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Fluctuation-induced forces between manifolds immersed in correlated fluids
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We develop a general field-theoretical approach for computing fluctuation-induced forces between
manifolds immersed in a correlated fluid. Both isotropic, e.g. , a superfluid or critical binary mixture,
and anisotropic, e.g. , nematic or smectic liquid crystals, are considered. The effects of different types of
boundary conditions are explored, and in particular the role of deformations from perfect geometries is

studied. Specific results include the following: The Casimir force between a flat and a self-affinely rough
surface acquires a correction term that decays with the average separation of the plates through an ex-

ponent related to the roughness of the boundary. Surface fluctuations in films of correlated fluids may be
enhanced, or suppressed by such forces, depending on whether the boundaries are alike or different. We
also compute the resulting two-body force between a line (directed polymer) and a surface, and the
three-body interaction (repulsive) between three lines.

PACS number(s): 68.35.8s, 05.70.Jk, 61.30.By, 68.10.—m

I. INTRODUCTION AND SUMMARY

It is naturally quite common to find simple particles or
more extended objects, such as polymers or membranes,
in a complex medium. The fluctuations of the medium
are then modified by the presence of such objects, and in
turn induce effective interactions among them. Curious-
ly, the most well-known manifestation of this
phenomenon is the Casimir force [1] between parallel
conducting plates, due to quantum fluctuations of the
electromagnetic field in vacuum. However, similar forces
arise due to thermal fluctuations for external bodies im-
mersed in a classical fluid. At a temperature T, the mag-
nitude of such interactions is proportional to kz T, while
their range depends on the extent of correlations in the
fluid. For a fluid with long-range correlations (e.g. , a
binary mixture close to the critical point, a superfluid, or
a liquid crystal [2,3]), the forces are long ranged with
universal amplitudes. We shall generically label all such
fluctuation-induced interactions Casimir forces. Thermal
Casimir effects are closely related to finite-size correc-
tions to the free energy [4] and have also been discussed
in connection with wetting close to a tricritical point [5],
unbinding of fluid membranes in liquid crystals [3,6], and

the elongation of surface domains during epitaxial
growth [7]. (We wish to contrast forces induced by fluc-
tuations of the surrounding medium to the closely related
forces due to fluctuations of a component of the external
body. For example, the van der %'aals or London disper-
sion forces are due to quantum fluctuations in the molec-
ular dipoles [8]; their thermal analogs are the Keesom
forces in colloidal physics [9]. There are also entropically
induced interactions due to fluctuations of surfaces [10]
or lines [11].)

Again somewhat curiously, the most familiar classical
example of Casimir forces appears in the rather compli-
cated context of critical finite-size effects. Following the
original work of Fisher and de Gennes [12], several au-
thors [13,14] have considered the free energy of a critical

system (e.g. , a binary mixture at T, ) between two boun-
daries separated by H. On dimensional grounds it is nat-
ural to expect a contribution to the free energy per unit
area f (H) of the form f (H)lkT=b, /H ', in d space
dimensions. The interesting feature of this expression is
that the amplitude 6 is a universal number, depending
only on the universality class of the critical system and
the type of boundary conditions imposed. The strength
of the boundary couplings is irrelevant. In a simple
lattice-gas description, the fluid can be mapped to a spin
system (e.g., an Ising model for the binary mixture), and
the boundary couplings are described by magnetic fields
h

&
and h2 applied to the two edges. Then, by symmetry,

there are only four possible values for 4: b++ =6 for
h )h2) 0; 600 for h ) =hq =0; 5+ for h) h2 &0; and

ho+ =b,o for h& =0, h2%0, independent of the magni-
tudes of h, and h2. The amplitudes 5 are closely related
to conformal charges of the critical theories, and in two
dimensions their exact values can be obtained by employ-
ing techniques of conformal field theories [14]. In higher
dimensions, they can be estimated numerically [15], and
by a=4 —d expansions [16]. In general, b, is negative for
like boundaries (++, ——,and 00), while positive for
unlike boundaries (+ —,+0, and —0), implying that like
boundaries attract, while unlike boundaries repel, a gen-
eral feature of fluctuation-induced forces.

In this paper we consider the more general problem of
fluctuation-induced forces between extended objects
(polymers, membranes, etc.) immersed in a correlated
fluid. The two elements that enter this problem are the
following: (1) The correlated fluid does not have to be a
critical mixture, a rather singular condition, as any sys-
tem with a continuously broken symmetry and the associ-
ated Goldstone modes will suffice. Possible examples are
a superfluid, or a liquid crystal, as described in the next
paragraph. (2) The external objects interact with the
fluid that envelops them and change its fluctuations in
their vicinity. An important aspect of our study is going
beyond the simple geometries (straight edges and flat
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provides an ideal candidate. At low temperatures the lo-
cal density p(r) is approximately constant, while the
phase angle P(r) is a massless Goldstone mode which in a
d-dimensional space is subject to the simple Hamiltonian

~0[/]= fd r—(VP(r))

In general, the number of Goldstone modes and their in-
teractions depend on the nature of the broken symmetry,
but their fluctuations are quite generically long ranged.
A fluid at criticality (e.g., a binary mixture at its demix-
ing point) is more complicated and not describable by a
quadratic Hamiltonian, but we expect it to exhibit the
same qualitative features in its response to boundaries.
Liquid crystals provide anisotropic examples of correlat-
ed fluids due to broken symmetry. They also provide an
easily accessible system, since experiments can be per-
formed at room temperature, and they require no fine
tuning to achieve criticality. The order parameter of a
nematic liquid crystal is a director field n(r), characteriz-
ing the local preferred direction of the long axis of the
molecules [18]. The energy cost of fluctuations of the
nematic director n(r) is given by [18]

gfz= —,
' fd r[x., (V n) +a2(n VXn)

