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Spherical aberrations in the thermal-wave model for luminosity estimates in particle accelerators
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An approach for estimating the luminosity in linear colliders in the presence of spherical aberrations
is developed within the framework of the recently proposed thermal-wave model for relativistic-
charged-particle-beam propagation. By taking into account a quadrupolelike lens with octupole devia-
tions, the transverse beam motion is governed by a two-dimensional Schrodinger-like equation, with an
anharmonic potential. To first order in perturbation theory and in the thin-lens approximation, we

analytically find the transverse beam density, the spot size, and the luminosity reduction factor at the in-

teraction point in terms of the initial conditions. Some numerical estimates are also given.

PACS number(s): 41.85.—p, 03.65.—w, 29.17.+w, 52.40.Mj

I. INTRODUCTION

The propagation of a relativistic-charged-particle beam
concerns a number of topics in particle accelerators and
in plasma physics [I]. The beam motion is generally
affected by the presence of the surrounding medium. As
an example, when a relativistic-charged-particle beam
passes through an optical system, as occurs in an ac-
celerating machine, a transverse electromagnetic force
acts on the particles, changing their initial trajectories in
such a way as to produce a macroscopic beam focusing,
defocusing, bending, and/or having more complicated
effects [I].

In the conventional machines these effects are pro-
duced by different devices such as bending dipoles, quad-
rupoles, sextupoles, octupoles, etc. In particular, in an
ideal quadrupole the force on the beam depends linearly
on the transverse particle coordinates (F~=xK„x
+yE~y). Other higher-multipole devices produce a force
which depends on a high-order power of the transverse
coordinates [2,3].

In plasma-based optical devices (plasma lenses [4—6]),
the expression of the transverse force is composed of a
main part, which is quadrupole-like, and a secondary
part, which is high-order-multipole-like. However, there
are some regimes in which the force is quasilinear [5].

The high-order multipole components of the transverse
force introduce the aberrations in the optical accelerator
lattice (transverse aberrations, which, when there is a cy-
1indrical symmetry, are often called spherical aberra-
tions), but usually they are only relatively small correc-
tions of the quadrupole ones.

Since the transverse-density profile of the beam is in-

volved in the transverse beam dynamics, the spherical
aberrations cause a dependence of the focal length on the
transverse density profile of the beam. This means that
the determination of the real transverse density, after
passing through an optical device, is required, because it
would be quite valuable for estimating the aberration
corrections and, consequently, the luminosity at the in-

teraction point in the colliders. Thus an analysis of
changes that occur on the transverse density profile of a

relativistic-charged-particle beam, when it propag ates
through a quadrupolelike device with small high-order
multipole corrections, is needed.

Recently a thermal wave-model for relativistic
charged particle -beam p-ropagation has been proposed [7].
It successfully recovers the usual results of the
relativistic-charged-particle-beam optics, and it seems to
be useful for describing several problems in particle ac-
celerators, such as luminosity estimates and the self-
interaction (nonlinear interaction) of the beam with the
surrounding medium (e.g. , the wake-field interaction in
conventional accelerators as well as in the current ac-
celerator scheme). In particular, this model has been suc-
cessfully applied to an ideal quadrupolelike lens in terms
of a wave description (of thermal nature) of the trans-
verse beam dynamics, with a harmoniclike potential [7].
Moreover, this wave model has also been applied to the
nonlinear beam-plasma interaction, in terms of a self-
consistent description of the interaction between the plas-
ma wake fields and the driving relativistic electron (posi-
tron) beam in a collisionless, unmagnetized, overdense
plasma [8]. Remarkably, in this framework the main re-
sults for the beam filamentation threshold and the self-
pinching equilibrium condition were reproduced and, at
the same time, the reaction of the wake field and the spa-
tial evolution of the beam were considered in a self-
consistent way [8].

