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Dynamic light scattering from polymer gels is complicated by the fact that the scattering intensity
and its time correlation function change as different parts of a sample are explored. This results
from the nonergodicity of the sample—time averages are not the same as ensemble averages, the
result of a finite rigidity that leads to constrained inhomogeneities. We demonstrate a direct tech-
nique for ensemble averaging (by moving the sample), present the experimental correlation function
containing correlations that do not decay with time, and show that the light scattering results from
a superposition of static scattering from immobile inhomogeneities and dynamic density fluctuations

from “gel modes.”
PACS number(s): 82.70.Gg, 05.40.+j

I. INTRODUCTION

Polymer gel systems are interesting candidates for
dynamic-light-scattering (DLS) studies from a number
of different viewpoints. The physical properties of the
gel, its elasticity, permeability, dangling ends, diffusion of
connected and unconnected strands and foreign particles
produce readily measurable effects on the density fluctua-
tions which are probed by light scattering [1-4]. However,
even casual observation of a polymer gel with ambient
light or laser illumination quickly reveals a strong static
component of the scattering. Time-independent inhomo-
geneities are clear to the eye, or in the speckle pattern
of light scattered onto nearby surfaces. These static in-
homogeneities can lead to long-time correlations which
do not decay. This complicates the interpretation of the
dynamic-light-scattering data, especially since most com-
mercial correlators are designed to handle systems where
the correlation function decays to zero at sufficiently long
time. In the polymer gel system there are infinite time
correlations which may or may not be of interest to the
researcher, but are certainly present and can lead to erro-
neous interpretations of the data if not treated properly.

On the other hand, the presence of the static inhomo-
geneities which result from fluctuations during the gela-
tion process give us an interesting opportunity to study
the differences between time averages and ensemble av-
erages (different manifestations of the same physical sys-
tem) in a system where both averages are accessible. Sta-
tistical mechanics rests heavily on the assumption that
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the ensemble average (which is what we know how to cal-
culate) is the same as the time average (which is what
we usually measure) [5].

The problem of dynamic light scattering from poly-
mer gels has been addressed many times before [1, 2, 6,
7). In many of these experiments the question of the
non-ergodicity was not addressed at all. It is surprising
that it was possible to obtain any useful information from
conventional data since placing the same sample in the
same apparatus in different orientations would result in
different measured correlation functions. Nevertheless,
the experiments were reported and interpreted. There
have arisen two models to describe the dynamics and, in
some cases, the presence of the static background. In
one model the gel is viewed as an elastic medium with
overdamped modes describing the density fluctuations
[1]. Coupled with some static scattering (or dirt) this
picture can qualitatively describe the initial decay of the
correlation function and its saturation at long time [6].
A qualitatively similar correlation function is obtained
by a model of harmonically bound Brownian particles
[7]. At short time the particles undergo simple diffusion,
but at longer time they find that they are restricted to
a maximum displacement when the elastic energy equals
the thermal energy (k(z2)/2 = kpT/2). After correctly
ensemble averaging, we find that the distinction between
these two proposed behaviors lies in the wave vector or ¢
dependence of their correlation functions. For our poly-
acrylamide gels, the data are consistent with the model
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of gel modes plus static randomly distributed small in-
homogeneities and not with the model of harmonically
bound Brownian particles.

The question of nonergodicity in relation to DLS exper-
iments and particularly to polymer gels has been previ-
ously addressed by Pusey and van Megen [8] and Joosten
et al. [9]. These authors have found a clever way to ob-
tain the ensemble average correlation function from the
time average at a single orientation by comparing the
time-average intensity with the ensemble-average inten-
sity. Basically they show that if you find a configuration
where the time-average intensity is the ensemble-average
intensity, then the time-varying part of the measured cor-
relation function is the same as the time-varying part of
the ensemble-averaged correlation function. In this pa-
per, we present an alternative scheme for directly ob-
taining the correct ensemble-averaged correlation func-
tion. Though less clever, our scheme is more robust.
Furthermore, the clever technique only works when the
intensity of scattered light is detected from an area less
than a laser speckle size on the photon detector, only
for single scattering, and only if there is a priori knowl-
edge that there are no long-time dynamics in the sys-
tem. Our scheme does not suffer from these limitations.
The photon-counting statistics for the two measurement
schemes are essentially the same.

II. LASER SPECKLE, TIME AND ENSEMBLE
AVERAGES, CORRELATION FUNCTIONS,
AND CORRELATORS

In order to illustrate the problems of dynamic light
scattering on a nonergodic system it is instructive to re-
turn to the elementary concepts of light scattering to look
at time and position averages and their fluctuations. In
Fig. 1 we show a schematic of the scattering geometry
with a coherent beam scattering from a sample and the
interference or speckle pattern that it would produce on
a screen. The electric field at a point r, on the screen
is determined by the angle that the scattering vector g
subtends to arrive at that point:

a=k' -k, r, = ql\/7,

E(rs) — Zeiq‘r,-,
J

(2.1)

I(rs) = Zeiq-(l‘j—rjl) = Z 14+ Z eiq'("a‘"j/),
3.3’

J=3i' i
(I(rs)) £ (6I)rms = N £ VN2,

where [ is the distance to the screen, r; is the position
of the jth scatterer, and N is the number of scatterers.
‘We have for the moment assumed that nothing is moving
and that the scatterers are randomly distributed over a
volume that is much larger than the cube of the wave-
length of the light. The decomposition of the sum yields
two terms. The N interferences from the same scatterers
(j = j') give the average value. The N? interferences
from dissimilar scatterers correspond to a random walk
of N2 steps in complex space. The average is zero but
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speckles

FIG. 1. Schematic geometry for a dynamic-light-
scattering experiment, where we imagine that either the sam-
ple (coordinates z) or the detector (coordinates z;) can be
translated. The detector is schematically replaced by a screen
to illustrate the speckle pattern.

the rms fluctuations are the same magnitude as the mean
value. Thus the intensity varies on the screen from zero
to about twice its average. A direct calculation gives the
distribution of intensities and the value of the fluctua-
tions as [10]

eI/ (617) _ (I%) —(I)?