+a3(nXVXn) ] . (1.2)

In a srnectic liquid crystal, the rnolecules segregate into
layers which are fluidlike. The Auctuations of these lay-
ers from perfect stacking are described by a scalar defor-
mation u(x, z), which in d dimensions is subject to a
Hamiltonian

2

&s= ,' fd~r 8 —+a(Vu)
az

(1.3)

Both Hamiltonians are explicitly free of a "mass" term,
and hence lead to long-range correlations. The
fluctuation-induced forces between two parallel plates
due to such liquid crystals were previously calculated by

plates) considered in previous studies by looking at rough
and deformed structures. Such nonstandard geometries
have also been examined by a multiple-scattering ap-
proach [17], but the resulting perturbative series is not
particularly illuminating. Here we develop a field-
theoretical approach that allows us to compute
fluctuation-induced forces in a relatively simple way.
This approach has a number of advantages. First,
different manifolds (with arbitrary intrinsic and embed-

ding dimensions) in various correlated fluids can be treat-
ed in a similar fashion. Second, the boundary conditions
are quite easily implemented. Finally, the corrections
due to "roughness" can be computed perturbatively in

the deformations.
The first element requires a description for the corre-

lated fluid. The simplest example is an isotropic fluid

with a broken continuous symmetry. A superfluid, with
an order parameter

f(r) =v'p(r)exp[i/(r) ],

[h(x) —h(y)]'= As Ix —
yI (1.4)

i.e., characterized by a roughness exponent 0 (gs ( 1 and
an amplitude As. Equilibrium thermal fluctuations of
films or membranes, subject to surface tension or bending
energies, quite generally lead to such height-height corre-
lations [21]. Many solid surfaces produced by rapid
growth [22] or etching processes [23] also exhibit self-
affine correlation. There is indeed both theoretical [24]
and numerical [25] support for the appearence of self-
affinity in nonequilibrium growth processes. In both
equilibrium and nonequilibrium circumstances, the
theoretical models predict a universal exponent gs which
reflects the underlying physics, but a nonuniversal,
material-dependent amplitude As in Eq. (1.4). It is thus
of both practical and theoretical importance to measure
the roughness exponent gs. The most direct method of
measuring this exponent is by direct imaging of the sur-
face with scanning tunneling microscopy (STM) [23,26].
However, the size of such scanned images is usually limit-
ed, and it is useful to complement this approach with
more macroscopic probes such as examining adsorption

Mikheev [2] and by Ajdari, Peliti, and Prost [3], who
indeed find interesting power-law interactions.

For the second element of our description, we need to
specify how the external bodies modify the fluid fluctua-
tions. The effects of such couplings are implemented as
boundary conditions, and we distinguish between the fol-
lowing two possibilities: In type-I boundaries the fluid

fluctuations are suppressed, e.g., by strong anchoring for
liquid crystals, or by substrates that prefer one of the
coexisting fluids in a critical mixture (a magnetic field in

the spin analogy). Type-II boundaries correspond to the
suppression of the normal gradient of fluctuations, as on
an open surface. Type-II boundaries are also appropriate
for a superfluid, where the normal velocity vanishes at
the substrate. Anticipating the universality of
fluctuation-induced forces with respect to the strength of
the boundary couplings, we implement their effects by re-
quiring either the field P (type I), or its normal derivative

Big (type II), to vanish on the surface of the external bod-
ies. Most computations of Casimir forces are for simple
geometries, e.g. , between two parallel plates. It is natural
to consider how these forces are modified by the rough-
ness that is present in most "random" surfaces. The in-
teractions can in turn alter the thermal fluctuations of a
fluid surface, or a liquid-crystal film. The main purpose
of this work is to develop a general approach for comput-
ing the corrections to fluctuation-induced forces in the
presence of deforrnations.

Many commonly encountered forms of "randomness"
in nature in fact exhibit self-similar or fractal [19,20] scal-
ing. A particularly amenable form of rough boundary for
our study is the self-affine surface which can be described
by a single-valued height function h(x) with respect to
the transverse coordinate x. A random self-affine surface
is described by a probability distribution that is invariant

under a transformation h ~i,h, x~A, x, i.e., the surface
is self-similar under anisotropic rescaling. The self-
similar fluctuations in the height grow with distance as
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isotherms [22,27]. In this paper we propose accurate
measurements of fluctuation-induced forces between
rough surfaces as an alternative macroscopic probe of
self-affinity. We find a correction to the leading Casimir
force that decays with the average separation of the two
plates through an exponent related to gs. The force gen-
erated by this term is within the sensitivity of current
force apparatus [28] and can potentially be used to mea-
sure the roughness exponent.

In addition to the fixed surfaces of a rough solid sub-
strate, we can also examine the spontaneous deformations
of a fluid-air interface. Since such deformations also
modify the correlations of the fluid, their energy cost is
modified by the Casimir forces. We find that for "like"
boundaries, as in the case of a free-standing liquid-crystal
film, the interface fluctuations are enhanced to the lowest
order, while for "unlike" boundaries, e.g., a smectic
liquid-crystal film on a solid substrate, they are
suppressed. A brief description of our method and these
results appeared earlier [29].

