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Acceleration of particles by an asymmetric Hermite-Gaussian laser beam
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The application of a focused laser beam to accelerate particles using the longitudinal electric-field
component is investigated one step beyond the paraxial-ray approximation. Vacuum acceleration to
high energies along the axis of an asymmetric Hermite-Gaussian beam is in principle possible, but the in-

teraction distance is short (one Rayleigh length on each side of focus). The use of a gas can increase the

energy gain per focal passage by a factor of 2.4, while permitting arbitrary spacing of drift tubes and

lenses of a lens waveguide. Drift tubes are therefore not needed. A beam loaded with a graded-index

gas, in which phase and particle velocities are equal over the interaction trajectory, permits three-
dimensionally stable particle trajectories. This property is explained by the anisotropy of the medium in

a comoving reference frame. The functions of acceleration, focusing, and bunching of particles can thus

be performed simultaneously by a single optical beam that is guided in a lens waveguide.

PACS number(s): 41.75.Ak

I. INTRODUCTION

In a conventional radio-frequency linear particle ac-
celerator (linac), charged particles are accelerated by the
longitudinal electric field in a TM mode of a traveling
waveguide. This concept was proposed in 1924 by Ising
(See Ref. [1]). Since the invention of the laser, a number
of methods for using it to accelerate particles have been
proposed. The first to suggest the application of a laser
in this way was probably Shimoda [2]. (The inverse
effect, which is the production of radiation by stimulated
emission in a particle beam, involved the use of periodic
structures, as in the Smith-Purcell [3] and free-electron
lasers [4]). More recently, a number of accelerator pro-
posals have been suggested, such as that based on the in-
verse Smith-Purcell effect [5], inverse Cerenkov radiation
[6], inverse free-electron laser [7], laser-plasma interac-
tion [8], and the use of focused laser beams [9]. All of
these have problems that make experimental realization
difficult.

The laser accelerator scheme discussed here is based on
the idea of a focused laser beam described in Refs.
[10,11]. It differs from the method proposed in Ref. [9],
in which the particle traverses the Gaussian laser beam at
an oblique angle, in that the acceleration takes place only
by the action of the longitudinal electric field, the motion
being along the beam axis. This scheme has several ad-
vantages based on the linearity of the particle trajec-
tories: (a) the energy loss to radiation is negligible, (b) the
interaction length can be extended so that lower field
strength is needed for achieving a given gain, and (c) gas
"loading" [12] of the linac for phase-matching purposes
is a practical possibility. The existence of the longitudi-
nal field in a focused beam can be understood by expan-
sion of the beam mode in traveling plane waves, of which
all, except for the plane wave propagating parallel to the
axis, have a nonvanishing longitudinal field component.

An estimate of the magnitude of this longitudinal corn-
ponent of the beam is obtained by integrating Gauss's law

along the propagation axis z, yielding

E, = —J V, E,dz, (la)

l=—V E
k

(lb)

(lc)

where Eq. (lb) applies in the paraxial-ray approximation
and Eq. (lc) gives an order of magnitude estimate in

terms of the beam width w. The form of Eq. (lc) indi-

cates, by the presence of w as a divisor, that acceleration
is greatest at the beam focus. We shall therefore intro-
duce the "energy gain per focal passage, "or GFP, which
in the case of vacuum propagation will be denoted
VGFP. To avoid ambiguity, it will be understood that
these terms are meant to be the maximum available ener-

gy gain of a particle that is accelerated through the cen-
tral acceleration region centered on focus. In either case,
this quantity is proportional to the square root of the
laser power, the other parameters assumed fixed.

Equation (lc) also shows that the transverse- and
longitudinal-field components are in phase for a beam
that is symmetric in the field as the fundamental Gauss-
ian mode, and they are 90 out of phase for an asym-
metric beam, as the Hermite-Gaussian mode of order
(1,0). Hence, it is generally not possible to both have net
acceleration and focusing of particle beams in the case of
the latter. The exception is when, through graded load-

ing, the phase is held constant (Sec. III).
The phase velocity of a plane wave propagating at an

angle 0 with the z axis equals c/(n cosO), where n is the
refractive index of the medium. Hence, a particle moving
with velocity v along the z axis will slip out of phase with

the wave unless v equals the phase velocity of the wave.
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This requires that n satisfies the synchronization, or
Cherenkov condition

Cn=
v cosa

(2)

For this reason the acceleration mechanism is sometimes
called the inverse Cherenkov effect [13]. In a laser beam
the phase velocity varies in the direction of propagation,
as well as transversely. The use of a spatially varying in-
dex would therefore be advantageous, although it is not
known at present if that is achievable.

The energy gradient of conventional rf linear accelera-
tors is typically about 1 MeV/m. For comparison, a
VGFP of 31 MeV is predicted feasible [14] for a radially
polarized 1-TW Gaussian beam, and well over 1 GeV in a
gas-loaded "diffraction-free" beam [15] accelerator. In
order to optimize the gain, the accelerator must meet a
number of requirements. The most important of these
are (1) the injection of particles (most likely electrons)
must be synchronized to the phase of the field at its op-
timum value by prebunching and control of the injection
time, (2) the phase velocity of the field, and possibly the
pulse velocity as well, should approximate the particle ve-
locity, which, as discussed above, is achieved by "load-
ing" the accelerator with a dispersive gas or vapor, (3)
losses of the beam should be sufficiently low and the beam
quality be maintained so as to permit its reuse as an ac-
celerator, e.g., in a lens waveguide or ring-cavity
configuration, and (4) the interaction distance must be
long enough that drift tubes or other hardware used to
inject or remove electrons into or from the field are not
located in regions of high field intensity.

The achievement of the above requirements depends
largely on the degree to which certain technical obstacles
can be overcome. Gas loading of the linac will resolve
some issues, but also introduce other problems. For ex-
ample, efficient energy transfer is possible in a vacuum
linac using a tightly focused beam, but the interaction
distances are typically short, requiring short gap dis-
tances between drift tubes. The gas-loaded linac, on the
other hand, can yield significant gain increase and much
longer interaction lengths, although requiring an injec-
tion energy that is approximately twice as great as that in
a vacuum linac operated at the same wavelength. The
loaded accelerator also permits matching of phase and
particle velocities well below the speed of light, yielding
arbitrarily low kinetic injection energy. However, to be
able to perform this last maneuver, one must be able to

I

grade the refractive index of the medium in the direction
of the axis, at least in the case of the Gaussian beam. A
more serious problem is that the presence of the gas irn-

poses upper limits on the field strength, as determined by
ionization, and the gas density is absorption —and
collision —limited. Finally, there are problems due to the
heating of the gas, and nonlinear properties such as self-
focusing. These problems are minimized by decreasing
the focusing strength and increasing the injection energy.

