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Simple model for ablative stabilization
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We present a simple analytic model for ablative stablization of the Rayleigh-Taylor instability. In this
model the effect of ablation is to move the peak of the perturbations to the location of peak pressure.
This mechanism enhances the density-gradient stabilization, which is effective at short wavelengths, and
it also enhances the stabilization of long-wavelength perturbations due to finite shell thickness. We con-
sider the following density profile: exponential blowoff plasma with a density gradient P, followed by a
constant-density shell of thickness 6t. For perturbations of arbitrary wave number k, we present an ex-

plicit expression for the growth rate y as a function of k, p, and 5t We. find that "thick" shells defined

by p5t & 1 have y' &0 for any k, while "thin" shells defined by p5t & 1 can have y &0 for small k,
reflecting stability by proximity to the back side of the shell. We also present LAsNEx simulations that
are in good agreement with our analytic formulas.

PACS number(s): 52.35.Py, 47.20.—k, 52.40.Nk

I. INTRODUCTION AND MODEL

The suggestion that the Rayleigh-Taylor [1] (RT) insta-
bility at an ablating surface might grow at a rate y which
is smaller than the classical rate &gk was made by
Nuckolls et al. [2]. Here, g is the acceleration of a shell
driven by ablation and k is the wave number 2trllfor,
perturbations of wavelength A, . Experiments [3] per-
formed so far are consistent with this idea, showing a
reduction of about a factor of 2 from classical, though the
situation is not completely clear; questions remain on
how the quality of the laser beam affects the experimental
results and over what wavelengths the reduction below
classical is most effective [4]. On the theoretical side
several models have been proposed [5] where the ablation
velocity plays the key role. Numerical simulations [6]
have shed some light on the complicated processes that
occur at a distorted ablating surface, though a unique
dispersion relation [y(k) versus k] has not yet emerged
from simulations or theory.

Recent calculations [7] on Livermore's i.ASNEX code
suggested that a density gradient, denoted by p, may play
a role in ablative stabilization. The motivation for the
model suggested here comes primarily from that observa-
tion and, to a smaller extent, from the question: Does the
thickness 5t of the shell appear in the dispersion relation?

Let us mention a case that had been a stumbling block
to our mind in seeking a dispersion relation for
y(k, 5t, p). Taylor [1] treated the case of a single shell
having a uniform density and free surfaces on each side.
He found two eigenmodes: y =+gk. The fast growing
mode y =i/gk is located at the "driven" surface, and the
oscillating mode y =iv'gk is located at the "back side. "
There is no 5t dependence. %'e found that these modes
are in fact present in any density profile as long as the
surfaces are free [8]. Furthermore, the equation of state
or the compressibility of the shell has no effect on the
free-surface modes [9].

In the model presented here the apparent impasse that

z f WDpdy

8'p dy
(2)

This is the model proposed here, with the all-important
stipulation that the location of the peak, y*, be chosen
according to the problem at hand, namely, a shell driven
in the positive y direction with the plasma forming a gra-
dient near the peak of the density profile (see Fig. 1).
Since the pressure peaks at or near this peak, we will take
y*=0. This is the nonclassical element in our model
which we believe is plausible.

To obtain an analytic expression, we will assume the
following simple density profile, as indicated in Fig. 1:

y =y,&„„„&=gkfor any shell is circumvented by taking
into account the density gradient which is present at the
ablating surface, as shown in Fig. 1. Of course, density
gradients are a classical effect which were first considered
by Lord Rayleigh [1]. For an arbitrary density profile the
growth rate is found by solving the equation

gkD(pDW)+ WDp kpW=O . —
y'

In this equation, W(y ) is the perturbed fluid velocity (see,
for example, Chandrasekhar [10])and must be viewed as
an eigenfunction to be found along with the associated ei-
genvalue for y by solving Eq. (1) subject to appropriate
boundary conditions. All other quantities in that equa-
tion are given: the density profile p(y), the acceleration
g, and the wave number k. D stands for the operator
d /dy.