The paper is organized as follows. In Sec. II we derive
a general formula for the effective free energy of n im-
mersed manifolds with arbitrary intrinsic and embedding
dimensions, subject to type-I boundary conditions. This
expression is obtained by directly integrating out the fluid
degrees of freedom, with the given constraint at the
boundaries. Explicit results are then computed for an
isotropic fluid confined between two surfaces, one de-
forrned. Particular emphasis is given to the interaction
between self-affine and flat surfaces. In Sec. III we gen-
eralize the derivation to include different types of bound-
ary conditions and correlated fluids. Explicit results for

I

anisotropic fluids (liquid crystals in nematic or smectic
phase) are presented. We discuss how the calculations
can be improved for a critical fluid which cannot be de-
scribed by a Gaussian Harniltonian. In Sec. IV we con-
sider other geometries, such as a line and a surface, and
also discuss fluctuation-induced many-body interactions.
We conclude by pointing out some other problems that
may be studied by the methods developed in this paper.

II. THK METHOD

In this section we first derive a general formula for
fluctuation-induced forces between arbitrary rnanifolds
immersed in a correlated fluid. The fluid fluctuations are
described by a one-component field P subject to the quad-
ratic action in Eq. (1.1). The external manifolds suppress
these fluctuations as in type-I boundary conditions. After
the details of our approach have been described for this
case, their generalization to more complex conditions, as
presented in Sec. III, is relatively straightforward.

Consider n manifolds embedded in a fluid, each de-
scribed by coordinates r (x ). Here, x, is a D
dimensional internal coordinate for the ath manifold
(D =1 for a polymer and D =2 for a membrane), and
r indicates its position in the d-dimensional fluid [30].
The fluctuation-induced interactions between the mani-
folds are obtained by integrating over all configurations
of the fieid p, with the constraints imposed by the exter-

nal rnanifolds. Type-I boundary conditions correspond
to the constraints P(r (x ))=0, for a=1,2, . . . , n,

which can be imposed by inserting 5 functions. Using the

integral representation of 6 function, we obtain

&s[r (x )]
"P

1
n

f 2)P(r) g 2)g (x )exp —& [P]+if dx g (x, )P(r (x ))
0 a=1

(2.1)

where Zo is the partition function for the unperturbed fluid and g (x ) are the auxiliary fields defined on the n mani-

folds, acting as sources coupled to P. After integrating over the field P, we obtain the long-range interactions between
the sources as

P
eff

n

x exp —
1

x
a=1

(2.2)

The action %,[1{t (x )] for the n-component field qI =(p, , 1(z, . . . , p„) is given by

&,[+]—=+M+ = g g f dx dx&g (x )G (r (x, ) r&(x&))P&(x&),—
a=lP=1

(2.3)

where G (r) —= (P(r)P(0) )0 is the two-point correlation function of P in free space. Finally, the effective interaction be-
tween the manifolds is obtained as

&,s[r (x )]= InDet[M[r (x )]I .kT
eff a a (2.4)

The matrix M is a functional of r (x ) and its determinant is in general difficult to evaluate. It is possible, however,
to perturbatively calculate the corrections due to small deformations around simple geometries. As an explicit example,
we compute the interaction between two D-dimensional surfaces in d =D+1 dimensions, with average separation II
and one plate deformed by h (x), i.e., ri(x)=(x, O) and r2(x)=(x, H+h (x)). The matrix M can be read off' from Eq.
(2.3) as

G (x —y, O) G (x y, H+h(y))—
G "(x—y, H +h (x)) G "(x—y, h (x)—h(y))

(2.5)



46 FLUCTUATION-INDUCED FORCES BETWEEN MANIFOLDS. . . 6493

For small deformations, the above matrix can be pertur-
batively evaluated by expanding the Green's function in
terms of deformation h (x):

M(x, y) =Ma(x, y)+5M(x, y),
where Mo(x, y) is the matrix for two flat surfaces and
5M(x, y) is the correction due to deformations. The ma-
trix Mo(x, y) depends only on the difference (x—y):

r

dD
F,(x)= f (2m )

dD
F2(x)= f (2n. )

F3(x)=f (2n. )

where

6"(p);p.,
~(p)
6 (p) BG (p, H)
JV(p) dH

6 (p, H) BG (p, H)
JV(p) dH

(2.12)

Mo(x, y) = 6 (x—y, O) 6 (x—y, H)
G "(x y, H—) 6 (x—y, O)

(2.6) A'(p)=[6 (p)] —[6 (p, H)]

Hence, it can be diagonalized by transforming to Fourier
space, where

6 (p) 6 (p, H)
Mo(p q)= Gd -d (2~)'5 (p+q), (2.7)

The above results are generally valid in d =D+1 di-
mensions and for any fluid described by a quadratic ac-
tion. We now focus on the specific example of two sur-
faces in d= 3, immersed in an isotropic fluid described by
the Hamiltonian in Eq. (1.1). In this case, the Green's
function is given by

with the Fourier-transformed Green's functions

6 (p)= f6 (x,O)exp(ip x)d x,
6 (p, H)= f6 (x,H)exp(ip x)d x .

(2.8)

expi(p x+.p,z )
G (K,z)=

(2n ) E(p +p, )
(2.13)

Using this expression, we can explicitly evaluate the two
Fourier transforms defined in Eq. (2.8) as

Using Eq. (2.4), the effective free energy can be decom-
posed as &,s =%„„+%„„,where &tht =

—,
' ln DetMO and

&„„,=—,
' ln Det(1+Me '5M ) .

