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Extended states of nonlinear traveling-wave convection. II. Fronts and spatiotemporal defects

Paul Kolodner
3 T & T Bell Laboratories, Murray Hill, New Jersey 07974-0636

(Received 1 June 1992)

This paper continues a description of experiments on one-dimensional, nonlinear, traveling-wave con-

vection in a binary fluid with separation ratio g= —0. 127 in a narrow annular cell. It is possible to
create and manipulate steady-state sources and sinks of traveling waves in this system, as well as to pro-
duce stable fronts that separate convecting and quiescent regions. Source defects tend to drift at con-

stant velocity, emitting Doppler-shifted traveling waves whose wave number lies outside the Eckhaus

boundary measured for spatially uniform traveling-wave states. I present both qualitative descriptions of
such phenomena and quantitative measurements of the amplitude and wave-number profiles of sources,
sinks, and fronts.

PACS number(s): 47.25.Qv, 47.20.Ky

I. INTRODUCTION

The past 15 years have seen much progress in the un-

derstanding of the physics of pattern formation. Much of
this advancement has been the result of careful study of
model systems —both experimental and theoretical—
which exhibit bifurcations to periodic patterns of high

symmetry in one or two dimensions. A classical example
is Taylor-Couette flow, in which toroidal vortices are
formed in the fluid which fills the gap between counter-
rotating cylinders. In a Taylor-Couette apparatus with a
ramped gap, the axial wave number of the vortex pattern
is selected exactly, in a way which has been explained by
theory in quantitative detail [1,2]. In the previous paper
of this pair [3) (referred to as I in the following), I de-
scribed another example of the reduction of pattern-
formation physics to a system exhibiting a highly sym-
metric state: measurements of the dispersive and stability
properties of spatially uniform traveling waves (TW) of
convection in a binary fluid in a periodic, one-
dimensional system.

Despite the utility of studying highly symmetric pat-
terns of reduced dimensionality, most patterns in nature
are not so regular. In typical systems which exhibit a
transition to a periodic pattern, states of high symmetry
are usually disrupted by real-space defects. In convection
in thin layers of pure fluids, for example, patterns exhibit
a narrow band of wave numbers, but boundary effects
cause these patterns to exhibit a high density of defects,
even at onset [4]. Electrohydrodynamic convection in
thin layers of liquid crystals presents another example.
Because of the anisotropy of the fluid, and because a huge
lateral aspect ratio can be obtained, this system can be
used to create large patterns of one-dimensional stripes
[5]. However, such experiments quite typically also pro-
duce erratic, high-defect-density states [6], and a statisti-
cal description of the defect evolution has superceded
theories of the stability of symmetric patterns as the ap-
propriate description of such states [7,8].

In a single spatial dimension, defect behavior can be
much less complicated. In a one-dimensional system

which exhibits a bifurcation to a steady, periodic pattern,
there are essentially only two defects possible: spatial
variations of the amplitude —such as fronts —and of the
wave number. The latter type of defect has been ob-
served in experiments on long chains of rolls in slot con-
vection [9] and has been discussed theoretically using the
concepts of phase dynamics [10]. In one-dimensional sys-
terns which exhibit a bifurcation to an oscillatory state,
defect behavior can regain some of the complexity seen in

two-dimensional patterns, since defects can now be
formed in two-dimensional space-time. The spatiotem-
poral analogs of dislocations, grain boundaries, and other
real-space defects have been observed in experiments on
one-dimensional TW convection in binary fluid mixtures

[11]and in liquid crystals [12], as well as in the "printer' s

instability" —the flow in the opening gap between two
counterrotating, nonconcentric cylinders [13]. In recent
experiments on forced convection in pure fluids, the
cross-roll instability [14] was exploited to create TW
states that exhibited source defects [15].

