k ri, )Ioi»',
2l

(B18)

where

z r[i( —pk —k +co/v )+q]z
I(p)

i ( —pk —k, +co/u„)+q

can be approximated in the high-gain regime by

[i (
—pk —0 +co/v„) +q]z

(p)Io
i( —pk —k, +co/u„)+q

The double summation in Eq. (B18)can be reduced to a single summation by using Graf s additive theorem [6]:

(B19)

(B20)

J„[(z +g —2zgcos8)' ]=

The result is

' v/2i]i oo

J,+„(z)J„(g)e'"
z —ge

(B21)

(k}= g (
—1}» 'e i„—[e "J&+](k&r&)+e "J& ](k]rQ)]

-ieq i8k (p)+i —[e J +](kj ri, ) e—J ](k] ri, )] II
2l

where k~ =(k„+k» )' and 8k =tan '(k»/k„).
Inserting the above equation (B22) into Eq. (B11)and replacing k, by (k —k j )'/, we have

—ipk z

K 1
" e p(

4 2 2 ]/2(2m} 'Yr (k k] ) p = —
2 2 ]/2 ]uq+i —pk —k —ki +-

r

(B22)

(B23}

where

V (k])=(—1}» 'e " i„[e —J + (r]ki)+]e "J ](rhk])]+i [e —J +](rhk] ) e "J —](rhk])]

(B24)

Next, let us calculate the energy change by the radiation field. Substituting Eqs. (3) and (B9) into Eq. (8), we have

dy e E c—
( i„cosk z + i» sink z)e

dZ PlC 7 r Vr

qo+i oo

&epo f— . f f" coH ~(kj, z)p (k])e' '*ed ki eq'dq e '"'dc@ (B25)

The term

L=(i cosk z+i sink z)e (B26)

can be expanded in terms of the Bessel functions, and the resulting double series can be reduced to a single series as
I„~(k). We find that

—(I —1) '
jc - 1 '

/cL= g ( —1) e i„—[e J ]i+]](kiri, )+e J ]i ]](kz i, )]
I = —oo

X

ilk z
'» . [ 'J ]i+ ](k ]i ) ]—e "J ]i ]](kiri }—1 e-

2l
(B27)
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If we insert Eq. (B27) into Eq. (B25) and retain only the slowing varying term p = 1, we obtain

qo+l oo

P k, p Qze '~d'Qz e'dq e (B28)

where

P q(ki)=
"e K

2&C

(
—l)v J (kyar„)

rh

2

+J'
(kyar~ )

[I—(ki/k) ]' q+i —pk„, —(k —ki)' +—
(B29)

where r, =e /(4neomc ) is the classical electron radius,
eo is the permittivity of free space, and J'(x) is theP
derivative of the Bessel function. Here, we have used the
recurrence formulas I6] C=(mR k ) (C2)

where r =(r„+r )'i is the amplitude of the electron po-
sition in four-dimensional transverse phase space. The
normalization constant then becomes

J~,(x)+J~+,(x)=2J~(x)—
X

J~,(x)—Jp+, (x)=2J'(x) .

APPENDIX C: ORTHOGONAL FUNCTIONS

(B30)
Any perturbation on the hollow beam will have to take
place around the ring r =R0, where electrons populate.
As a result, all R„' '"'(r„,r ) degenerate into 5 functions,
i.e.,

'2

1. Hollow beam
R( '"I( ) 5 1—

coq x ~ y

r

R0
„jmj„jnj
x (C3)

1
foi(r )= 5 1—

(~R ()kp)

r
Ro

'2
Thus, fk """(r„,r ) is a nonzero constant for k =0, and
vanishes otherwise. By introducing the polar coordinate
as

We choose the weight function to be
2

r„=r cosP, r =r sin()), (C4)

8'i(r )=5 1— r
R0

(C 1) the orthogonality relationship (47) for k =i =0 is written
as

f"S 1—
0

r
R0

2

(
r(lm nl) )2r2lml+2lnl+3dr f 2lml+(~ si n2lI+&(duJ 0

0
(C5)