(o2 (D2

The intensity fluctuations on the screen are laser speck-
les. The spatial variation of the intensity has a charac-
teristic length, £;, which is the speckle size and is simply
related to the beam size d, the wavelength of the light
A, and the distance from sample to screen ! in the same
way as for interference from two slits separated by the
distance corresponding to the beam size [11]

Al
Eszg-

P(I) = =1 (2.2)

(2.3)

If we plot the intensity as a function of vertical position
(25) on the screen we would have something like the re-
sults in Fig. 2. The intensity fluctuations are correlated
over &. In fact the intensity-intensity correlation func-
tion for two positions s and 7, on the screen decays as
[10]

25in?(2mrs — r3)/£s)
(2rrs — ral/80)?

(I(ra)I(rg)) = (I) (24)

We can also measure the intensity at a fixed point on
the screen while displacing the sample in the beam. The
result is schematically shown in Fig. 2, where z is the ver-
tical coordinate of the sample. If both the sample and
the beam were displaced together, with the same scatter-
ers illuminated, the speckle pattern would not change at
all. If the scatterers occupied a region smaller than the
beam size and they were rigidly translated in the beam
the speckle pattern would again remain unchanged. How-
ever, when a bulk sample is moved, some of the scatterers
move out of the beam while the others move into it. The
intensity remains correlated until most of the illuminated
scatterers have been replaced. Thus the characteristic
distance is the beam width, and the intensity-intensity
correlation function is (see Appendix A)
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(I(0)I(2)) = (I(0))?[1 - n(2)/N]?,
(2.5)
1—n(z)/N ~ e~4/74,

If the scatterers are randomly distributed, then the full
Gaussian statistics are reflected in the correlation func-
tion in Eq. (2.4) and Eq. (2.5) and their relation to the
average intensity, i.e., translating the detector or mov-
ing the sample result in the same average intensity and
the rms fluctuations are equal to the average intensity
(6I2) /()% = 1.

Now we want to see what happens when the scatterers
can move. At one instant of time, if we take a snapshot
of the screen, we would find something that looks like
the static case. We follow the intensity at two differ-
ent points on the screen, say z,; and z, in Fig. 3. The
variation of intensity with time for these points is shown
schematically for an ergodic system. In such a system the
time evolution of the particles leads the system through
the configurations of the statistical ensemble, the fluc-
tuations are just those of the random arrangement of
positions. Each point on the screen undergoes a similar
evolution of intensities with the same average and devi-
ations. A time exposure photograph would show no spa-
tial variation. The temporal fluctuations are correlated
over the time it takes a scatterer to randomly displace a

intensity
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FIG. 2. (Top) For a static sample the intensity measured
on the screen fluctuates (as the detector point is translated)
about its mean value (I) with a variance (6I) which is equal
to the mean, giving rise to the speckle pattern. The speckles
are spatially correlated over a “speckle size.” (Bottom) The
intensity of a fixed spot on the screen fluctuates with the
full variance when the sample is translated. In this case the
correlation length is &~ beam diameter divided by .
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FIG. 3. Spatial and temporal behavior for an ergodic sys-

tem. (Upper right) Snapshot of the intensity on the screen
showing full variance with position. (Upper left) Time de-
pendence of the intensity at two points on the screen (z,1 and
Zs2) also shows full variance in the fluctuations. In both fig-
ures, (I) indicates the average scattering intensity and (6I)
its variance. (Lower left) The ensemble-averaged correlation
function shows the full variance at ¢ = 0 and the decay of
all correlations after several characteristic relaxation times.
(Lower right) The time-averaged correlation function is the
same as time-averaged correlation function in this case.

distance 27/q. At sufficiently long times the system has
evolved to a configuration which is completely uncorre-
lated with its initial configuration so that

(I(0)I(00)) = (I(0)){I(00)) = (I(0))>.

Time averages and ensemble averages are equivalent and
the intensity correlation function with time is as illus-
trated schematically in Fig. 3.

If not all of the scatterers are free to explore the entire
space of the sample then the time evolution of the system
will not lead to all of the statistically possible configura-
tions of the particles. The system is nonergodic [5] and
there is no reason why the time and ensemble averages
have to be the same. To illustrate how this affects the
light scattering we again imagine taking a snapshot of a
screen on which the scattered light falls and then watch-
ing its time development. The snapshot is illustrated in
Fig. 4, and shows the position-dependent intensity with
the full ensemble variance. We now look at the intensity
vs time for two arbitrary points on the screen, z;; and
zs2. If nothing in the sample is moving the intensity is
independent of time. If every scatterer is moving ran-
domly over distances larger than the wavelength of light
A, then the intensities will fluctuate with time much as
for the ergodic system described above. However, if their
motion is restricted to less than A or if only some scat-
terers move, then the temporal averages and fluctuations
will not be independent of the spot on the screen chosen
for study. Similarly a time exposure of the intensity will
not be uniform across the screen. (The schematic time

(2.6)
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FIG. 4. Spatial and temporal behavior for a nonergodic
system. (Upper right) Snapshot of the intensity on the screen
showing full variance with position. (Upper left) Time depen-
dence of the intensity at two points on the screen (zs1 and z,2)
also shows limited range in the fluctuations with a different
average and variance at the two points. (I) and (6I) represent
the average scattering intensity and its variance, respectively.
(Lower right) The time-averaged correlation function depends
on the position and is different for the two points illustrated.
It is characterized by a reduction in the variance at short
times. (Lower left) The ensemble-averaged correlation func-
tion is independent of position (it averages over position), is
distinct from the time average, and shows the full variance
at t = 0 and the persistence of some correlations for infinite
time.

and position dependences shown in Figs. 3 and 4 were
obtained by computing the intensity at different ¢’s for
scattering from a set of 100 particles undergoing random
or restricted walks, respectively.)

Most importantly, the time-averaged and ensemble-
averaged correlation functions will be different. The
range of the time-averaged correlation function is from
unity at infinite time to one plus the fluctuations at t = 0:

OIO)r  (Pyr (1) + (1)
oF Wi - e <h @0
IO _ IOrler _ D% _ 1 e
O3 O 0

For the ensemble average, the rms fluctuations are equal
to the mean so that the ensemble-averaged correlation
function goes to 2 at t = 0. For a nonergodic system, the
time-averaged fluctuations at a fixed point on the screen
are smaller than the ensemble average. Therefore, the
time-averaged correlation function can be below 2 at zero
delay time (¢t = 0) and will depend on the position of the
detector and the particular orientation of the sample (see
Fig. 4). A commercial correlator usually directly presents
the time-averaged correlation function. In Fig. 5 we show
the output of our correlator for the same sample in two
orientations. It is clear that there is no way of gaining
useful data directly from a correlation function which
depends randomly on sample orientation.
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FIG. 5. Time-averaged correlation functions obtained for
two different orientations of a nonergodic sample (dashed
curves, obtained from one of our gel samples) compared with
the ensemble-averaged correlation function (solid curve).