In this paper we discuss the properties of the linearly
polarized Hermite-Gaussian beam of order (1,0), which
has an on-axis maximum of the longitudinal electric field
and vanishing transverse field there. Expressions for the
GFP are derived for the vacuum linac and the two types
of gas-loaded devices. In the gas-loaded accelerator we
calculate the gain for interaction in the central accelera-
tion region and for the entire beam length. Expressions
for the best constant gas index and the functional form of
the best graded index are derived. The principal parame-
ters to be determined are the energy gain and the interac-
tion length, both of which should be as large as possible,
and the minimum injection energy, which is preferably
low. The longitudinal and transverse stabilities of the
particle trajectories are also discussed in each case. In a
succeeding paper, these calculations are carried out for
the "diffraction-free" beam pioneered by Durnin, Micelli,
and Eberly [15).

II. ASYMMETRIC VACUUM HERMITE-GAUSSIAN
BEAM LINAC

A. Energy gain in single focal passage (VGFP)

The Gaussian beam has the advantage over other beam
geometries in that it usually constitutes the fundamental
laser mode, and therefore is generally available. It has
other useful properties, such as it can be brought to a
tight focus and it remains Gaussian when transmitted by
lenses or rejected by spherical mirrors. The latter prop-
erty makes it useful for application in lens waveguides,
or, generally, whenever beam recovery is required. The
lowest-order Hermite-Gaussian mode, i.e., the fundamen-
tal Gaussian beam, is not suitable for particle accelera-
tion, as it does not have a maximum on the axis in the
longitudinal field. On the other hand, the plane polar-
ized, Hermite-Gaussian TM 1,0 mode has its maximum
value of the longitudinal field on the axis. The expres-
sion for this mode is [16]

E„(x,y, z, t) =— 4wpEp I

x exp i kz tot+ p(z)(x +—y ) 2$—(z)—
&2m w(z) 2

(3)

In this paper the convention is adhered to that the physi-
cal field is given by the real part of the complex function.
The normalization constants in Eq. (3) were chosen so
that the expression for the laser power has a simple form,
and the negative sign was chosen in order to simplify the
force equations (where the constant of charge e is defined
positive). The constant k =2m/k=ei/c, in Eq (3), is the.

I

wave vector of the light defined in terms of the wave-
length A, , or the angular frequency co. The complex func-
tion p(z) is the beam parameter defined by

p(z) = 1
(4a)

z 1z
q

where z is the Rayleigh length of the Gaussian beam.
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The beam width iv (z) is given by

z2
w(z) =wo 1+

Zq

and the diffractive phase P(z) is

(4b)

8'o =2e P
ATE pc

Oz q
(8)

in Appendix A. The gain attains a maximum value when

z, =z, in agreement with the conclusion of the previous

paragraph, given by

ztang=-
Zq

(4c)

The beam width iv (z) is the radius at which E„ is a max-
imum. The radius of the beam at the focus, or beam
waist wo, is related to zq by zq

=
—,'kw p. The on-axis longi-

tudinal electric-field component is found by Eq. (1) to be

E, (0,0,z, t) =— 4iE z
irtt(, z, t)

i/2nktvo z +z

where P(z) =P' —2$(z) is the on-axis phase, and P' is the
phase of a plane wave propagating in the z direction:
P'=kz tot+$0—, where a constant $0 has been added.
The on-axis phase velocity of the wave is obtained by set-
ting dP=O, yielding

b,P'=kL tuL/v —. (9)

Assuming b,P'=0. 5 rad, and using the relation between v

and the Lorentz factor y, valid when P= u /c ~ 1

where P= ,'eoc—ivoEO is the total beam power. Taking

P =1 TW, as a numerical example, we have Wo =22
MeV.

The VGFP will fall short of that predicted by Eq. (8)
unless the injection energy is sufficient to assure that
phase slippage is small. We obtain a rough estimate of
this energy in the following way. Let the velocity of the
particle be v, and assume that its magnitude changes little
over the interaction length L. The change in the phase P'

is then given approximately by

COvo(z)=, =tv
k —2g'

2Zqk-
Z2+Z2

q

y =2(1 f3), — (10)

we obtain from (9) and (10) for the minimum value of y
the expression

Note that vo(z) & c, and at the focus, where uo is largest,
vo(0) =c (1+2/kz ), to first order in 1/kz . The z
dependence of vo is a consequence of the diffraction of
the Hermite-Gaussian beam. It is an undesirable proper-
ty for particle acceleration.

The injection point and range, or path length over
which continuous acceleration or positive energy transfer
to the particle occurs, are easily determined for ultrarela-
tivistic particles [17]. Then z =et, so that P'=go yields
the largest acceleration at the beam focus when Po= —,'m.

The phase P(z) varies from vr/4 at z = ——
z~ to +rr/4 at

z =+z . The optimum point for injecting a relativistic
particle is thus at a Rayleigh length before the focus with
P=vr At z =+z. the z component of the force changes
sign, so that the interval (

—z, z ) constitutes the interac-
tion (positive acceleration) range of the particle. Note
that the phase drifts in the negative direction for any
physically allowed particle velocity, which is consistent
with the property that the phase velocity vo is greater
than the speed of light c.

The VGFP is found by taking $0= —,'m, for maximum

acceleration, and integrating, E,(0,0,z), over the interac-
tion interval (

—z, , +z, ), located symmetrically about the
focus. Using Eq. (4) for the field, this gives

Z

W~ =e f E,(0,0,z)dz
I

4eEO ~; z
2 2cos 2 z dz

2mkwp ', z +z

2 Epzz z;

z.2+z 2
i q

In the limit that z, ~ ~ the gain vanishes. This is a spe-
cial case of the Lawson-Woodward theorem [18], proved

y;„=&kL
Equation (11) differs from the minimum Lorentz factor
derived in Ref. [11]. The reason is that in [11] the beam
is implicitly assumed nondiffracting and propagates with

the phase velocity vp =c, in which case the particle can be

captured by the wave. This means, in this case, that the
phase evolves asymptotically to a final constant, which
does not occur for a diffracting beam.