Multiplying Eq. (1) by W and integrating over y, we
derived [11]a moment equation which is useful when Eq.
(1) cannot be solved analytically or when a simple, albeit

approximate, expression is sufficient. The approximation
lies in usia the classical eigenfunction
8',&„„,=e I ~ in the m =0 exact equation:
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(3)

We refer to the region —t y 0 as the "blowoff" and
the region 0 ~y & 5t as the "shell. " The "driven" surface
is at y =0, and the "back side" is at y =5t.

Using 8 —e
—

lyl and the above density profile in Eq.
(2), we obtain

FIG. 1. The density profile of an ablatively driven target:
low-density blowoff plasma of thickness t accelerating a high-

density shell of thickness 5t.

(Rayleigh [1]),similarly for the density profile considered
by Lelevier, Lasher, and Bjorklund [12] (see Ref. [13] for
a comparison), and refiects the nonclassical element of
the model: perturbations peaking at y*=0. Classically,
there are faster growing modes which typically peak at
y = —t /2 and have y ~gP for both profiles [13]. In this
admittedly very simple model, the effect of ablation is to
shift the location of the peak from where it would classi-
cally grow fastest to the driven surface at y =0. This im-

plies, of course, that if the perturbations were to peak in-
side the shell (y*)0), then they would be even more
stable; conversely, if they peak in the blowoff region
(y' &0), then they are less stable. We have verified this
explicitly.

Having covered the 5t =0 and the 5t = ~ limits, we
now consider the finite 5t case. We will find that Eq. (4)
divides density profiles into two classes: "thick" and
"thin, " defined as 135t ~ 1 and P 5t & 1, respectively. We
find that thick profiles always have y 0, while thin
profiles can have y (0. Obviously, these two classes are
found by setting y =0 in Eq. (4), and we get

1+k/13=e""

Viewing k as the independent variable in this equation, a
solution other than k =0 exists if and only if the slope of
the left-hand side (lhs) (a straight line) is greater than the
slope of the right-hand side (rhs) (an exponential) at
k=0. Therefore, a zero exists if and only if I/p)5t,
which we call a thin profile. Otherwise, y )0 always.

The reduction of the growth rate below classical is
y/i/gk, and we plot it in Fig. 2 using Eq. (4). Three
thick profiles (P5t =5, 10, and 20) and one thin profile
(I35t =

—,') are used for illustration. The reduction at large

y P—(P+k )e

gk k+(P+k)(1 —e " ')
(4)

1.0 I I I I I I Ill I I I I I I Ill I I I I I I II

after setting the blowoff thickness I = ac (this is a good
approximation because typical values are t ~500 pm.
The result for finite t will be given in Sec. II).

The above model and variations thereof are discussed
in Sec. II. In Sec. III we present LASNEx simulations and
compare the numerical growth rates with our analytic
formulas. Concluding remarks are given in Sec. IV.

II. DISCUSSION

0.8 :
0.5—

0.4

As a check, note that in the limit P~ oo we recover
Taylor's result: y ~gk. Similarly, y ~—gk for 5t~0.
In the opposite limit where 5t ~ ac, Eq. (4) reduces to

0.2

r'=
gk 1+2k/P

(5) 0
0.1

kB
10

I I I I I I I I

100

If we consider long-wavelength perturbations, i.e., k «P,
Eq. (5) gives y ~gk. This is not surprising since long-
wavelength perturbations "ignore" the density gradient
and grow classically. The short-mauelength limit of Eq.
(5), however, is most interesting: y ~gP/2. This is half
the classical value for the exponential density profile

FIG. 2. y/&gk, the ratio of the growth rate y to its classical
value v'gk, plotted as a function of k 5t for p5t = —' (thin shell)

and @5t=5, 10, and 20 (thick shells), using Eq. (4}. The dashed
line indicates that y is imaginary below a cutoff wave number k,
given by Eq. (6). For the case P fit = —', one finds k, fit = l. 25.
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kit&5t
1 —P5t+Pk

(8)

The analysis of this equation is more complicated than
Eq. (6). It has a solution if and only if 1 &P5t &2. If
P 5t ~ 2, then y is always positive, which we called a
"thick" profile. If P5t &1, then y is always negatiue, a
feature absent from Eq. (4), which we may call a "su-
perstable" profile. In the range 1 &135t & 2, Eq. (8) has a
unique solution k, so that, as in Eq. (4}, y &0 for k & k,
and y )0 for k )k, .