By contrast the correlation function that would natu-
rally be calculated and that represents the global struc-
ture and dynamics of the system is the ensemble average.
At t = 0 it contains the full fluctuations of the system and
thus begins at 2. However, for the nonergodic system the
fluctuations from (I) g remain as t — oo showing that the
system does not lose its correlations. Thus the ensemble-
averaged correlation function remains above unity:

TOIO)s _ (e _ 617 +(D)* _,
(D% (D% (I)? ’

(2.9)
T )
(Ng

In many cases, the long-time correlations are of inter-
est. For example, in gelation, the glass transition, and
solidification, the signature of the transition is the ap-
pearance of long-time correlations. Thus we would like

to find a way to get the ensemble average.
The intensity-intensity correlation function can be

written in terms of the electric-field correlation function
as [5]

(IO)I(T)) = KEQ)E"()|* +(D)?,
F(g,t) = (E(Q)E*(t)) = S _(e’lrs @-r®)),
gk

(2.10)
£(a.%) = F(g,1)/F(g,0),
IO 141 s@n) P

In most cases the dynamical information about the sys-
tem that is of most interest is directly contained in the
function f(g,t). We emphasize that in a nonergodic sys-
tem f(g,0) is not necessarily 0.

In previous papers on nonergodic systems, the au-
thors [8, 9] came up with a clever way of obtaining the
ensemble-averaged correlation function basically by eval-
uating the fluctuations with time as compared with the
fluctuations with different configurations. We follow their
presentation. Assume that each scatterer has in general
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a static R; and dynamic A;(t) part to its position. The
scattered field and intensity then also have static Ec(q)
and fluctuating Er(q,t) pieces:

E(g,t) = ) R+ 0] = Ep(q,t) + Ec(q).
J

(2.11)

The time-averaged intensity has a contribution from the
static and fluctuating parts:

()T = (| E(a,t) *)r = (Ir(a,t))T + Ic(9)-

Now we look only at the fluctuating parts. The time-
averaged correlation function, resulting from the fluctu-
ating part of the electric field, is reduced from the en-
semble average since f(g,00) is not 0:

(Er(q,0)ER(g,t))r = (I(9))Elf(90,t) — f(g,0)],
(2.13)

(2.12)

(Ir(@) = (I(9))E[1 - f(g, 00)].

Likewise the time average of the fluctuating part of the
intensity is less than the ensemble average. The fluctuat-
ing part of the intensity-intensity correlation function is
obtained from that of the electric field by noting that the
time-dependent part of the electric-field correlation beats
against itself in a homodyne manner and beats against
the static part of the intensity in a heterodyne manner
[5,11]:

(1)) — (DF = (I)E[f(a,t) - f(g,00))
+2I(I)g(f(g,t) — f(q,00)].
(2.15)

(2.14)

Thus the function f(g,t) can be obtained if we know the
time-averaged intensity relative to the ensemble averaged
intensity:

Y = & :

(D

The parameter Y can be obtained by measuring the time-
averaged intensity inside the speckle spot where the cor-
relation function is taken, and then opening the aperture
to the photodetector to collect light from many speckles.
The relationship becomes

(LO)I(t))T
(%

(2.16)

= 1+ Y?[f?(q,t) — f*(q,0)]

+2Y(1-Y)[f(g:t) — flg,0)].  (2.17)

Knowing the fluctuating part of the correlation function
allows evaluation of f(g,t) — f(g,00) and knowing that
f(g,0) =1 allows evaluation of f(g,00).

There is a less clever, more direct way of getting at
the ensemble average which we have used in the present
study. It consists of simply translating the sample to ob-
tain data from a number of configurations. The charac-
teristic decorrelation time is given in Eq. (2.5) and corre-
sponds to a new ensemble for each 7. In order to make the
demonstration simple we make the ensemble-averaging
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time much longer than the longest decay time in the
fluctuating part of the correlation function. A compari-
son of different ways of arriving at the desired ensemble-
averaged time-dependent intensity-intensity correlation
function is shown in Fig. 6.

In Fig. 6 (top) the direct signal from the correlator
is presented. The sample is fixed in place and the cor-
relator software interprets the time-averaged correlation
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FIG. 6. Schematic of three possible ways of adjusting the
time-averaged correlation function for data taken on a non-
ergodic system. (Top) The incorrect way is to assume the
baseline is correct and simply scale up the measured correla-
tion function (solid curve) from the baseline so that the t = 0
value has the full variance of 2 (dashed curve). Although this
is what correlator software and most experimentalists will do,
it introduces uncontrolled factors in the analysis. (Middle)
The method of Joosten et al. [9)] is to find a speckle where the
intensity is the ensemble-average intensity. In this case the
fluctuating part of the measured correlation function (solid
curve) is correct and the correct correlation function is ob-
tained by shifting the curve up so the ¢t = 0 value is 2 (dashed
curve). (Bottom) The method we use here consists of moving
the sample to ensemble average directly. The correlation func-
tion is ensemble averaged on a time scale corresponding to a
sample translation by an illuminating beam diameter (d/v)
and the ensemble-averaged correlation function is obtained
from the data at shorter times.
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function as being of the form

{I(0),1()) _ 2 2
with f(g,00) = 0 (see Appendix B). It therefore takes
the time correlation function and fixes the long-time part
at unity and scales (12(0))/(I(0))? according to 1 + 52.
Since the data depend on the orientation of the sample
and changes when the sample is placed in a new position,
this way of looking at the data is incorrect in a completely
uncontrollable way.

In Fig. 6 (middle), we illustrate the clever technique
for the particular case where the scattered light is de-
tected at a spot where the time-averaged intensity and
the ensemble-averaged intensity are equal. This situa-
tion can easily be obtained by measuring (I)g first and
then finding a spot where the scattering intensity (count
rate), (I)r, is the same as (I)g. In this case the time
average and the ensemble average of the time-dependent
part of the correlation function are the same. In order to
find the ensemble-averaged correlation function it is sim-
ply necessary to shift the entire curve up until the t = 0
point equals 2. This sets the entire correlation function,
and in particular the shift is just f(q, 00).