In this paper we use the thermal wave model in order
to study the spherical aberration deviations to the octu-
pole order, when a relativistic-charged-particle beam
passes through an optical system, such as a quadrupole-
like lens with small octupole deviation. In Sec. II we
briefly summarize the main features of the thermal-wave
model. In Sec. III we define our problem, which is for-
mally analogous to a time-dependent quantum problem,
in terms of the so-called beam wave function (BWF),
whose squared modulus gives the transverse density
profile of the beam at any location. The aberration1ess
limit is reviewed and discussed in Sec. IV. In Sec. V, by
taking into account the spherical aberrations, we employ
the usual perturbation theory to first order in the pertur-
bative expansion, giving a solution in the thin-lens ap-
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This model has been proposed in order to describe the
dynamics of a relativistic-charged-particle beam that in-
teracts with the surrounding medium and, at the same
time, suffers the beam-emittance spreading (thermal
effect). In particular, if e is the transverse emittance of a
relativistic beam traveling along the z axis with velocity
Pc (P=1), under the action of a potential u (r, z, P) (r, z,
and P being the cylindrical coordinates), the transverse
beam dynamics is governed by the following
Schrodinger-like equation for a complex wave function
%(r,z, P), called the beam wave function [7]:

i e = ——V~%+ U(r, z)%',
8%' e
Bz 2

where V~ is the two-dimensional transverse gradient, and

( ~)
u (r, z, P)
mol'P c

(2)

mo and y=(1 —P )
' being the particle rest mass and

the relativistic gamma factor, respectively.
Let us denote by o (r, z, P) and N the transverse density

number of the beam (i.e., the number of particles per unit
transverse section) and the total number of particles, re-
spectively; thus the meaning of 4' is given by the follow-
ing relationship:

o(r, z, P) =N~+(r, z, P)~ (3)

where the following normalization for 4 has been provid-
ed:

f"dy f ~e~'r dr =1. (4)

Equation (3) means that ~%~ gives the transverse density
profile of the beam.

In general, (1) must be coupled with the field-force
equation of the system:

F,= —m, yP'c V, U = —V~u .

The pair of coupled equations (1) and (5) describes the
evolution of the particle beam, and also represents a wave
description for the charged-particle-beam optics in parax-
ial approximation, as recently pointed out [7].

Two kinds of remarkable analogies between this wave
description, on one hand, and the nonrelativistic quan-
tum mechanics and electromagnetic beam optics in par-
axial approximation, on the other hand, have been point-
ed out [7]. In the quantum analogy e and z represent
Planck's constant and time, respectively, while in the
electromagnetic analogy e and U correspond to the in-
verse of the wave number k (diffraction parameter) and
the refractive index, respectively.

Furthermore, by defining the beam radius

R(z)= f

deaf

r ~+~ r dr (6)
0 0

and the averaged total linear momentum

proximation. Finally, Sec. VI summarizes the con-
clusions.

II. A BRIEF PRESENTATION
OF THK THERMAL WAVE MODEL

1/2

P(z)= —f dg f ~V~%~ r dr
2 0 0

By introducing the radial and azimuthal components of
P, P„, and P&, respectively, defined as

P„(z)= dR
(9)

dz

P (z)=(P P)'—
we also have (for more details see [7])

PR ~P&R =const .

(10)

We observe that in general P&R ~e. According to a
well-known quantum theorem, P&R =e is possible only if
the transverse beam profile is Gaussian (the aberration-
less case discussed in Sec. IV); for any other profile,
P&R )e. As has been already pointed out, if a pure
Gaussian beam enters an optical system and at the exit it
verifies the last inequality, this means that aberrations
have occurred and the entropy of the system has been in-
creased [7]. Correspondingly, when a particle beam
enters a lens, the aberrations, which occur when the force
on the beam is anharrnonic, cause an increase of the ra-
dius at the exit with respect to the aberrationless radius
value.

Spherical aberrations play a very important role in the
luminosity estimates during the final focusing in linear
colliders. In the framework of the thermal-wave model,
we define the local luminosity (the number of events per
unit cross section and per unit time) at the interaction
point (z =z" ) for two identical colliding beams by

2'�)N2
~e(r, y, z') ~', (12)

where v is the repetition rate, X, and %2 are the beam
populations, and %(r, P,z') is the total BWF of the sys-
tem at the interaction point. In (12) the factor 2 before v
is due to the relative longitudinal motion of the two col-
liding beams, while the numerical factor 4 in the denomi-

nator accounts for the overlapping of the beam wave

functions. Consequently, the spherical aberrations can be
straightforwardly described by means of

~
4 ~, which, in

turn, is found by solving an appropriate Schrodinger-like
equation with an anharmoniclike potential U(r, z), as

done in Sec. V.