The determinant of Mo can be easily computed, leading
to

dD

(2m. )

6'(p) = 2'
63( H) exp( pH)—

2Kp

Substituting the above into Eq. (2.9), we obtain
r

~sat d p 1 g(3) 1

kTA (2~) 2' 16m

(2.14)

(2.15)

I

+ —,
' 1n 1—

(2n. )

r2
6 (p, H)
6 (p)

(2.9)

where A is the D-dimensional area. The correction %„„
can be evaluated perturbatively in powers of h (x). At
second order we find (for details see the Appendix)

which is the Casimir interaction per unit area of two Rat
plates. The first term in Eq. (2.15) is a contribution to the
surface tension which depends on a lattice cutoff. The
second term, decaying as 1/H, has a universal ampli-
tude

kT
= —(A, +A~+A3)f d xD hz(x)

+—,
' f d xd y[h (x)—h(y)]

BGX (x—y, O)F, (x—y)
Bz

+F2(x—y)+F3(x —y) ', (2.10)

—g(3)/16m = —0.023 91 .

The energy cost of the deformations is obtained using Eq.
(2.10) as

d xh (x)kT I6mH4

+ —,
' f d xd y[h(x) —h(y)]

1 1

8~'lx —yl' 2~Ix —yl'H'
with the H-dependent coefficients

d p 6 (p, H) 8 G"(p, H)
(2~)D ~(p) aH'

dD

(2m. )

2
6 (p, H) BG (p, H)

JV(p) BH

d p 6"(p) BG (p, H)A3=
(2~)D A(p) dH

and the three functions defined as

(2.11)

+ [Kf (t)+EC2(t)]
H

(2.16)

where t:—
l x —

yl /H and the two kernels are given by

K, (t)= f du
z Jo(tu),

2m(e "—1)

E2(t)—:f du ", Jo(tu) .
2m. (e "—1)

(2.17)

There is an implicit short-distance cutoff a for the power
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laws in Eq. (2.16). The first term in Eq. (2.16) represents
an instability to deformations due to the attraction be-
tween the plates. The effect of this term on surface fluc-
tuations of a thin liquid film will be discussed in Sec. III.
The coefficient of this term is obtained by adding the
three constants given in Eqs. (2.11). Due to the complexi-
ty of these expressions, it is quite remarkable that the
final result is the same as replacing the 1/H term in Eq.
(2.15) with 1/(H+h(x)} and averaging over the posi-
tion X. The second correction represents long-range in-
teractions between deformations induced by the fluctua-
tions of the field. The first term in the curly brackets is
the conformation energy of the deformed surface in the
absence of the second plate, and is independent of H.
The remaining terms represent correlations due to the
presence of the second plate. Both K, (t) and Ki(t) ap-
proach a constant as t~0. As t~ tto, K, (t) —1/t and
K (it)-e xp( bt), —with b =3.3. The large-t behaviors of
K&(t) and K2(t) determine the long-range interactions be-
tween height fluctuations.

Equation (2.16} can be used to calculate the Casimir
force between a flat and a fixed rough surface. For a
self-affine surface, the averaging over the random heights
can be performed by using Eq. (1.4). The quench aver-
aged free energy per unit area is

sf (H) g(3) 1 3g(3) AsL C, As

k T 16m H 16m H 4 ~s

(2.18)

where L is the extent (upper cutoff) of the self-affine

structure, satisfying AH:—A~ 'L ' «H to avoid contact
between plates. The coefficient Ct in Eq. (2.18) is given
by

a/H

+2~r ' [K,(r)]']dr (2. 19)

and weakly depends on the ratio L /H, but since the func-
tions K& and E2 decay rapidly with distance, it is quite
insensitive to L as long as L))H. For L ))H))hH,
the interactions in Eq. (2.18) are arranged in order of de-
creasing strength. The largest effect of randomness is to
increase the Casimir attraction by an amount proportion-
al to (bH/H) . The last term in Eq. (2.18) decays as

4 —res1/H and in principle can be used to indirectly mea-
I

sure the roughness exponent gs. In Eq. (2.18), if all
lengths are measured in units of an atomic scale ao (e.g. ,
the diameter of a surface atom}, As becomes dimension-
less. Using a reasonable set of parameters ps=0. 35,
ao =5 A, A~ =1, and L =300 A, we estimate that for sur-

0
faces of 1 mm size and 100 A apart, the forces generated
by the three terms in Eq. (2.18) are 1.9 X 10
4.9 X 10, and 3.7 X 10 N, respectively (using an ap-
propriate lower cutoff of about 20 A). (The correspond-
ing pressures are 1.9X10, 4.9X10, and 3.7X10
atm. ) The force generated by the last term is in fact
measurable with current force apparatus [28], provided
that the stronger forces generated by the first two terms
can be properly subtracted.

III. GENERALIZATIONS

In Sec. II we obtained a general formula for
fluctuation-induced forces between manifolds with type-I
boundaries. We also explicitly worked out the
fluctuation-induced forces between a flat and a deformed
surface in an isotropic fluid governed by the simple Ham-
iltonian in Eq. (1.1). In this section we consider various
generalizations.