Despite the ubiquity and importance of real-space de-
fects in two-dimensional patterns and of spatiotemporal
defects in one-dimensional TW systems, the behavior of
isolated defects has received very little experimental at-
tention. Pocheau and Croquette studied the climb of
real-space dislocations in an otherwise one-dimensional
pattern of steady convective rolls in a pure fluid [16],and

Yang, Joets, and Ribotta documented the formation of
isolated dislocations in convection in liquid crystals [17].
Goren et al. [8] and Rasenat, Steinberg, and Rehberg
[18] also studied dislocations in convection in liquid crys-
tals, this time focusing on the attraction of nearby de-
fects. While the amplitude structure of real-space dislo-
cations was measured by the authors of Ref. [18], the
structure of spatiotemporal defects of TW seems never to
have been the subject of careful experimental study.

Quantitative characterization of the structure of
steady-state spatiotemporal defects in a one-dimensional
TW system is the subject of the present paper. The ex-

perimental system is TW convection in an ethanol/water
mixture in a narrow, annular container. As described in
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I, this system exhibits slow, nonlinear TW which propa-
gate azimuthally around the annulus. In I, I described
the dispersive and stability properties of these TW in

some detail. In the present paper, using the same fluid

and apparatus, I demonstrate experimental techniques
with which these TW can be made to exhibit steady spa-
tiotemporal defects —sources, sinks, and fronts —and

with which these defects can be manipulated —i.e.,
moved, annihilated, or transformed. I also present quan-

titative measurements of the amplitude and wave-number

profiles of these defects. These experiments have been

performed in an extremely stable and uniform convection
cell, and the diagnostics used to analyze the Qow struc-
ture are extremely precise.

This paper is organized in the following manner. Sec-
tion II is a brief review of the apparatus and procedures
used in the experiments. Sections III and IV then de-
scribe techniques used to produce and manipulate TW
fronts and source and sink states, respectively. In Sec. V,
I present quantitative measurements of defect structure.
Section VI describes further qualitative observations of
defect behavior, and Sec. VII is a discussion

II. REVIEW OF APPARATUS AND PROCEDURES

The apparatus used in these experiments is identical to
that used in I, and the experiments described in these two
papers were performed during the same six-month time
period. The cell is an annulus of height d=0. 2737 cm
with dimensionless radial width and mean circumference
1.677 and 82.47, respectively. The cell is heated from
below and cooled and visualized from above. The fluid is
the same ethanol and water mixture used in I, with sepa-
ration ratio g= —0. 127, Prandtl number 6.86, and Lewis
number 0.0083. The spatial uniformity and temporal sta-
bility of the Rayleigh number in this apparatus were
3 X 10 and 3 X 10, respectively. The Rayleigh num-

ber has been calibrated with an absolute uncertainty of
about +2%; scatter and drifts in the Rayleigh-number
measurements were corrected to a level of &2X10
As in I, Rayleigh numbers have been normalized by the
critical Rayleigh number for the onset of steady convec-
tion in a pure fluid in a laterally infinite layer. Rayleigh
numbers are quoted to five digits, and the error reported
in parentheses represents the random component of the
uncertainty.

Particular care was taken in this series of experiments
to ensure that the shadowgraphic flow-visualization sys-
tem operated in the linear regime, so that quantitative
measurements of the structure of TW states could be
made. Full complex demodulation of the shadowgraph
data was used to compute maps of the amplitude and
wave-number profiles of the two azimuthally propagating
TW components [19]. The distortion-correction pro-
cedures described in I and in Ref. [19]were used, so that
the computed amplitude (wave number) profiles were ac-
curate to within about +5% (+1%).Since the optical dis-
tortions which impose these limits tend to appear at ran-
dom, slowly drifting locations in the shadowgraph image,
and since the defects under study often appeared at
different locations, it has been possible in many cases to

reduce these numbers substantially by averaging.
When quantitative flow visualization is under discus-