Taking as a numerical example, A, = 10.6 pm and z = 1

cm, we obtain 54 MeV for the minimum injection energy
of electrons. At such a tight focus the vaporization prob-
lems of drift tubes are likely to occur. By injecting at
higher energy, say above 200 MeV, larger values of z are

permitted, but the gain remains at 22 MeV. In general,

by defocusing the problems associated with high field

magnitudes are alleviated, but the price is that higher in-

jection energy is required while the gain remains the
same.

A fortunate feature of the rough result of Eq. (11) is

that y;„ is independent of the mass of the particle, un-

like the result of Ref. [11]where it is directly proportion-
al to the mass. Hence, for Hermite-Gaussian accelera-

tors, at least, it appears to be not much more difficult to
accelerate protons than electrons.

B. Stability of particle trajectories
in vacuum Gaussian beam

The conditions for the transverse stability of the parti-

cle trajectory in the plane-polarized Hermite-Gaussian

beam are discussed in Refs. [11] and [14]. Here we ex-

tend the analysis of [11] to include diffractive effects of
the beam. The force acting on the particle consists of
both the electric and magnetic fields' contributions. Thus

the components in rectangular coordinates are
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B„= pE—,' '(0, 0,z, t)y,
CO

B = — (—ik+p)E,' '(0, 0,z, t)x,k . (0)

(12a)

(12b)

where E,' ' is the zero-order longitudinal field, without
diffractive correction, as given in Eq. (5). A proof of Eqs.
(12), and a demonstration of their self-consistency, is
given in Appendix B. A diffractive correction to E,' ' is
also derived in Appendix B. This leads to the following
equations for the transverse force components:

zq /k eEo,z2

z +z z +z
qq

eEo,z
+p

2

'
z xzsinp,(z+z )

(13a)

F„=e(E„+vB, v—„B ), F =e(E +v,B, v—„B,), and
F„=e(E,+v»B„v—„B»). We are now only interested in
particles whose trajectories lie sufficiently close to the z
axis that terms of higher order than the first in the x and
y coordinates are negligible. In this approximation
B„=O, and the remaining magnetic-field components are
given by

The slowly varying function of Z, z(Z), is the ratio of the
VGFP in the relativistic limit, given in Eq. (8) to the par-
ticle energy at Z, or,

Wo
~(Z}=

y(Z)mac'
(18)

3 —Z2
K, (Z) = —a(Z)Z

(1+Z )
(19)

The presence of the damping term is related to the fact
that as the transverse velocity is increased, so does the
energy in the rest frame, and therefore the relativistic
mass increases also. This mass increase appears as a
resistance to the motion, to first order, in the form of a
linear damping constant.

Note that the second term inside the brackets in Eq.
(17a) is negligibly small unless the energy is at least that
satisfying Eq. (11},where L is of the order of z . Hence-
forth, in this paper, the terminology "ultra-relativistic
limit" will mean that p~l, and y ~ y;„, where y;„ is
defined in Eq. (11). An exception is in Sec. III B, where
there is no lower bound on the injection energy.

In the ultrarelativistic limit, K and It' both approach
the same expression, given by

eEO, Z
2

F» =P(z sinP+z cosP) y,(z2+z2}2
(13b)

The spatial dependence of the Lorentz factor, y(Z), can
be found in the same approximation. From Eq. (5) we

obtain

where v =cp denotes the z component of the particle ve-
locity.

The equations of motion in the transverse direction are
obtained from the relativistic equation of motion and
Eqs. (13). We assume that the particle is injected near the
point z= —z on the axis with energy y,„mac . Since
P' =0, P =m. /2 —2$(z). Equating the force to the time
rate-of-change of momentum, introducing the energy
gained by a particle propagating along the axis
Wag =eEo,zq and, finally, the dimensionless coordinates,
defined by

)
og 1+Z

1+Z
(20)

subject to Z;„=—1. The Lorentz factor y(Z) can be ap-
proximated by its input value, as a first approximation, so
that z(Z), also, is slowly varying. The magnitudes of the
independent terms in Eqs. (15) and (16) are typically in
the range of 0.1 to 1. Thus all terms are potentially im-
portant.

The stability properties of Eq. (15) are summarized by
the requirement that I (Z) and E,(Z) are both positive.

x y
7 7

Zq Zq

zZ ——
7

Zq
(14)

d2 ~ + r(Z) "~ +re (Zg =0,
dz2 dz

where the damping constant I (Z) is given by

1 —ZI(Z)=i~(Z)
(1+Z )

(15)

(16)

and E represents a diagonal spring-constant matrix hav-
ing components in the x and y directions, given by

we obtain the following damped harmonic-oscillator
equation with "time"-dependent damping and spring
constants

I-
X
I-
CO
Z0
O 0-
U
Z
K
CL
M

-1
-1.0 -0.5

I

0.0
Z

0.5 1.0

3—Z2
K» = —P~(Z)Z

(1+Z )
(17b)

I

3 —Z (1— )K = —a(Z)Z P —3kz, (17a)(1+Z ) (1+Z )

FIG. 1. The dimensionless normalized "spring constant"
Kt(Z)/sc(Z) for the transverse force acting on an ultrarelativis-
tic particle traveling near the axis of a vacuum TM& 0 Hermite-
Gaussian accelerator, where Z=z/zq and zq is the Rayleigh
length. The function a.(Z) is nearly constant.
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The condition on I (Z} is always satisfied in acceleration
regions, since I (Z) is proportional to E, . The propor-
tionality to E, is fortuitous, especially for the gas-loaded
accelerator, in which acceleration can occur far beyond
the Rayleigh distance from the focus. The spring con-
stant K, is plotted in Fig. 1. It changes sign at the focus,
implying that the transverse force is towards the axis
when Z(0 and away from it when Z)0. We cannot,
therefore, speak of overall stability, the more so because
both negative- and positive-Z ranges must be utilized.
Useful trajectories necessarily have initial values of posi-
tion and angle close to those of an axially propagating
particle.

