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Double photoionization of helium:
Effect of the Coulomb repulsion on the angle-resolved cross section
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The effect of the Coulomb repulsion between the two ejected electrons on the angle-resolved cross sec-
tion is examined; it is shown that in the general case the effective-charge approximation is not in agree-
ment with solutions of the three-body Schrodinger equation with the appropriate asymptotic boundary
conditions, and an approach is proposed in order to introduce the electron repulsion in the calculation of

the sixfold differential cross section d%c?* /d*kd k.

PACS number(s): 32.80.Fb

Double photoionization (DPI) is a striking conse-
quence of the electron correlation since it would be
rigorously forbidden within the independent-particle
model: It follows that DPI is much less probable than
the single photoionization but it is a very powerful tool in
the investigation of correlation effects. Recently, interest
in DPI has greatly increased both from an experimental
and from a theoretical point of view: The advent of in-
tense synchroton radiation has allowed measurement of
the total cross section for the DPI process [1] and
analysis of the angular distribution for the fragment ions
following DPI of H, [2]. From the theoretical point of
view the literature offers a few approaches to the descrip-
tion of DPI: Many-body perturbation theory [3] has been
used only for the calculation of the total DPI cross sec-
tion, i.e., that integrated over the angular variables; on
the other hand, the wave-function approach (WFA),
pioneered by Byron and Joachain [4] for the DPI of heli-
um atoms, has recently been applied by Le Rouzo and
Dal Cappello [5] to the calculation of the angle-resolved
cross sections. The case of DPI of helium is the most
simple DPI process; nevertheless, the problem of the cal-
culation of the angle-resolved cross section is very
difficult because of the long range of the Coulomb in-
teraction and because it displays the main effects of the
electron repulsion in the final state, without the compli-
cations involved by structured cores. The purpose of this
report is to show that the effective-charge approximation
cannot be applied to the case under consideration and to
describe an alternative approach to the problem of calcu-
lating the effects of the Coulomb repulsion on the angular
distribution of the ejected electrons. The assumptions of
the WFA (dipole approximation, nonrelativistic energies,
neglect of spin-dependent interactions) are well satisfied
in the case considered, so that the accuracy of the WFA
depends essentially on the choice of the wave functions
used to describe the initial and the final state of the sys-
tem; the wave function for the initial state (bound) of the
helium atom is known with very good accuracy so that
the real problem consists in the choice of the final-state
|
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-wave function, where both electrons occupy a continuum
state. These double-continuum wave functions have been
studied in recent years [6—9] but only their asymptotic
expressions are known, so that the WFA usually neglects
the Coulomb repulsion between the photoejected elec-
trons, which are considered within the independent-
particle model.. Since the spin-dependent interactions are
neglected, the spin part of the wave functions can be ig-
nored while the spin selection rules allow only symmetric
final wave functions; in the case of the DPI of the helium
atom, the singlet final state is then represented by the or-
bital wave functions
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where ¢v(Z,k|r) are pure Coulomb waves, i.e., eigensolu-
tions of the Schrodinger equation corresponding to an
electron with a positive energy moving in the Coulomb
field created by a charge Z [10]; such functions have the
form
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'F , is the confluent hypergeometric function [11], and
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The wave functions (2) have been normalized according
to the condition
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The Coulomb waves (2) have the asymptotic behavior of
a plane wave plus an incoming spherical wave, both with
a logarithmic distorted phase [12],
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where the Coulomb scattering amplitude is given by

exp{inln[sin’(/2)]} T(1—in)
2ik sin*(6/2) [(in)
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and 0 is the angle between k and r. From the calcula-
tions by Le Rouzo and Dal Cappello [5] it results clearly
that the choice of the functions (1) as final-state wave
functions, in the matrix element corresponding to the
angle-resolved cross section, is not correct; in fact, the
event where both electrons are ejected in the direction of
the polarization vector of the incident photon is the most
probable: in the case where the two electrons have the
same energy, this event means that the two electrons are
in the same spatial position simultaneously, which is
physically impossible because of the Coulomb repulsion
(the exclusion principle does not apply to this case be-
cause the two electrons have opposite spin). Le Rouzo
and Dal Cappello, following Rudge and Seaton [13,14],
examine the effect of variable charges Z,(k,k’),Z,(k,k’)
J

on the angular distribution of the two ejected electrons;
they suppose that Z, ,(k,k’)— o, so that do>* —0 for
k—k’, but the ratio of the two differential cross sections,
calculated with respect to the length or the velocity form
of the dipole matrix element, is very scarcely improved
by the introduction of the effective charges (3.7 versus
3.9); besides, the use of effective charges modifies greatly
the angular distribution and introduces new peaks for
which it is difficult to give a physical interpretation. The
effective charges were used by Rudge and Seaton [13] in
the calculation of the single ionization of the hydrogen
atom by electron impact; however, their final-state wave
function (Eq. 3.40 in Ref. [13]) cannot be applied to the
case of DPI because it does not represent two electrons
with asymptotic momentums k and k’. The correct
scattering wave function for the three-body Schrodinger
equation has been derived recently by Brawner, Briggs,
and Klar [6], and their results coincide with the asymp-
totic solutions previously obtained by Garribotti and
Miraglia [7]; it has the following form:

Wk, k'), 1y) = —— [explik-t, ik’ 1,)C(7(Z, k), k, 1) X C(5(Z, k'), K, 1)