In Fig. 6 (bottom), we illustrate our technique. The
usual software of the correlator correctly sets the long-
time behavior to unity and expands the ¢ = 0 behavior
to 2. The long plateau from the characteristic relax-
ation time of the dynamic part of the scatterers motion
to the ensemble-averaging time correctly yields the value
of f(g,00). Asshown in the Appendixes, this simple tech-
nique yields as good statistics as the clever scheme above
while avoiding the constraints of that method. In partic-
ular it is not necessary to limit the detector aperture to
a speckle size or less. The direct ensemble averaging is
straightforwardly performed for any sample where con-
ventional light scattering is done with no further adjust-
ment than a slow translation (or rotation) of the sample.
That the sample dynamics and ensemble-averaging times
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FIG. 7. Time-averaged intensity-intensity correlation
function for several different ¢ vs log times directly as taken
by the correlator for a gel, ensemble averaged by translating
the sample. From right to left, the scattering angles are 30°,
45°, 60°, 75°, 90°, and 105°. Note the well-separated time
scales for the dynamics of the system (~ 107* sec) and the
ensemble averaging (~ 1 sec).

can be readily separated is easily observed in the data of
Fig. 7.

III. WHY GELS ARE DYNAMIC AND
NONERGODIC

What makes gels interesting and distinct from other
forms of matter is the property that they are sufficiently
cross linked so that they do not flow (with sufficiently
small applied stress). They are thermodynamically sta-
ble amorphous solids [12]. Equivalently they have a fi-
nite shear modulus or rigidity [3,13]. We would therefore
expect that the part of the network responsible for the
rigidity must have some permanence and that each piece
of it cannot translate infinitely far away from its initial
position. The elastic part of the network can contribute
to the light scattering in two ways. If the network is
optically homogeneous then the only scattering is from
thermal density fluctuations — thermal excitation of gel
modes. A density fluctuation will scatter light and then
decay into the uniform nonscattering background. There
is no long-time correlation in the scattered intensity and
the fluctuations form an ergodic subsystem.

On the other hand, neutron-scattering techniques have
shown that polymer gels are inhomogeneous [14]. The
inhomogeneities are frozen-in fluctuations from the uni-
form ensemble average, and may be sufficiently large to
scatter light even in the absence of thermal fluctuations.
The statistical ensemble consists of all possible prepara-
tions of the gel. Each will have its own particular inho-
mogeneities. Experimentally, the inhomogeneities may
be regions of the network with a slightly different den-
sity of polymer vs solvent. They can move around with a
Brownian-like motion, but since they are part of the rigid
network they cannot move very far. If they do not move
at all then their correlation function is time independent
and finite. If they move somewhat then the scattered in-
tensity is completely correlated instantaneously but de-
cays to a nonzero value at long times.

There also may be scattering from material which is
not part of the rigid network. If the pieces are small
enough then they may undergo some simple or hindered
diffusion. If they are large then they may be trapped
in the network and resemble inhomogeneities of the net-
work itself. In general there is no reason to expect that
the scattered light does not consist of a mixture of all of
these contributions. However, it is convenient to view the
system in terms of two distinct paradigms to separate the
dominant contributions and see whether light scattering
can provide some quantitative information about partic-
ular gel systems. Since light scattering from most gels
shows a speckle pattern which appears static to casual
visual inspection, there are certainly both static and dy-
namic components. The two contrasting paradigms are
then:

e gel modes plus a static background (dirt),

e harmonically bound Brownian particles.
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A. Gel modes plus dirt

The gel modes and their contribution to light scatter-
ing have been extensively studied by many groups start-
ing with Tanaka. Following his notation the equation for
the displacement field, u, is [1, 15]

8%u

ot?
The inertial term on the left is driven by stresses from
the shear and bulk elasticity and Stokes-like viscous fric-
tion. The elastic stress is from the rigid network while
the friction is from the relative motion of the solvent
and the network. There are several solutions to these
equations corresponding to “fast” modes (—iw = f/p
from pii = —fu) or inertial relaxation to the viscous
fluid, and “slow” modes [~iw = (k + 4/3u)q?/f, from
fi = (s + 4/3u)(8%u/82%)] or elastic relaxation in the
viscous fluid. The fast modes, with a damping time of
10~7 sec [1], are outside the time range accessible to
even present day correlators, so we concentrate on the
slow modes. To calculate the light scattering from these
modes we note that the uniform displacements do not
produce changes in density, rather their gradients do.
Therefore the electric-field correlation function is propor-
tional to the correlation function of the gradient of the
displacement:

(Eq(0)E; (8)) o< (VUg(0)VUq(t)) ~ g*(Uq(0)Uy(t)),
(3.2)

ou

=puViu+ (k+ ip)V(V-u) - fo (1

(Ug(0)Uy(t)) = (U2(0))e= /1, (3.3)

where G = k+4/3p, and Uy(0) is the amplitude of the gel
modes. The result is a simple exponential decay with a
single time constant proportional to 1/q? as for a diffusive
process. We appeal to equipartition to find the amplitude
of the modes:

WA (U2)  Gg*(U2)  kgT ksT
= — 5 <U‘12>NG_q2’ (3.4)
(Bo(0)B; (1) oc XEL =G, (3.5)

The electric-field correlation function looks like that of a
diffusive mode whose amplitude is independent of g. If we
do not look especially at depolarized light scattering then
the scattered light we observe is from the longitudinal
modes which give density fluctuations rather than the
shear modes which do not affect the density.

The gel modes by themselves give a correlation func-
tion which decays to zero at long times. This correla-
tion function is the correct ensemble average for a sys-
tem which has as its equilibrium configuration no static
inhomogeneities which scatter. However, the typical gels
studied have frozen in structures. It may be that the
system of interest is the ensemble with these structures
removed, or it may be that these inhomogeneities are of
interest in the study and should therefore be considered
as part of the statistical ensemble since they are different
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allowable manifestations of the gel. In either case the ef-
fect of the frozen structures is to provide a static electric
field which interferes directly with the electric field from
the gel modes. The effect is the same as for a heterodyne
experiment with a static reference:

A + Be=G9't/f
A+B ’
where A is due to scattering from the illuminated in-

homogeneities, and B is due to scattering from the gel
modes [1]:

(Eq(0)Eg(t)) o (3.6)

Bl gt (3.7)
G

The last proportionality in Eq. (3.7) holds for polymer
gels in a good solvent [16]. Whether the static part is
considered interesting or not it must be taken into ac-
count in analyzing the dynamic part especially because
A is different for every position or orientation of the sam-
ple.

