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Constant-pressure molecular-dynamics simulations of the crystal-smectic transition in
systems of soft parallel spherocylinders
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In order to investigate thermodynamic properties and microscopic structure around the crystal-
smectic transition, we present constant-pressure molecular-dynamics simulations for soft parallel
spherocylinders as a model for liquid crystals. The method of Andersen [J. Chem. Phys. 72, 2384
(1980)] as well as the method of Parrinelio and Rahman [Phys. Rev. Lett. 45, 1196 (1980)] are
applied to a right parallelepiped simulation box, and the equation of state for this model is evaluated.
Thermodynamic properties such as enthalpy and volume as functions of reduced density p' or of
temperature show a clear Brst-order transition. The dependence of I~, the square root of the specific
area of the plane perpendicular to the molecular axis, on p' shows a feature characteristic of two-
dimensional melting. We calculate the specific length l, in the direction of the molecular axis, which
corresponds to the thickness of a smectic layer in the liquid-crystal region. From the p' dependence
of l, and 1,/lz, we show that the anisotropy of the molecular volume plays an important role in the
crystal-smectic transition. We also observe a clear change in both diffusion and structural properties
before and after this transition. The mean-square displacements in directions perpendicular to the
alignment show that in the smectic phase the molecules dift'use freely within the layers, although the
density wave in the direction perpendicular to layers does exist even after the transition.

PACS number(s): 61.30.—v, 64.70.Md

I. INTRODUCTION

Liquid crystals are intermediate states of aggrega-
tion of organic compounds between crystalline solid and
isotropic liquid. They are characterized by molecular
orientational order. In particular, the nematic phase
has orientational order alone, while other liquid-crystal
phases have some additional kinds of order. Altogether
up to 17 different thermotropic liquid-crystal phases have
been identified [1].

In this paper, we con6ne our interest to smectic-liquid-
crystal phases. They are composed of molecules segregat-
ing into periodic layers. In other words, the time average
of the molecular position forms a one-dimensional den-
sity wave. In this phase, the layers are able to slide over
one another relatively easily. The simplest smectic phase
is the smectic A phase in which the average of the molec-
ular long axis is perpendicular to the layers. When the
molecular director makes an angle other than 90' to the
layers, the phase is called smectic | . In both smectic A
and | phases, each layer is liquidlike in the sense that the
molecules difFuse separately in each layer. On the other
hand, the smectic B (hexatic B) phase has a long-range
sixfold bond orientational order in addition to the layer
structure.

Many attempts have been made to understand these
complex fluids. As early as in the 1940s, Onsager devel-
oped a theory which takes the excluded volume efFect into
account, and he pointed out that the orientational order-
ing in nematic-liquid-crystal phases can occur in a system
with repulsive forces alone [2]. Since the late 1950s, many

models with attractive forces have been proposed. Al-
though some of these models are rather empirical, they
can explain the behavior of both nematic and smectic
phases. On the basis of these studies it was widely be-
lieved that the attractive force is indispensable for the
appearance of smectic phases. In 1979 Hosino, Nakano,
and Kimura calculated the free energy of hard-rod sys-
tems within the second and third virial approximation
and predicted the existence of a smectic phase even in a
system without attractive force [3].

Molecular-dynamics (MD) computer simulations are
now an established method for analyzing microscopic
structures and have the advantage over other theoreti-
cal approaches, such as mean-field approximations, that
the MD techniques do not involve any uncontrollable ap-
proximations once the interactions among the molecules
are given. The MD simulations have an advantage over
Monte Carlo (MC) simulations in the sense that they
treat the time evolution of the molecular motions directly
so that we are able to obtain diffusion processes.

For a system composed of hard spheres, the seminal
MD simulations by Alder and Wainwright showed that
the solid-fluid first-order transition will occur in a sys-
tem with repulsive force alone [4]. The early MD simula-
tions of anisotropic particles of Robertus and Sando did
not show any liquid-crystal phase for hard spherocylin-
ders [5]. In 1987, Stroobants, Lekkerkerker, and Frenkel
studied a system of parallel spherocylinders by MC sim-
ulations and ascertained that a smectic phase can also
be formed by hard-core repulsion [6]. In 1990, Veer-
man and Frenkel extended this work to a system of hard
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spherocylinders with full orientational freedom and car-
ried out constant volume MD simulations after preparing
well-equilibrated configurations by MC simulations and
observed stable nematic and smectic phases [7]. This
work shows that the introduction of orientational free-
dom increases the anisotropy necessary to exhibit a smec-
tic phase when compared to the system with molecules
constrained to be parallel to each other.