The longitudinal stability, or the property of the phase
of the longitudinal force to remain constant, is likewise
affected by the phase drift in the case of the vacuum
Gaussian beam accelerator. These stability properties are
not significantly affected by the use of a gas, unless this is
of the graded index type to be discussed.

III. GAS-LOADED LINAC

A. Uniformly gas-loaded accelerator

8'g =eE,o 2 2
cos nkz —cot —2 z dz,

z +z

where we took go=sr/2 for maximum acceleration at
z =ct =0, and n is the index of refraction. For a relativ-
istic particle t =z/c, and t =z/v serves as an approxima-
tion in which the particle velocity v is approximated by
its value at injection. This ignores the effect of the field
on the particle trajectory, so that we are treating with a
version of the Born approximation. Using Eq. (8), and
changing the integration variable to g, the above expres-
sion simplifies to

W~
= Wo f cosQ dg,g Og

(22)

A rare gas has been used already in free-electron lasers
[19,20] for phase-matching purposes. Consider first the
case of a uniform medium. Since the phase velocity of
the Hermite-Gaussian beam decreases monotonically
with longitudinal distance from the focus, it is not possi-
ble to obtain a perfect match with the particle velocity
except, at most, two isolated points. The question is thus
whether to match at the focus, where the field is strong-
est, or at some distance from it.

For an axially propagating particle there are three im-

portant parameters: the GFP, the interaction length, and
the minimum injection energy. The first two can be ob-
tained from the expression for the energy gain in the rela-
tivistic limit, while the third is more correctly determined
if electron dynamics are considered. The interaction
range, which is defined as being the distance over which
continuous acceleration takes place, is larger than the
vacuum value of 2z . On the other hand, net gain is now

also achieved over the ful/ length of the beam.
Let us first consider acceleration only over the interac-

tion length, as defined above. The starting point is the
general expression for the gain

where Q =5 tang —2g, and 5=(n —c/U)kz . Equation
(12) assumes a maximum value if the force changes sign
at the limits of integration, or at these points

Q(g;)=+(N+ —')~, i =1,2, N=0, 1,2, . . . . (23)

Denoting the limits of the central acceleration region
(N =0) by +g&, we have

+m.
5 tang& —

2g& = (24)

Equation (24) gives the interaction length as function of n

by means of the substitution tang, =z, /z2, where —z, is

the input coordinate. If 5(5&, then the negative (posi-
tive) sign in Eq. (24) corresponds to the lower (upper} lim-

it of integration, and if 5) 50 this identification is re-

versed. The value of 5o is obtained by solution of

'1/ 50( 2 —50)—2 cos '+50/2+ —=0, (25)

which yields 5o=0.33. A possible value of n is obtained

by arguing that W~ is large if dQ/dg=0 at the focus.
The solution for n is then

c 2n= —=
v kzq

(26)

—z =z =1.86z
1 2 '

q

The corresponding GFP, in the limit v ~c, is

~g ~og cos 2 tan —2 d—1.08

=1.98 o

(27)

(28)

The injection coordinate z, and 8' are plotted as func-

tions of n in Figs. 2(a) and 2(b). The maximum gain
occurs at the value of n given by

c 1n= —+
U kzq

(29)

which falls, for v~c, just halfway between its vacuum

value, n =1, and that given in Eq. (26). With this value

of n the phase velocity equals c at a Rayleigh length from
the focus. The corresponding GFP is given by

8' =2.48'o

and the injection point is

z1 =4.25z

(30)

(31)

Both the gain and the interaction length constitute a con-

siderable increase over the vacuum values.
The "switchover" point, determined by 6=0.33, is also

interesting. Figure 2 shows that there is a jump discon-

tinuity here in both the distance from focus of the injec-
tion point and the GFP. The gain at this value of 6 con-

stitutes only a modest improvement over the vacuum

This index value does not yield the maximum GFP, but it
is the value that results in equal particle and phase veloci-
ties at the beam focus, to first order in 1/kz . Using Eq.
(23), the numerical solution of Eq. (24) yields for the in-

jection and extraction coordinates the solution
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Thus the question of possibly prolonging the interac-
tion, although not necessarily with additional gain, is of
considerable interest. Suppose that the particle is al-
lowed to interact with the infinite length of beam. It is
shown in Appendix A that a net transfer of energy occurs
in the presence of a gas, although not in the vacuum.
The solution of Eq. (22) yields in the limit z& ~ oo for the
energy transferred to the particle, the simple result

be™ 2~ye
—5~

Og

This expression has a maximum when 5=1, given by

31 g/

(34)

(35)

which is only slightly less than the gain for the finite in-

teraction length at the same index value, given in Eq.
(30). On the other hand, we have the significant advan-

tage of the present configuration in that it allows arbi-
trarily wide spacing of lenses and drift tubes. Specifically,
the drift tubes can be eliminated entirely, resolving the
heat damage problem of the vacuum accelerator. Com-
puter integration of the relativistic equation of motion,
for 6=1, over interaction lengths up to 20 Rayleigh
lengths on each side of focus, have shown that the
minimum-injection energy is roughly the same as that
found for the central acceleration region. One can ex-
plain this by recognizing that what happens to the parti-
cle before it reaches the focal region is not too important,
provided it arrives there with enough energy and the
right phase, due to the rapid decline of the field strength
according to 1/z in the gas-loaded linac.

Summarizing this section, in a linac of length just equal
to the range of positive acceleration, a uniformly loaded
beam yields an improvement factor of about 2 over the
vacuum beam if the index n is chosen so that the phase
velocity of light equals exactly c at the beam focus, and
an improvement factor of 2.4 is obtained if the phase ve-

locity in the presence of the gas at focus falls halfway be-
tween c and the vacuum phase velocity at the focus. In

0 500 1000
INJECTION ENERGY (Lorentz Factor}

FIG. 4. The energy gain of electrons moving along the beam
axis as a function of the Lorentz factor y=1/(1 —U'/c')' ' at
injection, where U is the electron velocity. The curves corre-
spond to different values of gas index, where the corresponding
value of 5 is indicated. The Rayleigh length z =0. 1 m, the

beam power P = 1 TW.

the former case the interaction length is 3.72z, and in

the latter is 8.5z . Nevertheless, since the beam radius at
the extremes of the trajectory is still only a factor of
about three times the radius at the focus, the vaporiza-
tion problem of drift tubes remains without a satisfactory
solution at this point.