III. DEFINITION OF THE PROBLEM

We want to describe, in cylindrical symmetry, the
aberration effect when a pure Gaussian charged-particle
beam enters an optical system where an anharrnonic po-
tential U(r, z) acts on the beam, such as

U(r, z) = ,'Kr Ar, for O—~z~—1 (13)

where l is the longitudinal length of the optical system, K

an uncertainty principle, fully similar to the uncertainty
principle noted in quantum mechanics, holds [7]:

PR ~e.
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is the focusing strength of a harmonic potential (aberra-
tionless potential), and —Ar . accounts for the aberration
deviation due to a nonlinear term in the transverse force
acting on the beam ( octupole deviation of a quadrupole).

At the exit of such an optical system, the output trans-
verse beam density o(r, z &1) has to be found. We will

assume that the thermal-wave model for relativistic-
charged-particle-beam propagation is valid. This model
was synthetically described in the preceding section. We
will consider a charged-particle beam passing through an

optical system of longitudinal length I. Consequently,
while the beam is traveling along z, the potential has the
following z dependence:

and

Ro E.
2

e&K Po &KR o

Ro
X tan( ~/K z ) +

&Po

—arctan
Ro

~po

1 1 61R (2)
p(z) 2R (z} dz

P„(z)= —(2n + 1) arctan

(19)

(20)

—,'Kr —Ar for 0 z l
U(r, z)= '

0 for z&0, z) l .

(14)

(15)

In the quantum analogy, (1) can be solved with the well-
known perturbative techniques. The application limit of
the perturbation theory is discussed below.

is the curvature radius of the wave front of the BWF.
Note that in (19) we have set P„(z =0)=0.

We assign the form of the BWF at z =0 (initial condi-
tion) and then solve (16) inside the lens (z ~l). Let us
choose as an initial condition a simple Gaussian-like
beam traveling along the z axis in the positive direction.
This means

IV. ABERRATIONLESS CASE q'"(r, o)=

2

exp
2Ro 2

' exp i
2E'po

(21)

i& +' '= ——V 4' '+ —'Kr'4' ' .
2

ez 2
(16)

First of all, let us consider for simplicity the case A, =O
(unperturbed case). Outside the lens (z (0 and z &1) the
beam propagates in vacuum. In this region, the solutions
for BWF, with given initial beam radius [R (z =0)=Ro]
and wave-front curvature radius at z =0 [p(z =0)=po],
are Gaussian-like and given in [7]. On the other hand, in-

side the lens we have to solve the following equation:

where Ro and po are given. With this initial condition,
the solution for the BWF inside the lens is given by
q',"(r,z).

It is worth observing that the BWF remains Gaussian.
This property is connected to the linearity of the trans-
verse force, i.e., no distortions are introduced in the
transverse profile (aberrationless case). Moreover, by us-

ing (18) and (20) we get the values of the beam radius and
the curvature radius at the exit of the lens (z =I) in the
thin-lens approximation:

R i
=—R (z =1)=Ro,

The superscript (0) denotes A, =0. Due to the presence of
the harmonic potential U(r)= ,'Kr, the pos—sible solu-

tions for the BWF are modified with respect to the propa-
gation in vacuum, and, while remaining Gaussian-like,
they turn out to be

p =p(z =1)=p

1+2—I
Po

~po1+—+ —poKl
Po Po

(22)

4'„'(r,z}=
exp

2

2R (z) ' L„&n.R(z) " R (z)

R (z) =R
2

1cos&K z + — sin&K z
&Kp,

~
r2

X exp i exp[i/„(z)],2'(z)
where L„(x) are the norinalized Laguerre polynomials
with n =0, 1,2, 3, . . . ,