A. Anisotropic fluids

From the above Hamiltonian, we can compute the two-
point correlation functions and the effective action using
Eqs. (2.9) and (2.10). However, a simple rescaling x'=x,
z'=z+K} /Ki of coordinates allows us to arrive directly
at the final results. As the Hamiltonian becomes isotro-
pic in the new coordinates, we can directly use the results
in Eqs. (2.15) and (2.16) with the substitution H~H',
h (x)~h'(x). After rescaling back to the original coordi-
nates, we get

~flat fdp '1 g( 3 ) 1

kTA " (2ir) 2K~~p 16ir H
ln (3.2)

and

First, consider a simple anisotropic fluid described by
the Hamiltonian

2

(3.1)

corr

kT
3 (3)

&Pf d x h (x)+ —,
' f d xd y[h (x)—h(y)]16'

1 1

8~'lx —yl' P , &PK, («P)
2~Ix —yl'H'

+,p'[K2t(r &p)+K,'(r &p) ] (3.3)

where t—:lx —yl/H and p—=Ki/K~~~. We see that the
Casimir effect for two flat surfaces simply picks up a fac-
tor K~/4 ll, and the same is true for the mass term. The
effective action due to correlation of deformations de-

pends on the anisotropy in a more complicated way

I

through the kernel functions, which cannot be simply
scaled out. Such anisotropy is inherent to nernatic liquid
crystals in which the long axis of the molecules has on
average a preferred direction. The local preferred direc-
tion is described by a director field, subject to the Harnil-
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tonian in Eq. (1.2). If the nematic director is on average
perpendicular to the plates, we can write n=(n„, n~, 1).
Substituting n into Eq. (1.2), we get (keeping only quadra-
tic terms)

2Bn„Bn Bn„
JVN=fd r 'K(

~
+

~
+K2

2 Bx BP Bg
2 2Bn„Bn~

+K3 +
az az

2
Bn

BX

(3.4)

'2
K2 K BIl

+ —(V Xn, ) +—
2 gz

(3.5}

Since n, and nl decouple, we can treat them as two in-

dependent fields, giving rise to additive contributions to
the Casimir energy. For two flat surfaces, we find the H-
dependent term

~sat g(3) 1

kTA 16m H2 K1
(3.6)

which is exactly the result obtained by Ajdari, Peliti, and
Prost [3]. The correction due to deformations also has
two additive terms, with a3/a, and a3/a2 replacing P in

Eq. (3.3), respectively.
An extreme limit of anisotropy is exhibited by smectic

liquid crystals where the molecules segregate into layers
with fluidlike structure in each plane. The layer fluctua-
tions u (x,z) are then subject to the deformation energy
given in Eq. (1.3). The Hamiltonian &s is again quadra-
tic, and we can directly apply Eqs. (2.9) and (2.10) to cal-
culate the fluctuation-induced effective action. The
Green's function G'(x, z) is obtained by inverting the
quadratic action in Eq. (1.3) as

exp[i(p x+p, z)]
G'(x, z) =

(2n. ) Bp, +ap
(3.7)

Using the above expression, we obtain the two Fourier
transforms defined in Eq. (2.8) as

G'(p) =
2&Blrp' '

G'(p, H)= exp( LV a/Bp ) . —
2&Bap'

(3.8)

Clearly, such anisotropy introduces a length scale
A. =&a/B. Substituting the above expressions into Eqs.
(2.9) and (2.10}, after some lengthy but straightforward
algebra, we find

sat 1 p
1

1 g(2) 1

kTA (2~}2 2V'B&p' 16~ HA,

We now decompose the two-component field (n„,n ) into
longitudinal and transverse components ni and n„satis-
fying V~~xni =0 and V~~ n, =0, respectively. The defor-
mation energy of Eq. (3.4) now separates into two in-
dependent terms,

2
Ki K3 BIl)dr —(V n)+—

The H-dependent term in the above equation was again
previously obtained by Ajdari, Peliti, and Prost [3].
Comparing to the isotropic fluid, note that the
fluctuation-induced free energy in a smectic liquid crystal
decays as 1/H, instead of 1/H . The correction due to
deformations is

corr

kT
L(2) 1 Jh (x)d x
16m

+— I d xd y[h(x}—h(y)]
4 H'a'

X [K23(t)+K24(t)] . (3.10)

Here, t = ~x —y~/&AH, and K3 and K4 are another two
kernel functions defined as

~du uE,(r)= Jo(tu),
2~ exp 2u —1

3 2
y~ du u exp(u )

2~ exp(2u ) —1

(3.11)

For quenched self-affine surfaces, the analog of Eq. (2.18)
1s

g(2) kT g(2) kTAsL
16m HA. 16m

C2 kTA~+
4 1 gs 3 gs

(3.12)

where C2 is expressed in terms of the kernel functions K3
and E4 as

C2= 2at K3 t +@4 t . 313
a/H

Again, we find characteristic corrections due to the self-
aSne structure of the surface. The decay of the last term
is related to the roughness exponents of the surface. The
presence of the additional length A, reduces the power to
3 —gs, compared to 4—2(s in an isotropic fluid. Clearly,
these forces have the same magnitude as in the isotropic
case of Eq. (2.18) for H =k, but decay more slowly, and
hence become comparatively stronger for H )&A, .

B. Critical fluids

The fluid at criticality cannot be described by a Gauss-
ian field. For example, a binary mixture at its demixing
point belongs to the Ising universality class, and therefore
is more appropriately described by a A,P theory at Tc
In this case, the integration over the P field in Eq. (2.1)
cannot be performed easily, and in general multipoint
correlations are needed. Nevertheless, we expect that the
power laws we find in Eq. (2.18) remain valid since there
is no additional length scale at Tc.