sion, the question of spatial resolution must be addressed.
In the present case, the resolution can be limited by three
effects: blur in the optical system, finite spatial density of
pixels in the imaging camera, and lowpass filtering in the
data processing. The blur is quite difficult to assess quan-
titatively. However, on increasing the focalization dis-
tance of the optical system into the nonlinear regime,
second, third, and higher harmonics are observed to ap-
pear in the spatial spectrum of a pattern of spatially uni-
form TW. In the actual images, the roll boundaries de-
velop the caustic profiles characteristic of nonlinear sha-
dowgraph images [20]. These observations suggest that
the blur affects only length scales smaller than one wave-
length of the pattern. Likewise, the pixel spacing is quite
small: The images were recorded on a mesh of 1 pixel per
degree of angle, or approximately 9 pixels per TW wave-
length. Finally, a too-narrow demodulator bandwidth
can obviously smooth out a spatially varying amplitude
or wave-number profile. This effect was assessed by per-
forming the demodulation on selected data files using
several different bandwidths. As expected, decreasing the
bandwidth below some threshold causes the profiles to be
increasingly smooth, while increasing the bandwidth
beyond the threshold merely adds noise without sharpen-
ing up the profile. I typically used bandwidths which
were somewhat wider than the threshold observed for the
sharpest profiles measured for a given type of defect. In-
terestingly, wave-number profiles can be computed
without distortion using narrower demodulator band-
width than can amplitude profiles. The wave-number
and amplitude profiles discussed in this paper were com-
puted separately to take advantage of this. The sharpest
amplitude feature observed in these experiments exhibit-
ed a (10—90)% width of approximately 3 times the cell
height, and this appears to be the true shape of the con-
vective profile, unaffected by the resolution of the optics
and signal processing.

III. PRODUCTION AND CHARACTERIZATION
OF FRONTS OF TRAVELING WAVES

Stable defects do not happen by accident. In experi-
ments at g= —0.25 in a large annulus, we found that
simply turning the Rayleigh number above onset triggers
a complicated transient which leads to a state of slow TW
which fill the cell [11]. For the fiuid used in the present
experiments, a similar transient is seen, but the final state
usually consists of one or a few TW pulses, since pulses
are stable just above onset at this value of g [21,22]. As
demonstrated in I, pulse formation can be prevented if
the system is first prepared in a spatially uniform state of
unidirectional linear TW. In that case, if the cell is
sufficiently uniform, then the first state to evolve upon
raising the system above onset is again a spatially uni-
form state of slow, nonlinear TW.

Producing stable spatiotemporal defects has required
further development of the pulse-launching and local-
heating techniques that were introduced in Ref. [23] and
refined in Ref. [22]. Figure 1 illustrates how these tech-
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FIG. 3 Space-time trajectories of the roll boundaries are
shown for the source-front state of Figs. 1 and 2 during a run in

which the Rayleigh number was changed. Initially, r
=1.25892, close to the neutral-stability point r, =1.258 85. At
time t =16560 sec, r was reduced to r = 1.255 98, and the fronts
receded with constant velocity. Then, at t =31040 sec, r was in-

creased to r =1.26180, causing the fronts to advance into the
quiescent region. These small changes in Rayleigh number had
little effect on the source defect.
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FIG 4. (a) The front velocity vf„ is plotted as a function of
Rayleigh number, as determined by measurements like that in
Fig. 3. In the center of the graph, vf, (r) passes linearly through
zero at r, =1.258 85(3), with slope dvf„/dr =4. 127(33). (b) The
solid symbols represent measurements of the spatially averaged
oscillation frequency of source-front states as a function of Ray-
leigh number. The solid curve shows the frequency of the
n =40 spatially uniform TW state reported in I.

in this run (but compare Fig. 23 below). Figure 4 shows

the Rayleigh-number dependences of the front velocity
and the spatially averaged oscillation frequency. The
latter decreases with r, exhibiting a slightly different

dependence on r than the spatially uniform TW studied
in I [solid curve in Fig. 4(b)]. The front velocity de-

creases linearly with r, passing through zero at
r„=1.258 85(3) with slope dvt, /dr =4. 13(3). r„ lies just
above the saddle-node Rayleigh number r, =1.22643(10)

measured in I.
Measurements of the properties of neutrally stable

fronts in both geometries are gathered in Table I. Com-
paring these results is somewhat difficult, not because of
the difference in geometry but because of the difference in
cell width I, which has a poorly understood effect on
most of the tneasurements. (By contrast, the finite length
of the rectangular cells affects only the onset Rayleigh
number r„, and this effect is understood quantitatively