To avoid any misconception, let us note that the
growth rate or the oscillation frequency vanishes for
k~0 where Eq. (4) reduces to

k is a result of density-gradient stabilization enhanced, as
we have discussed, by ablation "dictating" the location of
peak 8'. There is some stabilization at small k also, and
this is due to the presence of the stable back side of the
target. We identify it as a finite shell-thickness effect.
Since long-wavelength, i.e., small-k, perturbations
penetrate deeper into the shell (in our model, W-e "

),
they sense the stabilizing effect of the back side more
readily than the shorter-wavelength perturbations which
are more localized near y =0. This "stability by proximi-
ty" is much more effective for the class of thin targets, so
much so that for k (k„i.e., for wavelengths longer than
a cutoff wavelength A,,=2~/k„ the perturbations are
completely stable (the dashed curve in Fig. 2 indicates
imaginary y). The cutoff wave number k, is of course
given by Eq. (6) which can be easily, albeit numerically,

k, 5t
solved Fo. r P5t= —,', it reads 1+2k,5t=e ', whose

solution is k, 5t = 1.25, as indicated in Fig. 2.
It is clear that, in our model, ablation stabilizes both

short- and long-wavelength perturbations by bringing the
peak of the perturbations closer to the back side. It has a
modest (5—20%) effect on long-wavelength perturbations
in the thick shells of Fig. 2, but of course it has a dramat-
ic effect on the thin shell.

The stability at long wavelengths is interesting but
perhaps academic because most shells are thick. A typi-
cal example is 5t=10 pm, P '=3 pm, k '=8 pm
(A, =50 pm), for which Eq. (4) predicts y /gk =0.45, i.e.,
y-67% of y,&„„„&.The shell would have to be much
thinner, or, equivalently, the density gradient much
longer, for the A, =50-pm mode to be oscillatory.

An interesting variation is the profile where the shell
density, instead of being constant and then dropping
abruptly to zero as in Fig. 1, decreases linearly to zero,
i.e., p(y) is given by p(y)=p (1—y/5t) in the range
0 &y & 5t. Assuming that Y"=0 as before, the corre-
sponding growth rate is found to be

y P—(P+k)(k 5t) '(1 —e " ')

@+2k—(P+ k )(k 5t ) '(1 —e'"s')

which is somewhat more stabilizing than Eq. (4). For ex-
ample, Fig. 2 shows y/v gk ranging from 16% to 81%
for the P5t =5 case; Eq. (7) above gives 14—65%. Set-
ting y=0, we find the cutoff wave number k„if there is
one, from the solution of

y2 P5t —1

gk P 5t+1
and Eq. (7) reduces to

y' P5t —2

gk P5t+2

(9a}

(9b)

In other words, the distinction between thick and thin
shells determines whether y —+0+ or 0—as k —+0.

Explicit expressions for y calculated with a finite
blowoff thickness t, with y* &0, and y') 0, can be found
in Ref. [14], where we also present the exact solution of
the classical problem for the profile given in Eq. (3). As
expected from our discussion above, we find that there is
less stabilization if y* (0 and, conversely, more stabiliza-
tion if y')0. The classical solution does not admit
y*)Q.

Clearly, one can apply the same technique to other
density profiles provided that the W in Eq. (2) is chosen
judiciously. For the profile shown in Fig. 1, the model in-
volves k, 5t, and P, as given explicitly in Eq. (4) and, for a
linearly decreasing p,hd~, is given by Eq. (7). In Sec. III
we compare these formulas with the results of direct nu-
merical simulations using the hydrocode LAsNEx [15].