Acceleration over the entire beam length, yielding a net
improvement factor of 2.31 over energy gain of the vacu-
um linac and with minimum injection energy being ap-
proximately that for acceleration over the central ac-
celeration region (N=0), has been found possible, resolv-

ing the drift-tube problem. The important question of
beam stability in these cases will be taken up in Sec.
III D 1.

B. Optimally graded-index accelerator

n(z)= +2/'(z)lk .
v (z)

(37)

This states that the particle velocity equals the phase ve-

locity in the medium's presence.
Using Eq. (5), we find the energy at z of a particle in-

It is possible, in principle, for a traveling wave to "cap-
ture" a fraction of the particles that are characterized by
common energy and phase. This is achieved by varying
the phase velocity in such a way that at each point of the
trajectory it just equals the velocity of a representative
particle. Thus, for a relativistic particle beam a medium
of index n0(z)=c/v0(z) is required. Such index grading

may possibly be realized by flowing a gas through a tube
that is heated at the ends. Alternatively, the index of the

gas could be controlled optically, through saturation by
resonant absorption of photons from a laser beam.

For a subrelativistic particle, the gas index must be
graded more steeply in order to make the field accom-

pany the slower particle. In principle, it would be possi-
ble in this way to accelerate a particle starting from rest,
so that the concept of minimum injection energy is no

longer valid as an imposed condition. A second advan-

tage is that the interaction length of the captured parti-
cles would also be arbitrarily large in such an ideal medi-

um, an advantage shared by the constant-index medium
accelerator. And finally, we shall find that the stability
properties are more favorable than in the constant-index
case.

We determine the refractive index function n (z) for
which the phase slippage will be zero, given the injection
characteristics of a reference particle. The solution is a

function of the beam geometry, which in turn generally
depends on n (z). We make the simplifying assumptions

that n is close to unity and slowly varying. The latter
condition is equivalent to the inequality g«1, where

g=eE, /mocha. Then the principal effect of the varying

index will be on the z dependence of the phase P, which is

now given by

P(z) =k f n (P')dz' —2$(z) tvt . —(36)

Differentiating P with respect to time, and using

dzldt=v, we obtain for the condition that /=const at
the coordinate following the particle:
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jected at z;„with energy y;„mpc,

y( )=y;„+,[Q(z) —1((;„)].
8'p

mpc

1B = ——
y c

2
Zq z sing ~oz znk+ cosP+ 2

x .
z +z z +zq z +zq

(41)

Some insight is gained from the expansion of n (z) to first
order about the origin. Defining the velocity U(0), the
normahzed field ii(0), and the Lorentz factor y(0) at the
focus, we obtain

The force in the x direction becomes accordingly

UZq /M Ep ZqI'„=—ek 1 nP— x cosP
z +z z2+z

q q

n(z)= +c 2
UO kz

(39) eEp, z 2

+ep zx sing,
( 2+ 2)2

(42)

The peak refractive index n (0) and its first derivative in-
crease with increasing sharpness of focusing and decreas-
ing injection energy. The gradient is also proportional to
the field strength. This is expected because as the
particle's velocity increases the difference with the phase
velocity of the beam decreases, hence the negative sign of
the third term on the right-hand side. E„=—tt(Z) ~ 5+ 1

1+Z
2Z cos5Z —(1—Z )sin5Z

(1+Z )

while the y component is obtained from F, by replacing
the term 1 np insi—de the square brackets by zero. The
expression in the ultrarelativistic limit for the spring con-
stant I( is then given by

C. Energy gain in graded-index medium

For optimum n (z) the maxiinurn transfer of energy is
obtained by integrating the longitudinal electric-field am-
plitude from z = —~ to + ~. The phase P is now a con-
stant. The result of the integration is

' —1/2

W =2e sing .
m.P

(40)
GpC

Note that W '(P=m/2)=m. Was. The principal advan-
tage of this type of gas-loaded Gaussian beam linac, how-
ever, is that lower injection energy is possible, and we
shall also see that it has transverse-focusing and particle-
bunching properties. In any case, the former property al-
ready permits the spacing of drift tubes to be arbitrarily
large, and it is even possible to do without them com-
pletely.

D. Stability of particle trajectories in gas-loaded
Gaussian beam

The stability of the particle beam must be reexamined
when a gas is present in view of the fact that the on-axis
phase velocity of the optical beam can now be smaller
than the particle velocity. This causes reversals in the
sign of force components, in the transverse directions as
well as in the longitudinal direction. One effect of this
was, as was seen, to increase the interaction length. A
second effect is that the transverse force components that
canceled in the ultrarelativistic limit now no longer can-
cel, which has important implications for the stability of
the particle beam. The cases of uniform and graded gas
loading are discussed individually below.

1. Constant-index accelerator

In the presence of a medium of refractive index n, B„ is
modified by replacing k by nk in Eq. (12b) and the phase

Substituting Eq. (5) for E, on the axis yields then

(1—Z )cos5Z+2Z sin5Z

(1+Z )
(43)

2. Optimally graded index: Transverse stability
ofparticle motion

If the medium is described by a graded refractive index
of the form discussed above, the possibility exists that the
particle motion is stable with respect to a small longitudi-
nal displacement from a comoving equilibrium point.
The reference particle propagates along the axis with the
varying phase velocity Uo(z). We consider the stability of
its trajectory with respect to small displacements in both
the transverse and longitudinal directions. Since these
motions are separable to first order in the displacement,
we consider them individually, beginning with the trans-
verse. The expressions for the force components derived
in the preceding section are valid here as well, with n be-
ing the given function of z, derived above, and the phase
P equal to a constant along the equilibrium trajectory.
Assuming the Born approximation, for which

and K is now obtained by replacing 5 inside the first pair
of square brackets with zero. The damping constant I is
the same as before, given in Eq. (16).