For soft-core spheres, solid-fluid phase-transition den-
sities have been determined numerically for different val-
ues of the exponent n in the soft-core potential by MC
simulations [8]. The dependence of physical properties
on the inverse power n are also calculated including hard
spheres as n = oo. For instance, the reduced melt-
ing densities p' are larger when n is smaller (potentials
are softer). On the other hand, systems of anisotropic
molecules with soft-core repulsion have not been studied
by MD simulations to our knowledge.

Although real liquid crystals have potentials that in-
clude both the repulsive and attractive forces, it is very
interesting to determine the role of each force. Here
we confine our interest to repulsive interactions and
study systems of parallel spherocylinders described by
an inverse-power pair potential. Another point to make
is that this is an attempt at constant-pressure MD sim-
ulations for systems of anisotropic particles. In this pa-
per, we report on the thermodynamic properties of the
crystalline-solid to smectic-liquid-crystal transition. We
also analyze the differences between the crystalline and
smectic phases to see whether these smectics, realized by
repulsive force alone, possess the characteristics observed
in real smectic liquid crystals.

In Sec. II, the model and methods are explained. In
Sec. III the results are discussed in two divided subsec-
tions; Sec. III A discusses thermodynamic properties and
Sec. III B gives a difFusion and structural analysis. Con-
cluding remarks are given in Sec. IV.

where
2 2x, +y, ,

—L&z,, &L

II. MODEL AND METHODS

A. Model

We study a model of soft-core parallel spherocylinders
(cylinders with length L and diameter D, capped at each
end with hemispheres of the same diameter). The long
axes of the molecules are fixed to the z axis of the MD
simulation box. We use a potential defined by

In this work, we keep the ratio of the length and the
diameter of the cylinder L/D fixed at unity so that the
anisotropy of the molecule ( & + 1 ) is 2.

B. Methods

1'. Generul aspects

In order to investigate the thermodynamic properties
and microscopic structure, we perform constant-pressure
MD simulations in several ways.

It is known that the scaling property exists for systems
of soft-core potentials and the equation of state can be ex-
pressed uniquely in terms of the reduced density p'. The
reduced density we use is defined as p' = Nva/VT ~",
where N is the total number of molecules, V is the to-
tal volume of the system, and T is the temperature. We
introduce va = sirDs(1+ &~ &~) which can be defined as
the volume of a molecule because it is convenient to com-
pare data for systems of different anisotropies. We veri-
fied that the scaling property is well preserved even for a
small system size N = 108 of soft-core spheres (L/D = 0)
by both constant-volume and constant-pressure MD sim-
ulations.

For each simulation the temperature is kept constant
by the constraint method and periodic boundary condi-
tions are applied. Different system sizes are examined to
observe the system-size effects and different initial con-
figurations are employed to make sure that the results do
not depend on them. The long axis of the spherocylin-
ders are fixed to the z direction of the MD box. In each
simulation we start with an initial configuration in which
the molecules are arranged as stacks of two-dimensional
triangular lattices in the zy plane. The main results we
report here are for a number of molecules N and an ini-
tial configuration as shown in Table I. The time step 4t
for integration is chosen to be At = 2.0 x 10 4 in units
of (mD /s) &, where m is the mass of the molecule. This
value of At is smaller than one-hundredth of the period
in the velocity correlation function.