III. LAsNEx SIMULATIONS

We carried out two-dimensional LASNEx simulations of
laser-driven plastic targets having single-wavelength per-
turbations, either on their back side, i.e., away from the
laser, or at their ablation surface, similar to the calcula-
tions we reported earlier [7]. As in Ref. [7], we checked
that the growth rates were independent of where the per-
turbation was initiated —perturbations feed through
from one interface to the other. Additional checks in-
volved independence of y from initial amplitude go in the
linear regime, i.e., gk &(1, as well as the number of zones
used to resolve a wavelength.

We consider first a 12.5-pm-thick CH target driven by
a ~-pm laser with intensity increasing linearly from 0 to
2 X 10' W/cm between t =0 and 1 ns, and held constant
thereafter. Such a foil has an acceleration of about 36
pm/ns after the shock breaks through. We considered
wavelengths between 2.5 and 800 pm, so the classical
growth rate v'gk ranges from 0.5 to 9.5 ns '. We saw
reductions below classical with y ranging from 28 —80%
of classical. Our results are shown in Fig. 3(a). The con-
tinuous curve shown in that figure is Eq. (4) with 5t = 10
pm and P '=2 pm.

In Fig. 4 we overlay two snapshots of the density
profile taken at t =3 and 5 ns. Although the profiles are
not the same as in Fig. 1, nevertheless, the fit with the
above values of 5t and P is quite acceptable.

The second target was naturally the 25-pm-thick target
considered in Ref. [7], driven by a laser with intensity in-
creasing linearly from 0 to 2X10' W/cm between t =0
and 2 ns, and held constant thereafter (for details see Ref.
[7]). The growth rates, normalized to &gk where now

g =100 pm/ns, are shown in Fig. 3(b) as functions of
k 5t where 5t=20 pm. The continuous curve in that
figure is Eq. (7) with 5t =20 pm and P '=1 pm. An



6624 KARNIG O. MIKAELIAN 46

1.0

0.8—

I I I I I llll

X

I I I I lllll I I I I I l Ill I

5t = 10pm
65t =5

I I I I II Ill I I I I I I Ill I I I I Illll

5t = 20@m

0.6:
0.4—

0.2

0.0
0.01

(a)

0.1 1
k5t

10

(b)

I» lll

1 10
k5t

FIG. 3. y/&gk as a fUnction of k 5t for (a) 12.5-pm CH foil driven at 2X10"W/cm and (b) 25-pm CH foil driven at 2y lp'4

W/cm . The latter target was also considered in Ref. [7]. LAsNEx results are indicated by the crosses. The continuous curves in
frames (a) and (b) come from Eqs. (4) and (7), respectively (see text).
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equally good fit is Eq. (4) with p ' =2 p,m, i.e., the curve
labeled p5t =10 in Fig. 2. The growth rates again range
from 24 —80% of classical for X= 1 to 800 pm.

The growth rates for X=5, 10, 20, 50, and 100 pm
shown in Fig. 3(b) were reported earlier in Ref. [7]. As a
check, we recalculated some of them because the LASNEX

code is upgraded periodically. We found, within 2 —3%,
the same results as before. In particular, the point at
A, =5 pm (k 5t =25) was repeated and again found to
have y=4. 5 ns ', compared with 11.2 ns ' classically.
As discussed in Ref. [7], such very short-wavelength cal-
culations require extremely long computations because of
the needed resolution and radiation transport in LASNEX.

Several calculations, in the old as well as the new tar-
get, were repeated without radiation transport. As in
Ref. [7], calculations including radiation transport exhib-
ited smaller growth rates, particularly for shorter-
wavelength perturbations. In fact, it was our explanation
of this phenomenon in terms of longer density gradients
[7] that led us to the model proposed in this paper, which
can be described as an enhancement of the density-
gradient stabilization via ablation.