TABLE I. Neutrally stable fronts.

width' b
rco

d
S

00 e
CO rs

dvfr

—0.408
—0.240
—0.127

3.00
3.00
1.677

1.6976(1)
1.3555(2)
1.2913(3)

1.4049(1)
1.2630(2)
1.258 85(3)

1.339(8)
1.254(4)
1.2259(1)

1.6601
1.3256
1.1354

1.3739
1.2351
1.106 95

1.309
1.226
1.0780

1.022(20)
1.94(20)
4.69(4)

2.70—2.80 0.553(10)
2.65—2.75 0.555(10)
2.80—2.90 0.163(3)

The cell width I „ is measured in units of the cell height. The I =3.00 results were measured in a rectangle cell and are taken from
Ref. [24]. The I ~

= 1.677 results were measured in the present experiments.
For the rectangular-cell measurements, the onset Rayleigh number r, has been extrapolated to infinite cell length using the mea-

surements of Ref. [25].
r„ is the measured value of the reduced Rayleigh number at which the front velocity is zero.

For the present experiments, r, is the saddle-node Rayleigh number measured in I. For the rectangular-cell measurements, r, is the
measured Rayleigh number below which nonlinear TW are not stable. This probably does not correspond to the true saddle node.
'The superscript ~ represents measurements in which the Rayleigh number has been corrected for the effect of finite cell width using

the linear-state measurements in Ref. [26], as described in the text.
k represents the range of wave numbers measured at various spatial positions.
v~h(r, ) is the TW phase velocity measured at Rayleigh number r„.
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[25]. The rectangular-cell onset measurements in the
third column in Table I have been extrapolated to infinite
cell length for comparison with the new annulus results. )

To make a rough correction for cell width, the Rayleigh-
number measurements presented in columns 3—5 of
Table I can be divided by a(I )=1.1373 (1.0226) for
I =1.677 (3.00), which is the measured factor by which
the finite cell width suppresses the onset Rayleigh num-
ber [26]. These results, distinguished with a superscript
~, are presented in columns 6—8 of Table I. The veloci-
ty derivative dvf, /dr" in column 9 of the table has also
been multiplied by a(I ). r,", and du&„/dr" all exhibit
reasonably smooth dependences on 1(. Another indica-
tion that these fronts are all the same state is that all the
experiments reveal a very low wave number. This issue is
discussed in greater detail in Sec V. Finally, in Ref. [24],
I suggested that the common value of the TW phase ve-
locity measured at r, for both g= —0.408 and —0.240
might have some significance. As seen in the last column
of Table I, however, a different phase velocity is mea-
sured at r, in the annulus. But the effect of the cell width
on this measurement is quite uncertain.

IV. PRODUCTION, CHARACTERIZATION,
AND MANIPULATION OF SOURCES AND SINKS

The source-front state discussed above can be
transformed into a stable state consisting of a source and
a sink on opposite sides of the cell. Since Uf, &0 for
r ) r„, it would seem that the fronts can be pushed to-
gether to make a sink simply by raising the Rayleigh
number. However, there are several problems with this
notion. First, fronts are observed to repel each other.
This is not surprising, given the fact that "forwards-
facing" TW pulses repel one another under essentially
identical conditions [22]. Because of this, forcing fronts
to merge in a reasonable time would require increasing
the Rayleigh number above the value r * at which the TW
frequency drops to zero [3], and this would turn the re-
sulting pattern into a spatially uniform state of stationary
convection. A more subtle problem is revealed in Fig. 24
below: Even below r' (in fact, even below the range of
Rayleigh numbers in Fig. 4), sources and sinks tend to
drift together and merge, forming a defect-free TW state.