8. Constant-pressure simulations

Initially, for the purpose of getting a picture of the
overall behavior, we used Andersen's constant-pressure
method in a cubic MD box [9]. We found that, for a cubic
cell, there is an imbalance of the internal stress tensor
between the z direction and the xy direction. Since this
situation does not simulate the actual environment under
the hydrostatic pressure, we adopt several other methods

, x, + y2 + (z,~
—L)~, otherwise,

where r,~ is the distance between the ith and jth
molecule, i.e. , r,, = [r,~[ = [r~ —r, [, r, and r, being,
respectively, the positional vectors of the ith and jth
molecule; x,~, y,~, and z,~ are respectively the x, y, and
z components of r,z. We choose the inverse power n to
be 14 which corresponds to a relatively fast decay. We
take the unit of energy as s and the unit of length as D.

Number of molecules

224
600
792

Initial configuration
Number of layers Type of stacking

ABAB
5 AAAAA
6 ABCABC

TABLE I. System sizes and initial configurations.
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as described below.
For the crystalline-solid phase, the method of constant

pressure by Parrinello and Rahman [10j is applied in a
restricted manner that only the length of the MD box can
change but not the angles [11]. For our simulation box,
we chose a right parallelepiped so that the edge length
L in the 2: direction is equal to L„,the length in the y
direction, and we write Li = L~ = L„.In this model,
only the diagonal elements of the internal stress tensor
II are nonzero. In addition, the requirement L, = L„
leads to the condition II = II» = Pi T.his quantity is
interpreted as the pressure acting on the four side walls,
which surround the parallel spherocylinders, of the simu-
lation box. On the other hand, II„—= P, is the pressure
acting on the upper and lower walls of the box.

In the conventional Parrinello and Rahman method,
the shape and volume of the simulation box change au-
tomatically according to the change in the instantaneous
pressure. Therefore the method is most appropriate
in the study of crystalline-structure phase transitions.
When we apply this method to our system of parallel
spherocylinders, the molecules start difFusing when the
temperature (or reduced density) reaches a certain value
and we can specify that value as the melting temperature
(or melting density). Above this temperature (or below
this density), it turns out that the system becomes a one-
layer structure because of the fluctuation perpendicular
to the layers. This suggests that the automatic shape and
volume change in the Parrinello and Rahman method is
too sensitive for a system in which the constituent par-
ticles diffuse. In order to avoid this problem, we use the
following three methods for the liquid-crystal phase.

(i) We modify Andersen's method in such a way that
the edge length L, in the direction of the molecular axis
is not necessarily identical to Li, but the ratio L,/Li is

kept constant during each run.
(ii) We apply a further restriction that L, =const

to the Parrinello and Rahman method of a right par-
allelepiped simulation box. In this way the four walls
of the MD box in the directions of the molecular short
axis are allowed to fluctuate depending on the internal
pressure and will relax to equilibrium.

(iii) We fix the value of Li in contrast to the upper
method, so that only the two walls in the long direction
of the molecules can vary.

The fundamental outline of these three methods is bet-
ter understood by referring to Table II where P,„denotes
the desired external pressure. The quantity to be fixed
during each simulation is given in the first column. The
relation in the second column is guaranteed from the re-
quirement of each constant-pressure method itself. What

we have to do is actually search the density (or temper-
ature) that gives the condition presented in the third
column where the angular brackets denote the average
over a certain duration of time steps. We adopt only
those data that satisfy the condition in the third column
within 5' error.

Every run consists of more than 5000 time steps and all
values reported here are the averages over the last 1000
time steps of each run.

III. RESULTS

The results reported in this paper are obtained from
the appropriate constant-pressure simulation methods
mentioned in the previous section. The method of Par-
rinello and Rahman is applied for the crystalline-solid
phase, and for the liquid-crystal phase we apply all three
methods explained in Table II. We divide this section
into two parts. In Sec. III A, we mainly report on the
thermodynamic properties. Section III B is dedicated to
the diffusion properties and structural analysis where we
discuss the crystal-solid and liquid-crystal phases sepa-
rately.

A. Thermodynamic properties

Combining the data of all the methods we get a graph
of the equation of state (Fig. 1). Data for both system
sizes N = 600 and N = 244 are plotted in this graph.
Each symbol specifies both the method and the system
size as indicated in Table III unless it is stated otherwise.
We observe a clear first-order transition in this equation
of state. We show in Sec. III B that the state after melting
is ascertained to be the smectic-liquid-crystal phase from
the behaviors of the mean-square displacements and the
pair-distribution functions. Note that in all the figures
in this section we show the data for two sizes as denoted
in Table III. As will be seen, the size effect turns out to
be small.