The constant f0
" ' is found to be

R I I+ I
"I+

0 +jmj, jnj

1/2

(C6)

where

2™+I ' "+' d
0

(2lml+2lnl+»(I (C7)

Equation (49) then becomes

1 2
V) Iml+ln +2R 0 jrnj jgj

1/2
m/2

Jl I(k„r cosg)JI„(k r sing)
0 0

2

x5 1— r
R0

r ml+ ln I+ -'dr cos I
m

I
+ (y sinl n I+ (y d y

R0 + ~ +((kiRo)
(k, R )lml(k R )

(k R )Ijmj, jnj

(C8)
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where we have used the integration formula [6]
n. /2J (z, cosx)J„(zzsinx)cos"+'x sin"+'x dx

V PZ ]Z2 2 2 1/2

[(z, +z2) ]
v+@+1(z 1 +z2 . (C9)

2. Gaussian beam

where the orthogonal functions g,
" "(r„} satisfy the

orthogonality relationship

——'( / )'
(lml)(r ) (lml)(r )r&lml+(dr

0 gj x gl x x rx jl

(C15}

and g, '"'(r«) satisfy a similar equation where r„, l
m l, and j

are replaced by r«, lnl, and i, respectively. The orthogo-
nal functions are given by

(2no, k.p)

In this case, f0~(r ) can be factorized as

2

(Iml)(r )
—g)(lml)L (Iml)

x

(C16)

W~(r )= W (r )W«(r«)

where each weight function is defined by

(Cl 1)

foj (r') =f()„(r„)f()«(r«) . (C10)

Accordingly, the weight function W) (r ) also can be fac-
torized as D(lm) ) gI

(r lml+ ( 2lml( lml +J))

' 1/2

(C17)

The functions fk( ' " '(r„, r«) can be expressed as

where L~ '(x) is the generalized Laguerre polynomials

[6] and

—
2 (r„ /c7 )

2 —2( /„)1 2

W (r ) e, W«(r«)=e (C12)
2 2

f (lmllnl)(r , r )
—D(lml)D(lnl)L (lml) I (lnl )

2 '
2 2

Ox &x
respectively, and we have chosen the normalization con-
stant to be (C18)

C =(2~o „k()) (C13) where k and (j,i ) are related by

It follows from the orthogonality relationship (47) that
the orthogonal functions also can be factorized as

r„,r ) =g'lml'(r„)g'I» '(r (C14)

(j+i+1)(j+i)+l, l,j =0, 1,2, . . .
2

We then have

(C19)

2

C (k k }= J (k r )e ' " n'D(lml)L (lml) " lml+(d
lml, lnl, k x~ y lml xrx J J 2 rx2'

2

J (k r )e
2'"« ' D(lnl)L, (lnl) « „lnl+)dr

20x
Iml+2j

&j)(lml+ j)t

lnl+2i
X

+~ )( In I +i)! v'2

(C20}

APPENDIX D: ASYMMETRIC FOCUSING
IN A PLANAR WIGGLER

WITH PARABOLIC POLE FACE

where

k—
iy kwx wyxy sinkwz

WZ

(D 1)

For a small transverse displacement from the wiggler
axis, the vector potential of a planar wiggler with a para-
bolic pole face, A, can be approximated by

k

k„,

k +k =k, . (D2}

x„=r cosk, z,
~0

(D3)

The transverse trajectory of the electron consists of the
betatron motion and the wiggler motion. The betatron
oscillations are governed by the equations of motion for a
simple harmonic oscillator with the betatron wave num-
ber k&„and k& in the x and y planes, respectively [in the
absence of external focusing, k&„=Ãk „/(y/2) and
k&«=I(k « (y/&2)], and the wiggler motion x is ex-
pressed by
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Here, r =K/(yk, ) is the radius of the wiggler motion
and

K =eA„k /(mck, )=eB/(mc k, )

Let us introduce the transverse polar coordinates as

x&=r„cosP„, y&=r cosP (D8)

is the peak value of the wiggler parameter where B is the
peak magnetic field on axis.