In Figs. 5(a) —5(c) we see the spring constants as func-
tions of position for three values of 5. Since both are odd
functions of Z there is no focusing tendency, in accor-
dance with the comment below Eq. (1):particles leave the
focal region making the same angle with the axis as they
had entering the focal region. In the case of a weak field,
at least for 5 1, there is a net contraction of a beam of
such particles, due to the sign reversal of the spring con-
stant from positive before the focus to negative after it.
The contraction is caused by the inertia of the particles,
which gain a component of velocity towards the axis in
the attractive field before the focus. This transverse
momentum is overcome by the repulsive force past the
focus, but not without leaving a net displacement towards
the axis. The here described effect of beam collimation is
certainly favorable [14],and could find useful application.
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and the damping constant

1 (Z) = sing,
a.(Z)
I+Z (46)

E. Longitudinal stabilityof trajectories: particlebunching

where Z can have any value in the range —Do to + ~
and P can have any fixed value between 0 and m for posi-
tive acceleration. Consider three values of P as examples.
When /=0 then both K„and K are negative for all
values of Z, indicating repulsion from the axis. At the
phase angle of maximum acceleration, P= —,'m, both K„
and K~ are positive for Z (0 and negative for Z &0. Fi-
nally, as P approaches a, both transverse coordinates are
stable for all values of Z.
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Bunching of particles occurs in a loaded laser linac
with graded index if the particles are attracted to stable
equilibrium points. We investigate here the conditions
under which this may occur. The equation for the energy
gain per unit time is

=krl(z(t) )sing(z(t)),
l dy
U dt

(47)

1 dy 1 d'Yo Yo d'Yo Yo d5u
v dt uo dt c dt c dt

Similarly, expansion of the right-hand side yields

k g(z)sing(z) =k qpsinPo

8 'go+k singpcosgp5$
dz

(4g)

(49)

where

where g(z(t))=e8, (z(t))/mocco is the dimensionless
longitudinal electric field, 6', being defined by
E(z(t))sing(z(t)). Assume that the motion of the parti-
cle under consideration deviates slightly from the equilib-
rium trajectory zp(r). Thus let z(t)=zp(t)+5z(t) and
likewise for the velocity v (t) =up(t)+5v(t), where uo(t) is
the velocity of the equilibrium point. The left-hand side
of Eq. (42), after expansion to first order in 5u, becomes

FIG. 5. The dimensionless normalized spring constants
K„(Z)/~(Z) and E~(Z)/~(Z) in the transverse directions paral-
lel and perpendicular, respectively, to the direction of polariza-
tion of the plane-polarized Hermite-Gauss beam; (a) 5=0.35,
(b) 5= 1, (c) 5=2.

= [kn (zp )
—2'�'(zo ) ]5z

5z=k5z .
Uo

(50)

n (z) =vo(z)/u (z), so that to first order in 1/kz

2/kz
1 —n

1+Z2

we obtain different spring constants in the x and y direc-
tions, given by

d2"~+r,(Z, )
"~ +K,(Z, )g=o, (51}

Combining Eqs. (42) and (43) with (41), we obtain to first
order in 5z another damped oscillator equation,

Z 3cosp+ZsinpK = —~Z
(1+Z )

(45a)
where Zo =zo/z and $=5z/z . The damping and spring
constants are given by

~ (Z}cosp+Z sing

(1+Z )
(45b)

and

I,(zo ) =3~( Zp )sinPp/(Zp + 1), (52}
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y(ZO)
K,(ZO)= — kz cosgoK(ZO),

Zo'+1
(53)

respectively. The term in the spatial derivative of the
field was omitted, being of the order of 1/kz compared
to the remaining term.

The function K, is plotted in Fig. 6(b). The stability
condition reduces to the simple requirement on the phase
angle: cosg&0. In Sec. IIID2 it was found that if
P& —,'m, E and E are also positive for at least Z (0, so
that the particle beam is stable in all three dimensions
over the distance that these conditions are satisfied. As P
approaches ~ the range of complete stability approaches
the entire length of the beam. The price is that the longi-
tudinal force also approaches zero.

It may be objected that the property of three-
dimensional stability contradicts Earnshaw's theorem
[21] of electrostatics, which applies in a reference frame
that is comoving with the field's phase. Earnshaw's
theorem states that a system of electric charges cannot
exist in stable equilibrium under the influence of static
electric fields alone. That this theorem does not automat-
ically apply to the present situation follows from the fact
that the mere existence of dielectric media also requires
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FIG. 6. The normalized spring constants in dimensionless
units in the transverse x,y and longitudinal z directions for a
beam with graded index n(z). The phase angle /=135', (a}
spring constants in the transverse directions, (b) in the longitu-
dinal direction.

the existence of nonelectrostatic forces. Specifically, we
note that the velocity of light in the comoving frame is
not isotropic, but depends on the direction of propaga-
tion. Therefore, we must have V.EWO in that frame.
Arguments based on the presence of the quasistatic mag-
netic field, and the fact that the medium is a spatially and
temporally varying dielectric in the moving frame, are ir-
relevant, as the true cause is the one given.

The stability of the particle beam is limited by the fact
that the laser field is concentrated in the focal region, and
away from it decays as the inverse square power of the
distance. The decay of transverse forces is even faster:
they decay as the inverse fourth power. In the vacuum
and uniformly loaded (of constant index) cases, a particle
will leave the focal region at the same angle as it entered.
A particle that is initially parallel to the axis will there-
fore remain parallel upon leaving the focal region, pro-
vided the net deflections in the negative- and positive-Z
region are small. We may speak of "stability" in these
cases. In the graded-index case net focusing or defocus-
ing exists. However, if the conclusion of stability were
warranted in the case of net attraction towards the axis,
following the conventional definition of stability, then the
particle would execute damped oscillations about the
axis. Instead, the transverse component of momentum
gained by the particle upon passage of the laser focus is
too large to be reversed by the rapidly weakening trans-
verse force, so that while being attracted to the axis, the
particle bypasses and then moves perpetually away from
it. Thus instead of being "stable" we should consider this
situation as being "unstable. " On the other hand, the
particle beam can be recollimated if the optical beam is
refocused, provided that the lateral displacement of the
particles is still smaller than the half-width w(z) of the
optical beam. In this case, of the graded-index accelera-
tor, it is useful to make a Gaussian optics analogy for the
particle beam, and to treat the focal regions of the optical
beam as if they were thin lenses for the particle beam, at
least to a first approximation.