Enthalpy per particle is defined H/N = (PV+ U;„t)/N
where P is the pressure, V is the volume, U;„qthe internal
energy, and N the number of particles. At the density
where the transition takes place in the equation of state,
we observe a discontinuous change in H/N as seen in Fig.
2. We propose two explanations for why the deviations
are relatively large in the liquid-crystal density region:
(1) this quantity H includes errors of three thermody-
namic quantities P, V, and U;„t.(2) This quantity H is
rather sensitive to the method employed.

The specific volume V/N as a function of temperature

TABLE II. Explanations of our constant-pressure MD methods for simulating liquid crystals.

Method

(i)
(ii)
(iii)

Fixed value

L,/Li
I
li

Automatically satisfied
in each method

2(Pi) + (P ) = P-
(Pi) = (P,
(P) = 3P,„

The correlation we have to
search by changing p or T

(Pi) = 3P,„,(P, ) = 3P,

(Pi) 3 P, „
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TABLE III. Symbols in figures. x 103

10

Region

Crystal
Liquid

crystal

Simulation method

Parrinello and Rahman
Method (i)
Method (ii)
Method (iii)

System size
N =600 N =224

T is given in Fig. 3(a) for N = 224 and in Fig. 3(b) for
N = 600. In Fig. 3(a), we use the symbols defined in the
third column of Table III instead of the fourth column. In
both figures, the temperature is described in units such
that T = 500 for p' = 0.50. The data is nearly linear in
the crystal phase as well as in the smectic phase. There
exists a steep change between the two phases. The error
bars for system size N = 600 are much smaller than those
for N = 224 especially after the transition. This clearly
shows that the Huctuation is smaller for larger system
size.

In order to study the microscopic situation around the
transition, it is interesting to see the anisotropy of the
specific volume v associated with each molecule. We
define the specific volume v~ such that v~ —= V//N = l, l&~

where l, = L,/n„n,, being the number of layers, and

t~ = (Lz/n~)~, ng being N/n, The ratio t, /l~ serves
as a measure for the anisotropy of the specific volume
or of the space required for each molecule. From Fig.
4, we see that in the region we study, the anisotropy of
the specific volume t, /t& is larger than the anisotropy
of the molecule (& + I = 2). A discontinuous change is
observed in I,/t~ at the transition density region.

It is also interesting to study the density dependence
of l~ and l, as shown in Figs. 5 and 6, respectively. In
the crystal region, t~ increases continuously while t, is al-
most constant except for the pretransition region. At the
transition density, a discontinuous change is observed in

t~, indicating that two-dimensional melting takes place
in the direction perpendicular to the molecular axis. As

8
0.3

I

0.4

P

0.5 0.6

FIG. 2. Enthalpy per particle H/N plotted against re-
duced density p'.
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I
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we show in Sec. III B, the molecules actually diffuse along
the layers. On the other hand, t, decreases in the transi-
tion region. The decrease is considered to come from the
fact that the volume expansion on melting in the direc-
tion of layers makes it easier for the spherocylinder caps
of the molecules to be pushed into each other's adjacent
layers.

0.85

20-
0.80—

x=600

0.75—

10- 0.70—

0.65
200

I

400 600 800 1000

0
0.3

I

0.4
p

FIG. 1. Equation of state of parallel spherocylinders of
anisotropy D + 1 = 2, calculated from four different constant-
pressure MD methods.

T

FIG. 3. Specific volume V/N as a function of temperature
T for system size (a) N = 224 and (b) N = 600. For both
systems ~ denotes values from the method of Parrinello and
Rahman; 0 denotes data from method (i); D, method (ii);
and Q, method (iii).
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2.4—

~ ~
~ ~

These results mentioned above show that the shape of
the MD simulation box should not be fixed for simulating
anisotropic molecules.

B. DifFusion and structural analysis.

2.2—

2.1—

2.0
0.3

I

0.4
I

0.5 0.6

FIG. 4. Ratio of molecular lengths l, /l~ vs reduced den-
sity p' for N = 600.