2mr)3v2

Xc(n(_l’kre1)7krel’rl_r2)+Tl«»z] ’ (8)

where k ,=k—k' and T,_,, stands for the term in square
brackets with 1 and 2 interchanged. Note that if e —0,
the solution (8) reduces to the ordinary double plane
wave with the correct normalization factor. The solution
(8) is completely symmetric in all pairwise Coulomb in-
teractions and differs from the wave function (1) for the
presence of a factor representing the relative motion of
the electrons; for large ; r, Eq. (8) represents two plane
waves with a logaritmic distorted phase
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where the distorted phase y is given by
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The solution (9) was derived by Redmond and discussed
by Peterkop [8] in connection with the partial-wave ex-
pansion proposed by Altick [9]. If the asymptotic expres-
sion (6) is considered, it is easy to see that, in the general
case, the wave functions (1) do not approximate for large
values of 7, and r,, the solution (8) or (9), for any value of

the effective charges Z,(k,k’), Z,(k,k’); this proves that
the correlation between free electrons in a Coulomb field

f

cannot be introduced by means of effective charges, as
proposed by Le Rouzo and Dal Cappello. The introduc-
tion of effective charges is possible only in the case
k >>k’; in fact, since electron 2 is much slower than elec-
tron 1, it is physically meaningful to consider the asymp-
totic expression (9) for r; >>r, >>1 [see also Ref. [9(a)]];
in this case one has

k—k'=k,
I,—1,=~1,,
so that the distorted phase in the solution (9) becomes
y(r,n)=9(Z —1,k)n(kr, +k-1;)
+n(Z,k')In(k'r, +k'1,) , (1n

which coincides with the asymptotic expansion of Eq. (1)
with effective charges Z,=Z —1, Z,=Z. This result is
very reasonable: in fact, since electron 2 is much slower
than electron 1, their interaction is stronger when both
electrons are near the origin, so that the average effect of
electron 2 over electron 1 is to screen the nuclear charge,
while the inverse is not true because electron 1 passes
near the origin too quickly to modify sensibly the motion
of electron 2. When the two electrons have comparable
energies, their interaction cannot be localized near the
origin, so that a description of their repulsion cannot be
done by means of an effective central field. However, the
behavior of the wave function near the origin can be in-
vestigated by means of a classical analog; in fact, since
the wave function (1) is obtained by the time reversal of
the solution of the scattering problem [10], it is possible
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FIG. 1. The square modulus |f(k,)|? is represented as a
function of the angle 0 between k and k’: Curve a refers to the
case where both electrons have energy e=¢'=15 eV, while
curve b refers to the case where e=5eV and ¢'=25eV.

to describe the main features of the final state by consid-
ering the scattering by the nuclear charge of two elec-
trons, incident with momentums —k and k’: within this
picture, it is clear that the main effect of the Coulomb
repulsion between the two electrons is to remove each
other from the neighborhood of the nuclear charge. This
effect will be stronger when the two electrons have com-
parable energies and the angle between k and k’ is small,
that is, when k,, is small: In fact, in this case the direc-
tion of the repulsion force is close to the normal to the
electron momentums, so that the incident electron trajec-
tories are strongly bent when the electrons are still far
from the nuclear charge. The previous considerations
show that near the origin, the wave function is lower in
absolute value, with respect to the case where the
Coulomb repulsion between the electron pair is neglected,
say by a factor f; since the initial-state wave function is
different from zero only near the origin, the dipole matrix
element will approximately diminish by the same factor:
by inspection of Eq. (8), such a factor is assumed to be

flk )=T(1—inge T2 (12)
where
Na=me> /Hk . (13)

The square modulus of expression (12) is exactly the
probability to find an electron with momentum k_, near
the origin, for a Coulomb field origined by a fixed charge
—e [consider that F,(a,b,x)=1 for x =0] and it appears
reasonable to use such an expression to weigh the effect
of the Coulomb repulsion over the wave function near the
origin, since the wave function (8) includes a multiplica-
tive factor representing the relative motion of the two
electrons (see Figs. 1 and 2). The approach proposed
herein consists in choosing as a final-state wave function,
the function (1) multiplied by the factor (12), but it is
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FIG. 2. The square modulus |f(k. )l is represented as a
function of the angle 8 between k and k’: Curve a refers to the
case where both electrons have energy e=¢'=30 eV, while
curve b refers to the case where e=10eV and e'=50¢eV.

pointed out that such an approximation is to be con-
sidered valid only for small values of r,, r,; however, be-
cause of the exponential extinction of the initial-state
wave function, the dipole matrix element will depend
essentially on the behavior of the final-state wave func-
tion in such a spatial region. It is essential to investigate
the behavior of the function (12) in the case k—k’; it is
easy to see that

flk,)—0 for k—k', (14)

so that the double ejection of both electrons with the
same k is forbidden without the introduction of an un-
physical — « effective charge in the origin. Besides, in
the case k >>k’', n(Z,k) << 1, since

ID(1+in)|>=my/sinh(my)=1 for n<<1, (15)

the main effect origined by the introduction of the factor
(12) is the replacement of exp[—mn(Z,k)/2] by
exp[—7n(Z —1,k)/2] into Eq. (1), which represents
again the screening of the nuclear charge by the slower
electron.

In conclusion, the introduction of the factor (12) in or-
der to consider the effect of the Coulomb repulsion be-
tween the electron pair over the angle-resolved cross sec-
tion presents the following two advantages, with respect
to the effective-charge approximation:

(a) It gives directly the correct behavior in the two lim-
it cases (k—k’, kK >>k’) without the introduction of fur-
ther hypothesis about the effective-charge functions
Z,(k,k"), Z,(k,k');

(b) It follows in a natural way from the asymptotic
solution (8) of the three-body Schrédinger equation, while
it has been shown that the effective-charge approximation
is not in agreement with such a solution. Besides, the use
of the factor (12) does not introduce new unphysical
peaks in the angular distribution of the ejected electrons
as does the effective-charge approximation [5].
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