B. Harmonically bound Brownian particles

If the dynamic part of the light scattering comes from
the motion of uncorrelated scatterers (as distinct from
the gel modes problem where there is no scattering until
a thermal fluctuation creates a density gradient), then
the calculation of the electric-field correlation function is
direct:

(Eq(0)Eg (1)) = <Z ei[ri(0)—r; (1)) >
)

= Ze—q2<6r?(t))/6, (3.8)

where we have assumed that q - ér is a Gaussian random
variable. For a freely diffusing particle as a scatterer we
would have

(67%(t)) = 6D, (3.9)

where D = kgT'/6mna is the diffusion constant, 7 is the
solvent viscosity, and a is the particle radius. The correla-
tion function is a simple exponential with a time constant
varying inversely with ¢ and an amplitude which is in-
dependent of ¢. In form it is indistinguishable from that
of the gel modes. If the scatterers are bound or trapped
in the gel network then they cannot diffuse infinitely far.
If we imagine starting from the equilibrium position then
there is no restoring force from the network and the scat-
terer diffuses as a free particle. However, on leaving its
equilibrium position it encounters the network restoring
force. The maximum displacement from equilibrium is
when the elastic energy is equal to the thermal energy or
K (67%(00))/2 = K(62)/2 = kgT/2, where K is the effec-
tive spring constant of the gel network on the scatterer.
The problem of the “harmonically bound Brownian par-
ticle” (HBBP) has been solved several times in the lit-
erature and the time dependence of the displacement is

(7]
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6mna
B = K’
where 7 is the viscosity, K the spring constant, and a

the particle radius. This gives an electric-field correlation
function as

(@r’(®) = (6*)(1 —e7/™®), (3.10)

<Eq (O)E(’; (t)) [o ¢ e—q2 (62)(1-—e‘t/‘f‘B ) )

(3.11)

The correct ensemble-averaged correlation functions
for the two cases we consider are shown schematically in
Fig. 8. The time dependence of f(g,t) is very similar for
the gel modes plus dirt or for the harmonically bound
particle. For the gel modes plus dirt model the initial
decay of the correlation function is linear with time and
depends not only on the elasticity and viscosity but also
on the relative amount of static and dynamic scattering.
For the HBBP model the initial linear decay is directly
the diffusion constant. The saturated value f(g, 00) is de-
termined by the ratio of static to total scattering for the
gel modes case and the limited motion of the particle for
the HBBP case. A single ensemble-averaged experiment
cannot distinguish the two with any reasonable accuracy.
The real test is in the scattering wave-vector dependence.
In Fig. 8 we also show how the two cases separate when
q is varied.

f(q,t)

f(q,t)

0.2 t ]

0.0 L L
0 1 2 3
delay time

FIG. 8. The scattering function vs time for a typical non-
ergodic system can be interpreted in terms of diffusing parti-
cles or damped modes plus dirt or by the motion of a bound
Brownian particle. The signature of the two different be-
haviors is found in the g dependence. (Top) For the harmoni-
cally bound Brownian particle the entire deviation from unity
scales exponentially with g while the characteristic time is in-
dependent of q. (Bottom) For the dynamics plus dirt model
the baseline is independent of g (if the static scatterers are
much smaller than ¢~') while the characteristic time scales
inversely with ¢2.

IV. EXPERIMENTS ON POLYACRYLAMIDE
GELS

We have studied polyacrylamide gels prepared as in the
published literature [1,17]. We prepared solutions of each
component by dissolving 4.37-g acrylamide (M), 0.135-
g bisacrylamide (C), 36-mg ammonium persulfate, and
154-pul tetramethyl-ethylene-diamine (TEMED) in 20 ml
of water, respectively. The solutions are then filtered
using a 0.22-um filter, and mixed in glass tubes. By
fixing the relative proportions of each component and
by adding distilled and deionized water, gels with dif-
ferent total monomer concentrations are prepared. The
crosslink concentration [C/(M + C)] for all gels is 3% by
weight, and the total monomer concentration ( M + C')
varies from 4.3% to 2.45% by weight. Although the gela-
tion process takes about 1 h to complete at room temper-
ature, our gels were sealed in light-scattering glass tubes
about 1 cm in diameter and studied 30 days after prepa-
ration. All gels were clear and homogeneous by visual
inspection.

Other than the important modification of mounting
the sample on a rotation and translation stage via a
rubber necking, the experimental setup for our exper-
iments was the same as for a conventional dynamic-
light-scattering experiment. A He-Ne laser with wave-
length A = 6328 A in wvacuo is used as the light source.
The detector, goniometer, and oven system we used
was a Brookhaven Instrument light-scattering apparatus
(Model BI 200 SM). We used an ALV5000 correlator to
measure the correlation functions. The temperature of
the samples was set to be 25°C.

The ensemble-averaged intensity-intensity correlation
function for several values of the scattering wave vector
q as directly output from our correlator is shown in Fig.
7 for one of the gels we studied. Our correlator normal-
izes the correlation function by the ensemble-averaged
intensity squared rather than by the delayed correlation
function at long times. Note that the abscissa is log time
and that the two characteristic time scales are separated
by more than three orders of magnitude. The long-time
scale ~ 1 sec is determined by the ensemble-averaging
procedure where the beam size is ~ 0.2 mm and the
sample is translated at a velocity of ~ 1 cm/min and
rotated at less than one revolution per hour. The short-
time scale is determined by the dynamics of the system.
The fact that the correlation function saturates to ~ 1.4
rather than 2 as ¢ — 0 results from the finite size of
the aperture on our phototube. The aperture averages
over several speckles and therefore reduces the fluctua-
tions. In order to obtain the scattering function f(g,t)
from the data in Fig. 7 it is merely necessary to set the
aperture function 32 equal to the difference between (I2)
and unity (i.e., in this case 8% = 0.4 — (? was also mea-
sured to be 0.4 in other experiments with this particular
geometry).