In this subsection, we show the results for diffusion and
structure for two different densities separately, one higher
and another lower than the density at the crystal-smectic
transition observed by thermodynamic properties. The
main properties observed are the mean-square displace-
ment in each direction to analyze the diffusion processes
and the correlation functions in direction parallel and
perpendicular to the molecular axis by computing the
average pair-distribution function. We also show the av-
erage molecular positions.

Crystalline-solid phase

0.75

0.70—

0.65—

0.60
0.3

I

0.4
I

0.5 0.6

1.65

FIG. 5. Molecular length perpendicular to the long axis
L~ as a function of reduced density p'.

We start our constant-pressure MD simulations in the
crystalline-solid phase from six different initial configu-
rations for system sizes N = 224 (four layers), N = 600
(five layers), and N = 792 (six layers), and we obtain
structures as presented in Table IV. The characteris-
tic feature common to all these six structures is that the
layers are stacked in the close-packed configuration where
the molecules in adjacent layers never stack on top of one
another. It is also obvious from Table IV that the order
of stacking does not extend beyond the nearest-neighbor
layers. It is interesting to note that when the energies of
close-packed structures are compared at absolute zero for
a system of Lennard-Jones spheres, the differences in the
minimum potential energies among an hcp (ABAB), a
random stacking, and an fcc (ABCABC) are negligibly
small (less than 0.01%). So it is not surprising that the
system does not show much preference for a particular
stacking.

In what follows, we present diffusion and structural
analysis results for a system with number of molecules
N = 600. For the crystalline-solid phase we show the
results for p' = 0.534.

For the case in which we start from the stacking
AAAAA, the mean-square displacement (MSD) in the
direction parallel to the molecular axis z (the broken
curve) and perpendicular to it (the solid curve, z direc-

1.60—
TABLE IV. Initial con6gurations and resulting structures

in the crystalline-solid phase.

1.50
0.3

I

0.4

Q4 e g & ~

I

0.5 0.6

Initial con6guration
Number of layers Type of stacking

ABAB
AAAA

AAAAA

Resulting structure
Type of stacking

ABAB
ABAB

ABCAB

FIG. 6. Molecular length parallel to the long axis l„asa
function of reduced density p'.

ABCABC
ABABAB
AAAAAA

ABCABC
ABABAB
ABCBAB
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tion; the dashed curve, y direction) are shown in Fig. 7.
The MSD's are given in units of D~ since the distances
are measured in unit D throughout this article. It is seen
from the figure that the molecules do not stay in the ini-
tial configuration of AAAAA but rather relax to another
equilibrium configuration. Since the MSD in the z direc-
tion does not change drastically during these 1000 time
steps while the MSD's in the x and y directions change
substantially, we can say that the rearrangement of the
molecular configuration takes place mainly in the layers.
After this time, all three MSD's approach their respective
constant values except for some small fluctuations. This
indicates that the resulting equilibrium configuration is
in a solid state.

In order to investigate this final configuration in de-
tail, we first calculate the total pair-distribution func-
tion g~ which is defined by the projected value of r,~

into the 2:y plane. The result is shown in Fig. 8 where
r~ is measured in units of the specific length /~
[Lz&/(number of molecules in a layer)] &, where L~ is the
edge length of the simulation box perpendicular to the
molecular axis. Note that l~ is nearly equal to the in-
termolecular distance a but is not identical with a since
a triangular lattice is embedded in a square-shape cross
section of a right parallelepiped simulation box. A strong
correlation remains even for large values of r~/l~, indi-
cating that the final configuration is the crystalline struc-
ture. Note that there is a peak also at r~ = 0, hereafter
referred to as the zeroth peak, which reflects the fact that
the same kind of layer, say A, appears more than once.
The second peak at r~(2nd)/l~ 1.08 corresponds to
the nearest-neighbor position of molecules in the same
layers. The first peak at r~(1st)/lz 0.611 is due to
the approximate close-packed stacking between adjacent
layers. The difference between the third-peak position
r~(3rd)/l~ - 1.65 and the first peak position is about
1.0, indicating that the first and third peaks are brought
about by molecules in the same layer or in two difFer-

0.15

FIG. 8. Total pair-distribution function gq along the di-
rection perpendicular to the molecular axis as a function of
the distance r~/l~ at p' = 0.534.

ent layers of the same type. Similarly, we can also show
that the differences between the positions of the other
odd peaks (third and fifth, fifth and seventh, and sev-
enth and ninth) and between the even peaks (second and
fourth, fourth and sixth, and sixth and eighth) are al-
most 1.1 for all these cases, which clearly suggests that
the system is crystalline.