However, the amplitude should depend on the specific
universality class. Exact results in two dimensions indi-
cate that the Casimir interaction between two flat plates
decays as —c~kT/24H for like boundaries, where c is
the central charge of the critical system [14]. For two flat
surfaces, repeating our previous computation in two di-
mensions, and using Eq. (2.9), yields the H-dependent
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term

% =—fd pp "~P(p)~ (3.14)

Given this modified action, the Green's function is

exp[i(p x+p, z)]
G "(x,z) =

(2 )d K ( 2+ 2)1 —gl2 (3.15)

and the analogs of Eqs. (2.14) are

~ dt 1
G (p)=

0 7T K ( 2+ t2)1 —q/2

~ dt cos(tH)
G pH=

() ~ K (p2+ t2)1 —7)/2

(3.16)

The above expressions can be explicitly evaluated in
terms of the gamma function I (x) and the modified
Bessel function K,(x), e.g. ,

(Hp)(1
—P)/2K(Hp)2(1+el )l2

G "(p) I (( I —21)/2)

Using Eq. (2.9), we then can compute the amplitude for
the Casimir effect. For example, for the Ising model in
two dimensions, with g= —,', the result is

&((„/kTA = 0.66m. /24H, —

giving a much better estimate for the amplitude.
In general, for g&0, the amplitude computed using

Eq. (3.14) is smaller than that computed from Eq. (1.1).
We conjecture that the exact amplitude is even smaller
due to rnultipoint correlations, as in the two-dimensional
Ising model.

C. Like versus unlike boundary conditions

So far, we have calculated Casimir effects for manifolds
with type-I boundary conditions. Manifolds with type-II
or mixed boundary conditions can be handled similarly.
The type-II constraint 8~/=0 is inserted into the func-
tional integral in Eq. (2.1) via f2)/exp(if(3~(t1), thus

representing a dipole source. After integrating over P,
we obtain a quadratic action for the auxiliary fields 4, as
in Eq. (2.3). However, whereas the coupling between two
type-I manifolds is G "(r—r'), it is B~Gd(r —r') between

ln 1 —exp —2pH
2m' 24H

corresponding to c=1 as expected for a free scalar field.
It is known that for the Ising universality class c =

—,
' [31],

so that the computation using a free scalar field gives an
amplitude that is twice as big.

We can somewhat improve the computation of this
amplitude by modifying the quadratic action &0 so that
it gives the correct two-point correlation function. For a
fluid at T~, the two-point correlations take the general
form

(P(r)$(0) ) —1/r"

where q is a critical exponent. To reproduce this two-
point correlation, we modify %0 to (in Fourier space)

As before, we can do an expansion for small deforma-
tions, M =Mo+5M, where Mo is the matrix for two flat
surfaces, i.e.,

—(),G(x —y, O) —(),G(x —y, H)
M =

0 —B,G(x —y, H) G(x —y, O)
(3.18)

Mo can be easily diagonalized by transforming to Fourier
space, and we find Casimir effects between two flat sur-
faces with mixed type-I-II boundaries given by (keeping
only the H-dependent term)

flat =
—,
' ln DetMo =

—,
'

D
ln 1+exp —2pHp

(2n )

I (d/2)g(d } 1

H

(3.19)

Carrying out a similar calculation for two type-II boun-
daries, we find

flat =
—,
' ln DetM0 =

—,
'

D in[1 —exp( 2pH)]-p
(2m )

I (d /2)g(d) 1

(417)" H
(3.20)

which is the same as for two type-I boundaries. Thus
with both like boundaries, I-I or II-II, there is an attrac-
tion of the same amplitude, while unlike boundaries (I-II)
lead to a repulsion which is 1 —2' " times smaller. Re-
peating similar computations for smectic liquid-crystal
1ayers, we find the ratio of the interactions between I-I,
II-II, and I-II boundary conditions is given by
1:1:2" "' —1, respectively.

The corrections due to deformations can be computed
perturbatively in terms of h (x) as in the case of two
type-I boundaries. The important thing to note is that
due to the repulsive nature of the leading interaction, the
mass term between unlike boundaries is positive, e.g. , for
d=3, the mass term is

9g(3) kT
64vr

(3.21)

D. Surface fluctuations of a thin liquid film

The h(x) dependence of the Casimir energy in Eqs.
(2.16), (3.3), (3.10), and (3.21}may have important conse-
quences for the fluctuations of a fluid surface, or a film.

type I and type II and ()~()~G (r —r') between two type-II
manifolds. The remaining computations proceed as be-
fore. As an illustration, again consider two plates, with
type-I boundary for the deformed surface at
(x, h (x)+H) and type-II boundary at the fiat surface
(x,O). After integrating out the P field, we obtain the
quadratic matrix

—(),G(x —y, O} —(),G(x —y, h (y)+H)
—(),G(x —y, h (x)+H) G(x —y, h (x)—h (y))

(3.17)



46 FLUCTUATION-INDUCED FORCES BETWEEN MANIFOLDS. . . 6497

The fluctuations of a free surface are governed by a sur-
face tension energy y J d x(Vh) /2. For sufficiently long

wavelengths, the first term in Eq. (2.16) dominates the
surface tension and modifies the fiuctuations. [The
second term in Eq. (2.16) is equivalent to an increase in
surface tension of roughly 10 dyn/cm. ] For like boun-
daries (such as a free-standing film) there is an instability
to deformations, while for unlike boundaries (e.g., a film
on a solid substrate), there is an additional stabilizing
force. In the absence of any other interactions, the cross-
over length is Ao-24)/y, s/kTH . For a film which is
100 A thick, a typical fluid-air interfacial tension yields
ko-4 pm. Of course, additional stabilizing forces may be
present. For example, gravity produces an energy cost of
pg Jd xh /2 for deformations. This is larger than the
Casimir deformation energy for thicknesses

H )0.6(kT/pg)'~ =0.5 pm .