The scattering function obtained in this way for the
gel is shown in Fig. 9. Comparison with Fig. 8 shows
that the correct model for the gel scattering is gel modes
plus dirt. The characteristic decay time is very ¢ depen-
dent while the static part of the scattering f(g,00) is ¢
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FIG. 9. Scattering function for several values of ¢ ob-
tained from the data of Fig. 7. The scattering angles are
in the same order as in Fig. 7.

independent. To make this statement more quantitative
we plot the ¢ dependence of f(g, o) in Fig. 10 (top left)
for five different gels. We see that there is less than 5%
variation instead of the strong exponential dependence
expected for the HBBP model.

The g dependence of the initial slope of f(g,t) is shown
in Fig. 11. The ¢® dependence from either model is
clearly demonstrated. The slopes of the curves give the
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ratios of the elastic constant to the viscosity for the dif-
ferent gels. To further elucidate the difference between
the two models, we show the full scattering function
f(g,qt) vs log(¢?t) in Fig. 12. Scaling the time with
q* we see that the data collapse, so that the character-
istic time varies as g2. Moreover, the measured f(q,t)
are very well represtented by the form exp[(—t/7)?] with
[ =1.00 £+ 0.05, i.e., a single exponential.

We also measured the static scattering intensity I(q)
for all gels as a function of ¢. From our measurements
of f(g,00), we extract the contributions to (E,(0)E;(t))
from the static inhomogeneities and the gel modes; these
are given by A(q) = I(q)f(g,o0) and B(q) = I(g)[1 —
f(g,0)], respectively [see Eq. (3.6)]. In Fig. 10 (top
right) we plot B(q) for all five gels we studied. Notice
that B(q) is essentially independent of ¢ and the total
monomer concentration ¢, in agreement with Eq. (3.7).
However, we find that A(g), the scattering from the in-
homogeneities, is strongly concentration dependent, but
weakly g dependent, as shown in Fig. 10 (bottom right
and bottom left). The weak ¢ dependence suggests that
the inhomogeneities are smaller than the wavelength of
light. Using the Born approximation and modeling the
inhomogeneities as independent spheres, we estimate the
characteristic size £ of the inhomogeneities from A(g) and
find that £ ranges from 500 A to 820 A for the lowest and
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(Top left) q dependence of the saturated long-time part of the scattering function f(g,t) for five different poly-

acrylamide samples with different total monomer concentrations. (Top right) Static scattering intensity due to the gel modes
as a function of g for the five gels. (Bottom left) The g dependence of the static scattering intensity due to inhomogeneities
for the five gels. The scattering intensities are normalized by the extrapolated g = 0 value. In these three figures, the symbols
represent total monomer concentrations at 4.3% (0); 3.87% (¢); 3.34% (o); 2.92% (A); and 2.45% (e). (Bottom right) The
extrapolated static scattering intensity A(q = 0) due to the inhomogeneities as a function of concentration. The symbols are
for experimental data, and the solid line is a guideline with A(0) ~ ¢3, where ¢ is the total monomer concentration. The unit
of the vertical axes for the top right and bottom right is the same, although they are arbitrary.
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diffusion or damped modes. The symbols are the same as for
Fig. 10.

the highest concentration gels. This increase in £ should
also lead to an increase in the static scattering from the
inhomogeneities; in the Born approximation, the scat-
tering power is proportional to £6. Since the scattering
is proportional to the number of scatterers, we expect
that A(g = 0) ~ ¢¢3. Our measurements suggest that
€ ~ 0802 and that A(q = 0) ~ ¢3 (Fig. 10); this is
consistent (to within significant uncertaintly) with the
crude model suggested above.

On the other hand, if the inhomogeneities are too small
then they should move in the gel matrix as harmonically
bound Brownian particles and we should again see a ¢
dependence of f(g,00). From our measurements, we ob-
serve about a 5% change in f(g, 00). Using Eq. (3.11), we
estimated that the inhomogeneities move less than 100 A.
We should note that if the scattering is completely from
harmonically bound Brownian particles, then A and B
should have the same concentration dependence.

The results of this study are thus conclusive: the gels
we have made are fairly strong gels with frozen in in-
homogeneities whose dynamics is dominated by the gel
modes. The scattering function is very well represented
by Eq. (3.8).
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FIG. 12. The data in Fig. 9 have been replotted as a func-
tion of g%t to show that the this makes the curves for different
q collapse.
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V. HOW COULD ANYONE GET THE RIGHT
ANSWER WITHOUT ENSEMBLE AVERAGING?

There have been extensive studies of light scattering
from polymer gels and other gel systems [1, 2, 17-20].
With the exception of Joosten et al.’s work none of them
addressed the problem of ensemble averaging [9]. Now
that we know the origin of the scattering in the gel, we
can see what the result of time averaging without sample
translation would be. A correlator assumes that it is
seeing a signal of the form

I(0)I(t)r
(D%
The ensemble average G2 from our measurements is
Gaens = (A+ Be™*7)?/(A+ B)?. (5.2)

If instead of ensemble averaging we were to look at scat-
tering from a single realization of the ensemble (i.e., the
detector sits at a particular position z, on the screen),
we would have

Gozs = (Azs + Be—t/7)2/(‘4zs + B)z,

=1+ %Gzeq - (5.1)

(5.3)

where the squared scattering function G2 depends on
sample position because the static part of scattering, A,
depends on which static speckle is illuminating the de-
tector. In this case, A,, fluctuates from zero to some
unlimited value with an average that is A = A¢ns. The
correlator interprets the data as in Eq. (5.1), setting

2; = B2°B(2A,, + B)/[B%A2, + (A + B)?] and the
correlation function as

2A,,et/T 4 Be=2t/T
24..1 B

Goef = (5.4)
Now the answer can be whatever the experimentalist
wants since the sample can be oriented to get virtually
any value for A,;. However, this will lead to quite irre-
producible results. There are several choices. One way to
obtain consistent results is to orient the sample to make
A_s large and assume a heterodyne signal. Another way
is to make A,, as small as possible and assume a ho-
modyne signal. Once it is realized that the usual signal
is a combination of homodyne and heterodyne, one can
choose a subtraction for each sample that makes data
taken from different measurements consistent [6]. Note
that the possibility of obtaining the correct results for
the dynamics of the system by any of these procedures
only works in the case when the scattering involves dy-
namic plus static scattering. If the system were actually
the harmonically bound Brownian particle there would
be no correct way to interpret the data without doing
the correct ensemble averaging.