For the purpose of studying the molecular structure
within a layer, we define that two molecules are in the
same layer when L/2 & —dz,~

& +L/2, and then we
calculate the in-layer pair-distribution function g& as a
function of r~/tz for which the molecules only in the
same layer are counted (Fig. 9). Figure 9 shows a
clear crystalline structure of a two-dimensional close-
packed (triangular) lattice. An exact triangular lat-
tice consists of peaks r~/a = n, r~/a = i/3n, and

r~/a = v n+z3 +n3, where n = 1, 2, 3, . . . . Around
each molecule there exist six molecules at the distance
r~/a = n and at ~3n, and 12 molecules at r~/a =
v'n~ + 3n+ 3. From the calculation of the average posi-
tion of the first peak, we estimate t2, = 1.07l~. The four

0.10—
X

~ W

~ 0.05 —,,
I

31

v w a r M a A

2000 4000 6000 8000 10000
Time steps

FIG. 7. Mean-square displacement of a system of N=600
soft parallel spherocylinders in the crystal region (p' = 0.534) .

The solid curve denotes the diffusion in the 2: direction, the
dashed curve in the y direction, and the broken curve denotes
the diffusion in direction z which is parallel to the molecular
axis.

1 2 3 4

rg/lg

FIG. 9. Pair-distribution function gz of molecules in the
same layers vs rz/l~ at p" = 0.534.
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4I

FIG. 10. Pair-distribution function g~~ in the direction
parallel to the molecular axis as a function of distance z/l, at
p' = 0.534.

peaks denoted as peaks 11, 12, 13, and 14 in Fig. 9 are re-

spectively located at r~/l~ 1.07, 2.10, 3.20, and 4.29.
Since a 1.07l~ as mentioned above, we have r~/a
1.00, 1.96, 2.99, and 4.01. It is clear that these peaks
correspond to the peaks at r~/a = n for n = 1, 2, 3, and
4. The position of peak 21 is r~/l~ 1.86 or equiva-

lently r&/a 1.74 which corresponds to r&/a = ~3n for
n = 1. On the other hand, the peak 31 at r~/l~ 2.84

(or r~/a 2.65) corresponds to r~/a gn + 3n+ 3
for n = 1. This peak assignment makes clear the reason
for the splittings of the second and third peaks. As for
the fourth peak, there does not appear a splitting ex-

cept for a small subpeak 14 at r~/l~ 4.29. This is
because two peaks 22 and 32 corresponding to the peaks
at r~/a = ~3n and at v nz + 3n+ 3 for n = 2 are close
to each other. The peak denoted as 33 at r~/l~ 4.80
in Fig. 9 corresponds to the peak r~/a = gn2 + 3n+ 3
for n=3.

Figure 10 describes the pair distributions in the direc-
tion parallel to molecular axis g~~ as a function of z/l, .
From this figure, together with the results shown in Figs.
8 and 9, we can now conclude without any doubt that
the system has a periodic layer structure. This pair-
distribution function shows that there exist five layers
in this system.

Finally we take a look at the average position of each
molecule projected into the plane perpendicular [Fig.
11(a)] and parallel [Fig. 11(b)] to the molecular axis. We
can see from these projections that repeat layers, say AA,
do not occur. These figures show that the final configu-
ration has a stacking of ABCAB.