The stabilization at long wavelengths appears naturally
in our model as a finite shell-thickness effect and is seen
in our simulations also, although it is only a 20% effect
for these targets. In Fig. 5 we illustrate the evolution of a
800-pm-long perturbation with a 1-pm initial amplitude
on the back side of the 25-pm plastic target. The lower
half of the target is shown in each of the snapshots at
t =0, 1, 2, 3, 4, and 5 ns. The expected phase reversal of
the perturbation, its feed through to the ablation surface,
and subsequent growth to a "ribbonlike" thin shell are all
seen in these snapshots.

The strong coupling between the interfaces, viz. , the
back side away from the laser and the front side facing
the laser, arises in long-wavelength perturbations and of
course is the reason for the ribbonlike look in Fig. 5 ~

Shorter-wavelength perturbations do not feed through as
much —an example with A. =20 pm was shown in Ref.
[7]. This is consistent with our model where

0.4 g (back)/rl (front)=e

0.2

0.0
0 10 15 20

Y (vm)

25 30 35

FIG. 4. Density profiles for the 12.5-pm-thick target at t =3
and 5 ns.

Since k =2~/A, , it follows that long-wavelength perturba-
tions have g (back) =r) (front), while short-wavelength
perturbations have r) (back) ((r) (front).

Other models do not describe the shape of the pertur-
bation nor do they exhibit any dependence on shell thick-
ness, so we can only compare their growth rates with
ours, which we do in Sec. IV.
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ian in the direction of motion and therefore the same Quid element, viz. , the lower half of the target, is seen in each snapshot. The
horizontal width is always 800 pm, while the vertical scale changes as the target undergoes compression, decompression, or ablation.

y'=gP/(2+0/k ),
compared with the expression

y =gP/(1+P/k)

(10)

describing the classical case [13].
Stability by proximity would predict that if one contin-

ues the ablation process and the shell is close to burning
through, it may become so thin that long wavelengths

IV. COMPARISONS AND CONCLUDING REMARKS

We emphasize that Eq. (4) is only an extremely simple
mode/ for the complex process of ablative stabilization—
only a shift in the location of peak 8' as compared with
the classical. It is true that the classical problem is also
complex (see Ref. [14]),but a good approximation can be
obtained provided we use Eq. (2) with a W peaking in the
low-density blowoff region. The contrast with classical is
best illustrated in the 5t = 00 limit: Equations (4) and (7)
both reduce to Eq. (5):

may suddenly go stable. Alternatively, the peak may
move away from the back side, i.e., y* &0, and continue
to grow there. As far as we know, neither phenomenon
has ever been observed.

The modes seen in our I.ASNEx calculations peaked
close to y*=O, with the very short-wavelength modes
moving somewhat away into the blowoff region. Of
course, this is only a qualitative description because the
density profiles are not identical to the one shown in Fig.
1, as can be seen by comparing it with Fig. 4. Other ex-
amples are given in Ref. [7]. Nevertheless, the computed
growth rates are fairly well described by our model.

There are striking differences between this and other
models of ablative stabilization, particularly at very long
and very short wavelengths. Although the general trend
is similar, viz. , less stabilization at long wavelengths and
more stabilization at short wavelengths, other models
differ by predicting too little stabilization at long wave-
lengths and too much stabilization at short wavelengths.

As we mentioned in Ref. [7], the expression
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y = [gkP/(k+P)]' —Vk (12)

is also a good fit to our LASNEX results for intermediate
wavelengths. This was an attempt to combine the classi-
cal density-gradient effect, Eq. (11), with Bodner's result
[5]

y =&gk —Vk, (13)

y2=gk —P~ k2/p (14)

or

y =0.9&gk —3 Vk, (15)

where P„is the ablation pressure (for a review, see Kull's
report in Ref. [6]). The last formula above, proposed by
Takabe et al. [5], predicts 90%%uo of classical as k ~0 and
is closer to the 80% we find for these targets.