There are other ways that experimentalists may have
chosen to collect the light-scattering data. When one re-
alizes that the scattering intensity changes for different
placements of the sample, one might rotate the sample so
that the count rate from the photon detector is roughly
the same before every measurement. Although the data
collected in this way are consistent (i.e., different mea-
surements yield the same results), the analysis is incor-
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rect unless the scheme suggested in Refs. [8, 9] is used to
account for the nonergodicity of the system.

VI. CONCLUSIONS

There are two main points we wish to emphasize from
this study. The first concerns the general problem of
dynamic light scattering from nonergodic systems, the
second concerns our particular findings for the polymer
gels we have studied.

If you want to do light scattering from a system which
may be nonergodic, the correct scattering or correlation
function can be most directly and efficiently obtained
by translating the sample in the incident laser beam
so that different regions are illuminated while collecting
data with a correlator in the usual way. The effect of
the translation may be factored from the data using Eq.
(B2).

Simply put, the best way to get the ensemble aver-
age is to directly ensemble average by averaging over dif-
ferent representations of the sample. In the body and
appendices of this paper we have shown that the aver-
aging time and signal-to-noise ratio are at least as ad-
vantageously obtained with this technique as others pre-
viously prescribed. Moreover, the present technique has
the additional advantage that it can be used with ar-
bitrary aperture size with no assumption about the dy-
namics (or lack of dynamics) at any time scale and for
multiple-scattering experiments. If it is inconvenient to
move the sample, then moving the detector over many
speckles will have the same consequences but will neces-
sitate a less well-defined scattering vector, g. [In this case
the translation function Eq. (A7) has the argument vt/&,
rather than vt/d.]

For the particular gels we have studied we conclude
that the scattering function is the result of a dynamic
part due to thermal excitation of gel modes heterodyned
with an essentially static part due to inhomogeneities in
the network. An interpretation in terms of the other
proposed mechanism, restricted motion of bound parti-
cles or inhomogeneities, is inconsistent with our results,
especially the ¢ dependence of the scattering function at
long times.

N,N N, N’
(E(t)E*(t + 7_)) — <Z eiq-[r,-(t)—rj(t+'r)]> _ <Zeiq.[r,‘(t)—rk(t+‘r)]> + <Z eiq.[r,-(t)—r;(t+r)]>

1,3 i,k

The time averaging also directly averages over different
ensembles. The last term in this equation is zero since
the interfering scatterers are the new and old ones which
are uncorrelated. If we further imagine that there are
no correlations between different scatterers then the only
terms which survive the ensemble averaging are the in-
terferences of a particle with itself at a later time:
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APPENDIX A: SAMPLE TRANSLATION
FUNCTION

We now address the calculation of the time-averaged
correlation function that we obtain by moving the sam-
ple while taking data with the correlator. We again want
the electric-field correlation function. The basic idea is
that when the sample is translated there are scatterers
which leave the illuminated area (on the trailing edge of
the beam area) and new scatterers which enter (on the
leading edge). Since the beam width is macroscopic, we
expect that there is no correlation between the new and
old scatterers, and the scattered electric fields are corre-
lated only from the scatterers which remain illuminated.
It is clear that there should be no correlation remain-
ing when the sample has been translated a beam diam-
eter. The completely new set of scatterers represents a
new manifestation of the ensemble and the time average
therefore ensemble averages as well. However, there is a
new decay time in the correlation function related to the
time to traverse the beam.

At time t we imagine that N scatterers are in the beam
and the electric field is given by

N
By = 3o

At a time 7 later the positions of the scatterers may have
changed, but the motion of the sample has left n of them
out of the beam and replaced them with n’ new ones.
The scattered field is now

N n n’'
E(t+T) — Z e’iq-ri(t+r) _Z eiq-rk (t+7) _+_Z eiq~r;(t+‘r).
i k l

(A2)

(A1)

The electric-field correlation function is then directly

(A3)

,l

—

(E(0)E*(t)) = <§: eiq'lén(t)]> _ <i eiq'[ér;(t)]>

=[N — n(t)]e= 7 6T ®), (A4)

Here it is clear that we have assumed an average num-
ber of scatterers N and have explicitly written that the



46 NONERGODICITY AND LIGHT SCATTERING FROM POLYMER GELS 6561

average number of scatterers translated out of the beam
increases with time. More generally if there are nontrivial
correlations between dissimilar particles (on length scales
smaller than the beam width) of the form

N,n
<Z eiq-[r,'(o)—rk (t)]> = nf(q, t)1

i,k

(A5)

then the normalized electric-field correlation function is
[10]

(E(O)E*(t»time_ —n (E(O)E*(t»ens
BT e— =(1 (t)/N)———U)ens

= (1 —n(t)/N)f(g,?).

To complete this part we need an expression for n(t). If
we assume a circular beam of diameter d then

(A6)

n(t)/N = 7 — 2 arccos(vt/d) + sin[2 arccos(vt/d)].
(A7)

The function 1 — n(t)/N is plotted in Fig. 13. It has an
initial linear decay. Also in this figure is the convolution
of this function with a scattering function for exponential
decay plus constant, f(g,t) = (A + Be~t/™)/(A + B)
(where we have arbirarily chosen B = 1 — A = 0.57,
To = 50 usec, and d/v = 1 sec). This figure should be
compared with the data shown in Fig. 9.
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FIG. 13. (Top) The calculated intensity-intensity corre-

lation function as a static sample is translated in the beam,
using Eq. (A7). (Bottom) the calculated time-average corre-
lation function for a nonergodic sample ensemble averaged by
translation. Compare with the experiment plotted in Fig. 9.

APPENDIX B: FINITE APERTURE EFFECTS

Up to now we have assumed a point detector which
would sample the light scattered at a particular q. Now
we consider the role of a finite aperture on the photode-
tector. If we accept photons through a finite aperture
then we are averaging over (or integrating over) a region
of g space. The averaging will naturally reduce the fluc-
tuations. Spatial correlations of the scattered intensity
are characterized by the speckle size £, at the detector.
If the aperture is small compared to £; we see the full
variance. If the aperture is much larger than &, then we
accept many [~ (r/&)? with r being the radius of the
aperture] speckles. The magnitude of the fluctuations
relative to the intensity decays as the square root of the
number of speckles. More precisely the correct reduction
in the magnitude of the fluctuations is given by integrat-
ing over g to obtain the aperture function § [21] where
the conventional result for an ergodic system is written:

OO ime _ 1 4 g2 | f(g.8) 2,

(I >%ime
and 32 = (r/&) 72 for r > &, and 2 — 1 for (r&,) < 1.
Since the effect of the finite aperture is taken into account
by an integral over g, we see from Egs. (A5) and (A7) that
it is independent of the translation function n(7), and
therefore reduces f(q,t) the same way as for an ergodic
system.