Further justification for this point of view is obtained
from calculating the transverse deflection in the Born ap-
proximation. If we assume that the condition of paraxial
incidence is satisfied as well, then the connection to
Gaussian optics can be made. The focal distances of the
particle trajectories, f„f», and f„are then derived by
integrating the corresponding spring constants K„EV,
and I(:, over the entire Z range. Neglecting the Z depen-
dence of ~ and y, we find

+ oo

z If„=J K (Z)dZ = —
—,
'n.K cos(t, (54a)

1 zq
z If =— = ——'r»Kcosg9' v 3 2

X

(54b)

zzlf„= f K, (Z)dZ= —2rry kz Kcosf . (54c)

These equations show that in the present situation the op-
tical beam is capable of both focusing and defocusing the
particle beatn, depending on the phase P. The magni-
tudes of f, f, and f, are likewise controlled by ((}. In
case that it should be necessary for the focal lengths in
the x and y directions to be equal, then this can be ac-
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complished with a radially polarized laser beam, as dis-
cussed in Sec. V. Moreover, we note that the focal dis-
tance for bunching also approximately equals the focal
lengths in the transverse directions when the energy is in
the neighborhood of that given in Eq. (11), i.e., when
y=Qkz . The importance of all this certainly is in the
construction of a lens waveguide accelerator, as proposed
in Ref. [10]. In addition to demonstrating the possibility
of the concept, we have extended it by showing that while
the lenses guide the optical beam, the focal regions of the
beam function as lenses for the particle beam in the usual
sense, and finally, also bunch the particles.

IV. RADIALLY POLARIZED HERMITE-GAUSSIAN
LINAC

CL

O

O
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A radially polarized beam can be constructed by super-
posing two plane-polarized beams of the form

E, =2 ' 8(r)xi,

E,=2 '/'8(r)yj,
(ssa)

(55b)

where r (r) is the field defined in Eq. (3) divided by x.
Then

Erad —E +E —2
—1/2@(r)r (56)

The resulting field is a radially polarized Laguerre-
Gaussian mode of order (1,0). From Eq. (lb), one has

E rad V/2E plane
Z z (57)

given equal beam powers of the two beams. Thus the
GFP is a factor of &2 greater for the radial beam.

The transverse forces corresponding to the field of Eq.
(56) are determined from those of Eqs. (55) by a 90' rota-
tion about the z axis, and the transverse force of the radi-
ally polarized field is obtained by superposition.
Defining, as in Sec. III, K

y to be the spring constants as-
sociated with small displacements from the axis in the x
and y directions in the plane-polarized beam, the corre-
sponding constants of the radially polarized beam are
given by

It. rad lt rad 2
—1/2(~

x y x y (58)

V. GAS-BREAKDOWN CONSIDERATIONS

E.
m(t i=4' 0

h

'" E E '" Ea 2 I a

E(t) 3 Eh E(t)

(59)

The complexity of the gas-breakdown process permits
at best a qualitative estimate, as it depends not only on
the nature of the gas, its pressure, the wavelength, and
pulse length, but also on the presence of impurities and
surface effects of container walls. In addition, experimen-
tal data are still lacking in this area, particularly at the
CO2 laser wavelength [13].

The probability of ionization P(t) is obtained by in-
tegrating the ionization rate w(t) The ionization . rate in
the quasistatic limit is found from dc tunneling theory
[22],

FIG. 7. The calculated ionization probability of a hydrogen
atom in the field of a Gaussian pulse E(t)=E exp( t'/r') —as
function of the normalized peak field amplitude, where E, =600
GeV/m, and ~=1 ps.

where coo=me l(4neo) fi and Eh are the frequency and
ionization potential of hydrogen, E, is the ionization po-
tential of an atom in the medium, and E, =4~E'Om e A" is
the atomic unit of the electric field. In Fig. 7 is plotted as
an example the ionization probability of a hydrogen atom
in the field of a Gaussian pulse E (t) =E exp( t lv ) as —a
function of the maximum field strength E, where ~= 1 ps.

VI. PROOF OF PRINCIPLE EXPERIMENT
AND SUMMARY

In this paper we derived the energy gain for both a vac-
uum and a gas-loaded Hermite-Gaussian laser linac. The
field near the axis of Hermite-Gauss beams is weak com-
pared to other beam geometries, yielding relatively small
energy gradients. Acceleration in the vacuum is imprac-
tical because the interaction length equals at most two
Rayleigh distances, which implies that drift tubes or oth-
er equipment must be placed in high-intensity regions of
the beam. However, the more important result is that in
a uniform density medium the interaction length is arbi-
trarily large, while the minimum injection energy is no
larger than when the interaction is restricted to the prin-
cipal (centered on focus) acceleration region, although
this is about twice that of the vacuum linac. Hence, no
drift tubes are required, and it should be possible to build
an extended laser accelerator consisting of a focusing lens
waveguide, as proposed in Ref. [10].

Another result obtained here is that the minimum in-
jection energy is directly proportional to the particle
mass, and is independent of the field strength. This op-
poses a conclusion of Ref. [11],where the injection ener-

gy was found to be proportional to the square of the mass
and inversely proportional to the field. This disagree-
ment is attributed to the difference in beam geometries
studied in the two papers. The implication is that laser
accelerators of protons will be easier to construct than
was anticipated previously.

Finally, we evaluated the stability of the particle beam,
or better, the focusing properties of the optical beam, in
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the various cases of vacuum and gas-loaded laser beams.
In the vacuum and uniformly loaded Hermite-Gauss
beams regions of transverse stability are counterbalanced
by regions of instability, thus in these cases there is no
net real focusing. On the other hand, the focusing prop-
erties of a longitudinally graded-index medium were
found to be significant. In particular, the sign and magni-
tude of the focal lengths in all three dimensions, was
found to be controlled by the phase. It is thus possible to
construct a lens waveguide that simultaneously guides
the optical and particle beams, while also acting as an ac-
celerator and bunching device for the latter.

It may also be worth repeating that the graded-index
beam requires no minimum injection energy. This prop-
erty may enhance the feasibility of low-energy and ion ac-
celerators.