Similarly, for a smectic liquid-crystal film, the crossover
length is

~ -35~&,/kTH'»)»

We estimate that A,O-6 pm for H=100 A, and gravity
becomes important for thicknesses H )2 pm. There are
indeed a number of experiments measuring the roughness
of liquid surfaces [32]. It would be interesting if future
experiments could probe the effect of Casimir forces on
the surface roughness of thin liquid films.

IV. RELATED PROBLEMS

The general approach developed in Sec. II can also be
used to study a number of other related problems.

A. Interaction between a line and a surface

This is an example of fluctuation-induced forces be-
tween manifolds with mixed dimensions. It could be
relevant to adsorption of polymers on a surface within a
correlated fluid. Consider a long, directed polymer paral-
lel to a surface. Let's denote the position of the surface
by (x,O) =(x,y, O) and the location of the line as (t, O, H).
We can then read off the quadratic action &,[f] from
the general equation (2.3) as

gf, [%']= f dh dr'p, (r)G~(r —r', 0,0)p)(r')

+fdx dx'1{2(x)G (x—x', 0)1{&(x')

+2 dxdt
&

t G x t y H 2 x, 4.1

where g)(t) and 1{~(x)are auxiliary fields defined on the
line and the surface, respectively. After transforming to
Fourier space, we have

~,[+]=f G (q„)lg)(q. )l'

d2+f G (q)lP~(q)l
(2m. )

+2f G (q, H)g)( —
q )g,(q), (4.2)

(2m. )

with a new transformed function defined by

G, (q„)—= fdx exp(iq„x)G {x,0,0) . (4.3)

The matrix M in Eq. (2.3) then takes block diagonal form
with respect to q . Therefore,

DetM= P DetM, (q„), (4.4)

where the submatrix M, (q„) has the form

G i (q„) &(q„)

V (q„) U(q„)
(4.5)

Here, V(q„) is a vector indexed by q~ with elements
G (q„,q„,H), and U(q„) is a diagonal matrix with
respect to q with elements G (q„,q ). It is straightfor-
ward to work out DetM, (q„), with the result (in discrete
notation)

DetM, (q„)= G, (q„)g G (q„,qy)
qy

—g [G (q„,q, H)] g G (q„,q ) .
0 0

q q Aq

(4.6)

After carrying out the integration over q, we end up
with the final result

gf )r 1 HAI
ln 1 —

0 t ln
t +(HA )

t'+(HA )'

where fo(t) is defined as

�

f0(t) —=2 du
exp[ —2(u +t )' ]

HA, &u'+r'

{4.9)

(4.10)

Equation (4.9) indicates that there is a 1/H attraction be-
tween a line and a surface due to correlated fluctuations
of the fluid. Its magnitude, however, depends on the ex-
plicit cutoffs in momentum space.

B. Fluctuation-induced many-body interactions

In general, if more than two manifolds are immersed in
the correlated fluid, the total induced interactions cannot

Using the above result, we find the H-dependent free en-

ergy

dq„dq~ [G (q„,q, H)]'
ln 1—

kTS 277 277 G i(q )G (q q )

(4.7)

where S is the total length of the line. The Fourier trans-
form G, (q„) defined in Eq. (4.3) can be explicitly evalu-
ated; the result depends on both upper and lower cutoffs
AL and A, in momentum space, and is given by

G, (q„)= ln (4.8)4~K
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(4.12)

with go(t) given by

go(t) =2 du
exp[ —(u +t )' ]

HA ( 2+t2)1/2
(4.13)

The determinant of M is easily evaluated, leading to the
0-dependent free energy

G, (p, H) G", (p, H)—3
Gi(p) Gi(p)

eff
&

dP
1 1+2

kTS ' 2m

(4.14)

The three-body interaction is formally defined as the
difference between the total free energy and the sum of
pairwise interactions, and is given by

6", (p, H)
~ ln 1+2

kTS ' 2~ Gd(p)

6, (p, H)—ln 1—
6 i(p)
6", (p, H)—31 1+

Gi(p)
(4.15)

It can be shown that the integrand in the above equation
is positive, indicating a repulsive three-body interaction.
After the H dependence is scaled out, we obtain
&3/(kTS) =63/H, with amplitude 6& given by

L dt
b, 3

= J [ in[ 1 +2R (t)]—in[ 1 —R (t)]

where

—3 in[ 1 +R (t)]] , (4.16)

be obtained by summing of the pairwise interactions.
The presence of other manifolds modifies the fluctuations
of the fluid, giving rise to many-body interactions. Such
interactions are important in a number of physical sys-
tems such as in colloidal suspensions in polymer solutions
[33], where the effect of fluctuation- (in conformation of
polymers) induced many-body forces has been investigat-
ed. Here we demonstrate how the many-body interac-
tions for rnanifolds in a correlated fluid can be obtained
using the general approach of Sec. II.