Finally the relationship between the time-averaged in-
tensity correlation function of the translated sample and
the ensemble average of the static sample is

(I(O)I(t))time

e = 1+ (L= n@)/NP6 | f(a,0) P

(B1)

(B2)

It should be noted that the method of Refs. [8] and [9]
cannot be used with a finite aperture in a simple manner.
Although we have not explicitly demonstrated it here,
Eq. (B2) is equally appropriate for the case of multiple
scattering or DWS [22], where the method of [8] and [9]
breaks down.

APPENDIX C: HOW LONG TO AVERAGE?

In principle, there are two factors that determine the
error of the measured intensity-intensity correlation func-
tion. One factor is the signal-to-noise ratio related to the
photon-counting statistics and dependent on the scatter-
ing intensity (see, for example, Ref. [23]). The other
factor is the accuracy of the average correlation function
which is related to the number of different system con-
figurations (ensembles) included in the average. For a
light-scattering experiment for an ergodic system, while
collecting photons for a better signal-to-noise ratio, the
system goes through many possible configurations re-
sulting in different speckles, and the duration of mea-
surements has to be long enough to give good statistics
in both categories. For a nonergodic system, ensemble
averaged by sample translation, the accuracy is deter-
mined directly by the number of independent systems
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probed, which depends on the total length traversed by
the beam. [Since by Gaussian statistics of the scattered
light (I(0)I(0)) = 2(I(0)?) or f(g,0) = 1, the accuracy is
primarily useful for determining f(g,c0) and thus is an
interesting quantity only for nonergodic systems.]

The signal-to-noise ratio of the time-averaged inten-
sity-intensity correlation function computed by a com-
mercial correlator is simply the square root of the total
number of counts in the channel. If the count rate (in-
tensity) at the photodetector is n photons/sec and the
channel width is 7 sec, then the correlator computing
(I(0)I(t)) increases the counts in the channel at a rate of
[(n7)2/7][(Z(0)I())/{I(0)2)] counts/sec. The signal-to-
noise ratio of the correlation function is just the recipro-
cal square root of the total number of counts after time
T in the particular channel. Usually we are interested in
the signal-to-noise ratio of f(g,t) which we call c~1. We
then have

21 148t

= T 4pfi(g,0) (€D

where 7" is the measurement time.

For sample translation the accuracy with which we
know f(g,00), assuming that the noise due to photon
statistics is sufficiently low, is the square root of the num-
ber of ensembles averaged. Since the scattered light is
completely decorrelated when the sample is translated
to a beam diameter, this number is just the path length
divided by the beam diameter, or

Nens = vT/d. (C2)

The additional constraint is that the characteristic time
7. of the dynamics of the system should be long compared
to the channel width. In most cases we also want 7, short
compared to the ensemble-averaging time d/v so that
the “interesting” dynamics of the system are explored.
(It is interesting to note however, that with ensemble
averaging by translation the correct correlation function
is obtained from Eq. (B2) even if the total sampling time
or the longest delay time of the correlation function is
shorter than 7.. The result will simply be a correlation
function which has not yet saturated as a function of
delay time t, i.e., f(q,t) will be correctly measured for
t < d/v but will be truncated after d/v). With 7. at
1075 sec, 7 at 1076 sec, d = 0.1 ¢cm, v = 0.01 cm/sec,
and T = 10° sec, all of the conditions are met with an
accuracy and signal-to-noise ratio of better than 1%.
For completeness and for comparison, we also esti-
mate the error in measured correlation functions using
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the technique of Refs. [8] and [9]. The signal-to-noise ra-
tio is determined again from photon-counting statistics.
However, the information obtained about the long-time
correlation f(g,00) comes from the evaluation of the ratio
(Iens/{I)time = Y. The accuracy of Y is the determin-
ing factor. The ensemble-averaged intensity is readily
available by opening the aperture to the photon counter
so that many speckles are sampled. The time-consuming
part is evaluating the time average. If there is a char-
acteristic time for the dynamics of the system, 7. (and
the a quasi-infinite time scale associated with the non-
ergodicity), then to get (I)time one must collect data for
many T.. The accuracy is simply the inverse square root
of T/7:

V Ntime = vV T/TC.

However, there is a fundamental problem which arises
if the correlation function of the system and its dynam-
ics are not known a priori. Suppose that the system is
changing on a time scale comparable to or slightly longer
than the measurement time, then the accuracy of the
measurement is shot; that is, the uncertainty of (I)¢ime is
100%. Unless the dynamics and the characteristic times
are known and expected there is an uncontrolled approx-
imation in evaluating the correlation function. Note that
the translational ensemble average does not have this
problem. In fact the sample translation technique ac-
curately gives the correlation function for time less than
the cutoff time d/v even if the system is changing on any
longer time scale.

To compare the time for data acquisition for the two
techniques, we first note that, for Refs. [8] and [9], one
has to use a small aperture to make sure g is larger. Cut-
ting down the aperture reduces the count rate and, for
the same signal-to-noise ratio, the time required for data
collection when 32 = 0.95 is about 10 times longer than
when 82 = 0.4. We also must use the assumption that we
know a priori that there is a characteristic time 7. and
then saturation. In this case the Joosten et al’s tech-
nique has an accuracy given by Eq. (C3). For the sample
translation technique, knowing that there is a character-
istic time scale after which there is nothing happening,
it is most efficient to set the ensemble-averaging time to
this time, i.e., d/v = 7. in Eq. (C2). This makes the
accuracy the same for the two measurements, but only
under the assumption that we have a priori knowledge of
the system dynamics. Otherwise the sample translation
technique always wins.

(C3)
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FIG. 1. Schematic geometry for a dynamic-light-
scattering experiment, where we imagine that either the sam-
ple (coordinates z) or the detector (coordinates z;) can be
translated. The detector is schematically replaced by a screen
to illustrate the speckle pattern.