A proof-of-principle experiment is simplest to perform
in a constant-index medium. Assuming a pulsed carbon
dioxide laser of peak power 1 TW and a Rayleigh range
z =5 cm, then the gas index corresponding to 5=1 is
n —1=1.5 X 10, and the minimum injection energy is
about 150 MeV. The energy gain corresponding to the
given power would be about 30 MeV in a radially polar-
ized beam. If the gas is chosen to be molecular hydrogen,
then using data from Ref. [23] we obtain about 100 Torr
for the pressure. The peak intensity of the beam is about
10' W/cm, which should be below the ionization
threshold of hydrogen if the laser pulse length is shorter
than about 20 ps [24]. For a pulse length of 1 ps, corre-
sponding to a pulse energy of 1 J, the peak field strength
amounts to 65 GeV/m. Figure 7 predicts that this is
above the ionization threshold of hydrogen. On the other
hand, experimental data [14] (at A. =10.6p) indicate that
this need not be the case. In the worst scenario, a less
strongly focused laser beam could be used, at lower gas
pressure, but requiring higher injection energy.

A design for a waveguide accelerator consists of a
series of lenses of focal length f, separated a distance D
such that D (4f, where for a sharp focus D =4f. In the
Gaussian optics approximation [16] the beam waist at the
midway points between the lenses is given by

XD 4f
2a D

1 /2 1/2

(60)

and the half-width of the beam at the location of the
lenses is

APPENDIX A: PROOF OF THE LAWSON-WOODWARD
THEOREM

According to the Lawson-Woodward theorem no net

energy can be transferred by a beam to a particle if the
interaction time is infinite. We considered a beam, for
convenience it was plane polarized in the x direction,
propagating through a medium of dielectric constant e.
The wave equation satisfied by the Fourier component at
angular frequency co

a'E, a'E. a'E.
+ +

clx Bp Bz

CO

ExX (Al)

has solutions which may be expanded in plane waves

propagating in the positive z direction, i.e.,

E„=if dk„dk k, A (k„,k )

X exp[i(k, x+k~y+k, z cot )], —(A2}

where k, =(ceo lc k„—k )' . From G—auss's law, in

the absence of free charges, the z component of the field

is given by

E, =f dk dk A (k„,k )exp[i(k„x+k y+k, z cot }]. —

Using the relation z =
—,'kteo, and Eqs. (54), applicable to

a lens guide with graded-index medium, the focal lengths
of the effective wave guide for the electrons can be deter-
rnined.

In conclusion, we list some of the most important obs-
tacles anticipated by us before a laser linac can become
operational: (1) Cherenkov and transition radiation by
electrons in passing through holes in lenses. (2} Heating
and optical saturation of the gas medium. (3) The choice
of best gas, laser source, etc. , so as to minimize collision,
absorption, and other effects. (4) What is the limit in

laser power as determined by ionization of the gas, sub-

ject to parameters such as pulse duration, pressure, wave-

length detuning from resonance, etc. (5) Is it possible,
and if so, what is the best way, to attain z-dependent in-

dex grading of the gas?
It is well to remember that some of the listed obstacles

are dependent on beam geometry. For example, obstacle
(5) is of little concern for a diffraction-free Bessel beam,
which, on the other hand, has problems peculiar to its
own geometry.

2Af
n&4f /D —1

1/2

(61)

(A3)

Consider a particle moving along the z axis with veloci-

ty c. The work done by the field between z, and z2 is

8'=e f 'E,dz=e f 'dz fdk, dk A(k„, k )exp i k„x+k y+k, z ——z
Z I Z C

iemfdk d—k A .(k„,k )exp[i(k„x+k y)]D(k„z), (A4)



6652 E. J. BOCHOVE, G. T. MOORE, AND M. O. SCULLY 46

where 2trD (k, ,)
is the result of the integration over z. If

the limits of this integral approach + ~, then
D =5( k, —co/c), and for an azimuthally symmetric beam
we obtain

Using the solution Eq. (3) of the corresponding paraxial
form of Eq. (Bl), Eq. (84) can similarly be solved, yield-
ing near the axis

E, =(i/k 2p—/k )E /x . (85)

&=Re 2tre&e 1——A (0)
C

(A5) The magnetic-field components are obtained from
Faraday's law. Thus

This vanishes for vacuum propagation, since A (0) is
finite. Note that the LW theorem is not valid in the pres-
ence of a gas.

If the field satisfies the boundary condition that
E, (x,y, O, t) is a given function of x,y, t then it is easy to
show that the function A (k„,k }, defined in Eq. (A2), is
independent of e, so that its effect is to replace co by n, co,

where n =Qe/Eo in the spatial part of the Fourier repre-
sentation of the field.

BE
B

co t}y

BE.

k=—pyE
CO

BE,
Bx

B = ——
CO

(87)

Substituting the plane-wave expansions for E and E„

8 =—f dk„dk A (k„,k )exp(iP)k, '(k —k )

E = fdk dkz A (k„,k )exp(iP), (81)

where P=k„x+k y+k, z cot, and—k, is defined as in

Appendix A. We have absorbed the factor ik, in Eq.
(A2) into the function A of the transverse-wave vector
k„,k .

This is an exact solution of the wave equation, the cor-
responding paraxial-ray approximation is obtained by ex-
pansion of k„ i.e.,

—k[I —&k ~(k2+k2}] (82)

In order to indicate that (82) has been applied to the
phase P, we write P'.

From Gauss's law, we obtain the exact expression for

APPENDIX B: DERIVATION OF E, AND B

In this appendix a derivation of Eqs. (12) is given, and
their self-consistency with Maxwell's equations demon-
strated. As in Appendix A, we make a plane-wave ex-
pansion of E,

= —f dk, dk A (k„,k )exp(iP')[k+ —,'k '(k„—k )]

1=—(k ip)E,—.
CO

(BS)

k
B,= ——pyE

CO

(810)

Note that although B, is of second order in the transverse

coordinates, its derivative with respect to y, which is

needed below, is of first order.
Lastly, we show that these solutions are consistent with

Ampere's law. Thus,

. k—i E =
N

BB,

By

BB

Bz
(811)

Using Eq. (85), we have to first order in )tt (the diffractive
contribution)

B = ——(ik+3p)xE, .k
co

Similarly, for B„we obtain

E, = —f dk„dk A (k„,k )exp(iP)k„/k, .

which in the paraxial-ray approximation becomes

(83)
Using Eq. (89), along with Eq. (4a}, we find

—1 2

Bz
=co (ik kp, )E„. — (812)

dk, dk A (k„,k )exp(iP')k,
E, =—

k[1+—,'k '(k'+k')] (84) Finally, substituting Eqs. (89) and (812) in«Eq (811»
we see that the latter is indeed satisfied to first order in p.
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