Consider a simple example where three parallel lines
are immersed in a three-dimensional fluid governed by
the simple action in Eq. (1.1), separated by a distance H
between each pair. Following the general procedure in
Sec. II, we find the quadratic matrix M (diagonal in
Fourier space) as

G, (p) G, (p H) G, (p H)

M=
6 i (p, H) Gi (p) 6 i (p, H), (4.11)

G, (p, H) G, (p, H) G, (p)

where G, (p, H) is defined as

6
& (p, H) = G (x, O, H) exp(ipx)dx = go(pH),

1

t +(HAL)
R (t):—g, (t) ln

t'+(HA, , )'

For more than three lines in the fluid, the many-body in-
teractions can be obtained similarly. Although the above
computation is for an isotropic fluid, it can be easily ex-
tended to directed polymers in nematic liquid crystals
where the relevance of the many-body interactions to the
phase behavior remains to be investigated.

V. CONCLUSIONS AND FUTURE
APPLICATIONS

In this paper we developed a general approach for
computing fluctuation-induced forces between manifolds
immersed in a correlated fluid. This approach allows us
to deal with rnanifolds with arbitrary intrinsic and
embedding dimensions, for both like and unlike boun-
daries. It also enables us to perturbatively calculate
fluctuation-induced forces for slightly deformed mani-
folds. As an explicit example, we computed the
fluctuation-induced forces between two parallel plates,
with one deformed, for a variety of correlated fluids. We
find that the fluctuation-induced force between a flat and
a self-affine surface has a characteristic correction which
decays with the average separation of the plates through
an exponent related to the roughness of the surface. We
also find that fluctuation-induced forces due to deforma-
tions can either stabilize or destabilize the surface of a
fluid film, depending on its boundary conditions. Other
examples presented in this paper are fluctuation-induced
forces between a surface and a line, which may be appli-
cable for adsorption of polymers on a surface, and
fluctuation-induced many-body interactions which may
be relevant to phase behavior in mixtures (e.g. , polymer
nematic liquid-crystal systems).

There are a number of interesting extensions and possi-
ble further applications. The method we used in this pa-
per can be extended to other problems related to rough
boundaries. For example, it can be used to study the ca-
pacitance between flat and self-affine conducting surfaces.
We find that this problem can be formulated in a path-
integral form, with boundary conditions implemented by
inserting 6 functions. Thus we avoid the problem of solv-

ing Laplace's equation with complicated boundary condi-
tions (equipotentials at the flat and rough electrodes).
Another problem that may be amenable to similar treat-
ment is that of classical waves scattered from a rough
surface, which has many practical applications.
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APPENDIX

In this appendix we give the details of the derivations
that lead to Eq. (2.10). Expanding the effective action
around the flat geometry, the correction due to deforma-
tions is

0 A (p q)5M=
&(q, p) &(p, q)

where

& (p, q)= f d xd yexp(ip x+. iq y).

(A4)

&, „=—,
' ln Det[1+Mo '5M], (Al) aG'

X (x—y, H)h (y)
az

1BG+— (x—y, H)h '(x),
2 az2

(A2)

where Mo is given by Eq. (2.7). The matrix 5M is ob-
tained by expanding the Green's functions in Eq. (2.5) up
to quadratic order in the deformation

BGGd(x y, H—+h(x))= G (x y, H—)+ (x—y, H)h(x)
az

()2G d

+— (x—y, H)h 2(y)
2 az2

B(p,q)= f d xd yexp(ip x+. iq y)

$2Gd
X — (x—y, O)[h(x) —h(y)]

2 az2

The matrix Mo can be easily inverted to give

(A5)

Gd(x —y, h (x)—h (y))

1BG"= G "(x—y, O)+ — (x—y, O)[h (x)—h(y)]
2 az2 where

G (p)
—G "(p,H)

—G (p, H)

G "(p) (A6)

By transforming to Fourier space,

(A3) JV=[G (p)] —[G (p, H)]
The matrix Q = 1+Ma

' 5M then has the following form:

G (p, H)A(p, q)
JV(p)

G (p)A (q, p)
JV(p)

G (p)A(p, q) —G (p, H)8(p, q)
A(p)

G (p)&(p, q) —G (p, H)&(p, q)
~(p)

(A7)

Using Eq. (A7), we can expand DetQ to quadratic order in the deformation. The result is (in discrete notation)

1+ + G (p)&(p, —p) 2G (p, H)&(p, —p)
~(p) ~(p)

G"(p)&(p, q)G (q)&(q, p)
A(p)~(q)

G (p, H)A(p, q)G (q, H)A(q, p)
~(p)~(q)

qQ —p

(A8)

where the first correction is from the contributions of diagonal elements in block Q» and Q22, the second correction is
from the off-diagonal elements in Q» and Q22, and the last term has the off-diagonal contributions from blocks Q, 2 and

Q2, . Notice that by choosing Jd xh(x)=0, the term linear in h(x) in 3 (p, —p) vanishes. Using 2 (p, q) and 8(p, q)
in Eq. (A5), we find

=—,
' f d xd y — (x—y, O)[h(x) —h(y)] exp[ip (x—y)]kTA p 2 Bz2

G (p, H) BG
(x—y, H}h (y)exp[ip. (x—y}] .

~p Bz'

d p d q G (p, H)G (q, H)+G (p)G"(q)
(2~) (2~) ~(p A'(q)

X d xd vexp[i(p x —q v)] (v x,H}h(x)—D D . BG"
az

X f d ud yexp[i(q. u —p y)] (u —y, H)P(y) .g) D . BG
az

(A9)

In the above equation, the integrations over the relative coordinates v —x and u —y can be first performed, followed by
integrations over p and q. With some rearrangement of terms, we then end up with Eq. (2.10).
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