8. Seectic-liquid-crystal phase

4'g 4'g 4'C ~C ~e ~aC Q~C C'e ~e'c'e'c'e'e'4'e'~
CI CI O O 0 CI 0 CI ACI L4~4~4~4~4@4~4~4~e 4~

CI 0 0 0 0 0 0 0 0 O
~4 ~4 ~4 ~4 ~4 ~4 @4 ~4'@

4 4 4 4 4 4 4 4 40C'0O'oc 0oc 000O'000 00C
4'~4 ~4 ~4 ~4 ~4 ~4 ~4 ~4 @4
0 0 O 0 0 0 0 0 0 L

4' 4
C, 4'4'C, 4'C, 4'04 C,

4 4'C, 4
C0 0 CI 0 0 0 0 0 0 CI

@4 4' ~ 4 @4 @4 @4 @
4' ~ 4 @

4& ~ 4
04 04, 04, 04, 04, 0404, 04, 04, L

c e c C c C 0 00 @0 @CI @CI @CI @0 @CI @0 @0 @0
@

QO& O 9 Qo 0

06, 04, 04, 0650650 & CI & 04, 0& CI

Let us now study the low-density region below the
transition. To be precise, the results in this section are
for density p' = 0.416. The results discussed are all for
system size N = 600. In this case, the MSD's in Fig. 12 of
each direction z, y, and z show a behavior significantly
different to that for a crystalline-solid phase as shown
in Fig. 7. After around 3000 time steps, the MSD's in
the directions perpendicular to the molecular axis (solid
curve, x direction; dashed curve, y direction) continue to
increase awhile in the direction along the molecular axis
(broken curve, z direction) it becomes almost constant.

0000000000000000000&

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 CI 0 0 0 L

2

1.0

cd

g' 0.5

cd

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 C

(b)

FIG. 11. Average positions projected into the plane (a)
perpendicular and (b) parallel to the molecular axis at p' =
0.534.

1000 2000 3000 4000 5000

Time steps

FIG. 12. Mean-square displacement of a system of N=600
soft parallel spherocylinders in the lower density phase (p
0.416). The solid curve denotes the difFusion in the x direc-
tion, the dashed curve in the y direction, and the broken curve
the z direction which is parallel to the molecular axis.
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Finally Fig. 17 shows a snapshot of the system with
N = 600 molecules. A layer structure with a small fluc-
tuation of the molecular positions is observed.

IV. CONCLUDING REMARKS

FIG. 17. Snapshot of N = 600 molecules at p' = 0.416
from the direction perpendicular to the alignment.

with Fig. 13, we can see that the molecules in the same
layer have a liquidlike correlation while those in different
layers no longer show correlations.

The pair-distribution function
g~~

in the direction par-
allel to the molecular axis is shown in Fig. 15. Although
the peak values are almost half and the peaks are wider
compared to the crystalline-solid phase, g~~

still shows a
strong periodic density oscillation. This is firm evidence
of the layer structure characteristic of the smectic phase.

We check the average positions of the molecules by
projecting them into a plane perpendicular [Fig. 16(a)]
and parallel [Fig. 16(b)] to the molecular axis. From the
latter figure, we can see clear layers while the former
Figure confirms the liquidlike structure in each layer.

In this paper, we have presented results of constant-
pressure MD simulations for systems of soft parallel sphe-
rocylinders. Conventional simulation methods are not
appropriate for treating anisotropic molecules since they
do not always give isotropic hydrostatic pressure. We
have tried several different methods of constant-pressure
MD simulations in order to reveal the nature of the tran-
sition from crystalline solid to smectic liquid crystal. We
find that it is necessary to vary the shape of the MD
simulation box when simulating anisotropic molecules.
Thermodynamic properties and structural analysis show
that a clear first-order crystal-smectic transition occurs
in such systems. In the crystalline-solid phase, the sphe-
rocylinders are stacked in a close-packed manner and
do not diffuse after reaching equilibrium. In the smec-
tic phase, the MSD's and the pair-distribution functions
show that the molecules in a layer diffuse in a manner
that retains some vestiges of the packed stacking of ad-
jacent layers. By observing the molecular length parallel
t, and perpendicular t~ to the molecular long axis at the
transition, we find that the molecules melt along the lay-
ers and that the anisotropy of the molecular volume (the
ratio l, jl~) plays a very important role.
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