In the short-wavelength limit, i.e., for k~~, Eqs.
(12)—(15) predict that there is a cutoff beyond which all
perturbations are stable. For Eq. (12),

' 1/2
4g

PV2
(16)k =—

C

and for Eq. (15),

k, =0.09g/V (17)

Perturbations with k )k, are stable. In contrast, there is
no such short-wavelength cutoff in our model. This was
the reason for extending our LASNEX simulations to very
short wavelengths. We found no stable perturbations,
down to the 1-pm wavelength we can perform on LASNEX
with reasonable accuracy and computer time.

Equations (16) and (17) predict A,, =2m. /k, =1.4 and
2.8 pm, respectively, where we have used g = 100 pm/ns,
V = 2 pm/ns, and P ' = 1 pm for our 25-pm target.
Therefore, the 1-pm-long perturbation should have been
absolutely stable. Our simulations, however, showed a
positive growth rate at 24% of classical [see Fig. 3(b)],
which compares favorably with our model: It predicts
20—28 % of classical for P ' = 1 —2 )ttm (use y =&gP/2).
As we mentioned earlier, good resolution and radiation
transport were necessary in such simulations. We had to

where Vis the ablation velocity. It is clear that these for-
mulas predict 100% of classical for very long-wavelength
perturbations, and this was the reason for extending our
LASNEX simulations in this paper to the long wavelengths
such as 800 )Ltm (although the deviation was beginning to
show even at the 100-)Mm wavelength in Ref. [7]). The fit
for 5 ~ A, ~ 50)Mm was quite acceptable, taking P '=1 pm
and V=2 pm/ns.

The same remark applies also to other formulas such
as

0
start with a very small initial perturbation, go=1 A, to
stay in the linear regime and, more importantly, to be
able to run the problem without early bowties. We be-
lieve the Lagrangian nature of the code was essential to
suppress the numerical diffusion which might otherwise
be present in a Eulerian hydrocode.

On the experimental side, the situation is somewhat
confusing. Early experiments by Grun et al. [3] observed
y=0 for A, =50 pm. We have already described in Ref.
[7] our failure to explain this result by LASNEX simula-
tions (other codes also have trouble; see Grun et at. in
Ref. [3]). We know of no other example where complete
stability (y ~0) was seen [16]. More recent experiments
by Desselberger et al. [3] find about 20% of classical,
within error bars, for X=50 pm. The target and drive
conditions were different. Unpublished results from
NOVA experiments [17] cannot be adequately described
by a growth rate, though they are not inconsistent with
the assumption that y=40 —70% of classical for wave-
lengths between 20 and 70 pm [17]. As we mentioned
above, such intermediate wavelengths can be fit by any of
the four formulas in Eqs. (12) through (15).

To choose among the formulas or our model, one must
go to extremes in wavelengths, both very long and very
short: Is there some stabilization at A, ))5t? This would
speak for our model, i.e., stability by proximity for one
could simply adjust the constant 0.9 in Eq. (15), which is
not in the spirit of this paper]. At the other extreme, is
there a wavelength short enough that y (0? This is the
case, for example, with Eqs. (12) and (15) which asymp-
tote to —Vk and —3Vk, respectively. Finding such a
short-wavelength cutoff would speak against our model
where the asymptotes for k ~ oc are &gP/2 and
&(gP/2)(1 —1/I35t ) from Eqs. (4) and (7), respectively.

Such extremes are, understandably, difficult to attain
numerically and even more so experimentally. Other as-
pects of our model, such as interface coupling between
the back and the front sides of the target, are also impor-
tant but cannot be measured by the presently favored ex-
perimental technique, which is face-on x-ray radiogra-
phy, even for long wavelengths where the effect is sub-
stantial.

We believe that the simple model presented in this pa-
per has physical motivation and predictive power, invit-
ing further research —both numerical and experimental.
We have highlighted its differences with previous work to
stimulate such activity and, we hope, to pin down the pa-
rarneters affecting ablative stabilization.
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