In Eq. (22), Po stands for the ratio Ro/e. Note that

~ p, ~
represents the corresponding value of the focal

length f (a negative sign for p, corresponds to a focusing
lens). Let us choose for the following, pi (0. Taking the
limit as po~ao and @~0, we easily recover the well-

known thin-lens equation [3].
Outside the lens (z &1), in vacuum (v), the BWF

remains functionally unmodified with respect to %o '(r, z),
the only difference being that the expression for the beam
radius is given by

13o (z —1 z —1)

and

2

+ sin +Kz
KRo

(18) Note that the next waist of the beam caustic (interaction
point) would be obtained by imposing the condition
(dR, /dz), =0, which gives
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z*——t+
2

(24)

By using Eqs. (17)—(20), Eq. (30) for m =0 becomes

(n~r ~0) =R (z) expI —i [(}I)„(z)—Po(z)]]

X(25„2—45„ i+25„()) . (31)

Thus, (12) gives

vNiN2
A' "= exp (25)

This allows us to compute the coefficients of the expan-
sion (28) to the first-order approximation, at the end of
the lens, in the thin-lens approximation (v'El « 1):

=2nf/i. .' '*(r,z')~+' '(r, z')~ r dr .
0

In particular, Eq. (25) gives

(, vN)Xi
4n.R '

(26)

(27)

This result recovers the effective luminosity at the in-

teraction point for two identical Gaussian beams report-
ed in [9].

V. OCTUPOLE CORRECTIONS

A. Inside the lens

where R —=R, (z =z') is the beam radius at the interac-
tion point.

It is useful to introduce the effective luminosity (aver-
aged luminosity), which is defined as

~(0)e —(A(o)e )

co(i) =1+2ir,

c, (i}=-4(r,
cz(l) =2ir,

c„(1)=0 for n )2,

(32)

where the parameter ~ is defined by the equation
r=k, lRO/e. This way, we can find the BWF at the exit of
the lens (output beam wave function}:

2

%(r, 1)= g c„(1)%(„)(r,l),
n=0

(33)

2

exp
2Ri

)II(r, l) = ' exp
v'~R) (1+242))"

p
2

2ef

with JV = g2 O~c„(l)~ =1+24' . Thus, for a thin lens,
we get

(p(r, z)= y c„(z)(p(„'(r,z),
n=0

(28)

Using the quantum notation, we now write the solu-
tions of (1), with U(r, z) given by (14) for 0 & z & l and for
A,AO, as the following expansion:

p
2

X (1+2ir}LO
Ri

2

+2EvL2
Ri

2—4i wL i
1

where )Il'„'(r,z) is the BWF of the nth mode for the un-

perturbed case (A, =O, the aberrationless case) given by
(17). Since (1) cannot be solved exactly, we apply a per-
turbation method to solve for the BWF.

By substituting the expansion (28) in (1) and following
the usual time-dependent perturbation method for quan-
tum mechanics [10], we easily get, up to first-order ap-
proximation,

2

exp
2R1 2

exp E

v nR, (1+24r')'" 2ef
r4

]+i~
R4,

(34)

The application limit of the perturbative expansion can
be easily obtained by requiring ~)(, ~R() &&1(RO/2. Thus,
by using (22), we obtain the condition ~2' /I3o} &&1.

c„(z)=5„()+ ' f '(n~r ~0)dz',
E' 0

where

(n~r ~m ) =2m f (II'„'*r )P' 'r dr .

(29)

(30)

B. Outside the lens

For z & l, the beam propagates again in vacuum and
the corresponding BWF must satisfy Eq. (1) with initial
condition represented by (34}. Thus we get

2

exp
2R (z}

'
„2

%(r,z)= — ' ', exp i +i/„(z}
'(/mR„(z)[1+24+]' 2ep„(z)

E, 2

X (1+2ir)LO
R„(z)

2—4ir exp[i2$, (z) ]L,
R„(z)

2

+2i vexp[i4$„(z) ]L2.
R„(z)

(35)
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where I

I
I I I

I
1 r r

I
I I I

I

I I I

Po
P, (z) =arctan

dR, (z)

p„(z) R, (z) dz

po (z —I )

f2 P
Po—arctan

(36)

By substituting (24) in (36), we obtain the phase P, at
the interaction point:

P,*=/, (z =z*)= —arctan (37)

Figure 1 shows the density profile at the interaction
point nR" 4. (r,z*)I, considered as a function of r/R*,
and computed for several values of r and for f /f3o=0. 5.
Note that at this point the beam is no longer purely
Gaussian, because the octupole component of the force
pushes the particles outward in such a way as to modify
the transverse-density profile.