In contrast with the helical wiggler case, the longitudi-
nal velocity of the electron has the longitudinal modula-
tion with the wave number 2k, :

2

v =v + — cos2k z,1 E
4~ wz (D4}

Ppx . Ppy=r, si nP„, =r sin()I(
px py

(D9)

Then, the second and third terms in the LHS of the
linearized Vlasov equation, Eq. (D7), are written as

where the overbar denotes an average over one wiggler
period. As the result, the arrival time t of an electron at
position z is also modulating:

'2

t = — —sin2k, z ~

z dz 1 I(
(D5)

0 v 8kwzc

From now on, we simply denote k, as It,
.„.

If we insert the above equations (D3}—(D5) into Eqs.
(8) and (24) and follow the procedure shown in Appendix
B, we obtain an expression for the energy change dr/dz
similar to Eq. (29), where P (k) ) should be replaced by
P (k„,k ) given by Eq. (89).

We again assume that the focusing in the wiggler is
matched to the electron beam so that f0 is a function of
x&+(p&„/k&„), y&+(p& /k& ), and y only, and we
also assume for simplicity that fo can be factorized as:

f() =f0) (xp+(pp„/kp„), yp+(pp /kp ) )fo(((y) .

(D6)

Xp Ppx &p Ppy

af., af.,
/3x gp Py (D 10)

The matching condition, Eq. (D6), can be written in

terms of rx and ry as

f0 =f0) (r„,r, }f0~((1') . (D 1 1)

The rest of the procedure closely follows the formula-
tion described in Secs. IV and V. One important
difference is that the unperturbed transverse distribution
(and also the weight function) is a function of both r„and
r, not r =(r„+r )' only. Therefore, for example, the
orthogonality relationship, Eq. (47), should be modified
as

Now, the (Fourier-Laplace-transformed) linearized
Vlasov equation is given by [cf. Eq. (32}]

dT af.. . af.q
q iso —f„+pp„—kg xpz Xp Ppx

af.. . af.,
&p

( )f([m, nl)( )f ( m(, nl)
x y k x y l

X(r, r )r ( +'r (" +'dr, dr =5k( . (D12)

Finally, we arrive at the dispersion relation

det(I+PM )=0, (D13)

fo) JP q(k k )p (k~)e ed2k~"dr
(D7)

where the matrix elements of pk (" and M,'"", are given
by

and

q ice (r—, r, y} i (kp„m +ki) n)—d7
dz

~). x "yA rx y fl x& y x y f0~~( d
lml lnl I r &lml, lnl ~ r r )r2lml+lr2lnl+&

m, n dr r
k, l dr' (D14)

1+In( —( m'I+(n' ) i'" @' "
P (k k )C (k k )C (k k )dk dk

(2n. }'k „k
I Im, n, j co Qc

(D15)

respectively.
If we retain only the lowest-order term m =n =k =0 in the azimuthal and radial expansions, as we did in Sec. VI,

the dispersion relation (D13) can be written in a general form as
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. k e E1=)
k, c y„

[JJ]2 f ~f mf ~ f&l(y)dyf&t(r„, r )(2rr) kl)„k& r„dr„r dr

q+2i k —i —k(kp„r„+kp r )
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where f ot (r„,r~ ) is normalized such that

f f fot(r„, r~)(2') k&„k& r„dr„r dr =1 . (D17)
0 0

Here, we have used the approximated expression of P (k„,k ), Eq. (92), and have retained only the fundamental har-
monic term of the forward radiation p =1. For a Gaussian beam,
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the above dispersion relation can be written in a scaled form as

px py
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(D18)

(D19)
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(D20)

where we have replaced k by k, except in the detuning term (k —k, )/(k&D) to a good approximation. The scaled
growth rate Re(q)/(k D) is a function of the six scaling parameters:

r

Re(q) rr r k px k@ k —k
D21
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