By analogy with (26), and by using Eq. (35), we intro-
duce the effective luminosity in the presence of spherical
aberrations (A,AO) as

0'
0

I I I I I

.8

(0)e (41)

FIG. 2. Spot size vs f/Po for r=0.025 (solid line), &=0.05
(dotted line), ~=0.075 (short-dashed line), ~=0. 1 (long-dashed
line).

X*—= 2n.f A*(r,z*)
I
V(r, z*)

I
r dr,

0

where

(38)
Consequently, by using (23), (35), and (37), we obtain

bR, f /Po=8~ I+(fIPo)'
(42)

vN(N2
Ie(r, z')I'.

2
(39)

and

(f/Po)[I+5(f/Po)'+7(f/Po) +3(f/Po)')
% =1—8r

I 1+(f/Po)'I'

R z=z

00
' 1/2

2mf r I+(r, z')I r dr
0 —1 (40)

and the luminosity reduction factor

In order to estimate both the variation of the beam radius
and the variation of the effective luminosity connected
with the presence of the aberrations, we define the spot
size

(43)

The expressions (42) and (43) have been given in a way
that is consistent with a first-order approximation in per-
turbation theory.

Figures 2 and 3 plot the spot size and the luminosity
reduction factor, respectively, at the interaction point
versus (f /Po) for several values of r. We can immediate-

ly understand that the enhancement of the beam radius

I I I I

I
I I I I

I

I I I I

0 I I

0
I I

5 1.
r/R

1.5
I i I I t I I I I I I I I i I I I

.2 .4 .6 .8

FIG. 1. Beam density profile at the interaction point vs
r/R *, for f /Pa= 0.5 and r=0.025 (solid line), r=0.05 (dotted
line), r=0.075 (short-dashed line), ~=0. 1 (long-dashed line).

FIG. 3. Luminosity-reduction factor vs f/po for r=0.025
(solid line), ~=0.05 (dotted line), v.=0.075 (short-dashed line),
7.=0. 1 (long-dashed line).



SPHERICAL ABERRATIONS IN THE THERMAL-WAVE MODEL. . . 6639

and the corresponding reduction of the luminosity are
due to the displacement of a part of the total beam parti-
cles outward because of the aberrations.

VI. CONCLUSIONS

In this paper, we have presented an application of the
recently proposed thermal-wave model for relativistic-
charged-particle-beam propagation [7) to the luminosity
estimates in a linear collider when spherical aberrations
are taken into account. We have considered the propaga-
tion of a relativistic-electron beam through a thin quad-
rupolelike lens with octupole deviations. Such propaga-
tion has been described by a Schrodinger-like equation,
with an anharmonic potential well, for a complex wave
function whose squared modulus gives the transverse-
density profile of the beam. The solution of this equation
has been found starting from a pure Gaussian initial-
particle space distribution, and by following the usual
time-dependent perturbation theory of quantum mechan-
ics up to first order. Consequently, we have determined
the proper transverse space-distribution function of the
beam particles at the interaction point. Due to the pres-
ence of spherical aberrations, it results in a superposition

of the initial fundamental mode plus the first two excited
modes of the aberrationless case. This has allowed us to
calculate, for the final focusing stage of a linear collider,
both the spot size and the luminosity-reduction factor
(with respect to the aberrationless case) at the interaction
point.

We remark that, according to the perturbation theory,
our results should be considered under the condition
~2'!PO~ &&1, which guarantees the convergence of the
perturbative expansion and the reliability of the first-
order results. We stress that the theoretical approach
presented in this paper concerns a purely transverse dy-
namics. A more careful analysis of the luminosity should
also take into account chromatic aberrations, which are
considered negligible in this approach because they in-
volve the longitudinal dynamics. Thus a three-
dimensional extended thermal-wave model is needed for a
more general treatment of the aberration effects.
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