These problems and their cure are illustrated in Fig. 5.
Initially, a source-front state was created using the same
procedure as in Fig. 1. At the beginning of the run in
Fig. 5, the Rayleigh number was set somewhat above r,
and was spatially uniform. This caused the opposing
fronts to approach each other initially; however, they re-
pelled each other and came to a stop instead of merging
into a sink (times 2000—6000 sec in Fig. 5). The Ray-
leigh number was then decreased below r, (times
6000—8000 sec), and the fronts receded. Finally, a large
bump centered between the two fronts was added to the
spatial Rayleigh-number profile, and this caused the
fronts to approach each other again and to merge
without destroying the source defect on the opposite side
of the cell. For a brief period after the merging of the op-
posing fronts (times 10000—12000 sec), the sink thus
formed consisted of a narrow spatial region of steady
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convective rolls. It then evolved into a true sink of TW.
As shown in Fig. 6, this source-sink state can be stable
for arbitrarily long times.

The stationary source-sink state shown in Fig. 6 is ac-
tually something of an anomaly. Typically, source de-
fects tend to drift at constant velocity, and sinks tend to
follow. Figure 7 shows the fastest-drifting defect pair
that I have observed. Drifting defects do not appear to
slow down, even on time scales of a week. Making the
defects stand still is actually the challenge here, and I

16—

12—

C)
C)0

0—
I

0
I I

90 180 270
POSITION IN CELL

I

360

FIG. 6. A stable state consisting of motionless source and

sink defects approximately opposite one another in the cell.

The Rayleigh number is r = 1.234 10.

FIG. 5. Creation of a source-sink state. This run began like
the run in Fig. 1 and resulted in a source-front state. Then, the
Rayleigh number was increased well above r„causing the neu-

trally stable fronts to approach each other. Because of the
repulsion of the fronts, a sink could be created without destroy-
ing the source only by applying local heating in the vicinity of
the fronts. At the end of the run, the system was in a stable
source-sink state at r = 1.249 80.
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FIG. 7. A drifting source-sink state at r = 1.243 35. Both de-

fects drift to the left at v, = —0.019 58.

demonstrate techniques which can used for this in Figs.
11 and 12 below. As detailed in Sec. V, the source posi-
tion x„„„,(t) is identified as the point where the left and
right TW amplitudes are equal. In all case, x»„,«(t) is
observed to drift linearly in time; for this run,
dx»„„,/dt = —0.019471(4). I have found it more reli-
able to use the fit procedure in the next paragraphs to
determine the source velocity, which I quote for this run
as U, = —0.01958. In this example, the source and the
sink are so close that it cannot be assumed that they are
not interacting, and I have excluded such data from the
quantitative analysis described in Sec. V.

Because sources and sinks drift, two numbers, the Ray-

leigh number and the source velocity, must be quoted to
parametrize such states. Because the oscillation frequen-
cy is monotonically related to the Rayleigh number, and
because it is my impression that the frequency (or TW
phase velocity) is more directly relevant to the defect
structure than the Rayleigh number, I will actually speak
more in terms of the frequency than the Rayleigh number
in describing source-sink states. Because the oscillation
frequency depends on position, it is necessary to refer to a
spatially averaged frequency co.

Figure 8 shows examples of the amplitude, wave-
number, and oscillation-frequency profiles for three
drifting-defect states. Several features are evident in
these profiles and are worth discussing on a qualitative
level before they are investigated in quantitative detail
below. First, if the source and sink are not too close to-
gether [excluding Figs. 8(a)—8(c)], the amplitude profiles
near the source exhibit the same rapid rise, followed by a
near saturation, that was observed in the source-front
states. At the sink, both amplitudes decay again. At
high source velocities [Fig. 8(a)], the sink tends to follow
the source rather closely, and this tends to distort the am-
plitude profile in the narrower space between them.
Apart from this, the amplitude profiles of the defects ex-
hibit approximate mirror symmetry. Second, judging
from the amplitude profiles, the source is slightly wider at
high oscillation frequency [Fig. 8(d)] than at low frequen-
cy [Fig. 8(g)], and sources are always wider than sinks.
This makes intuitive sense and conforms to the descrip-
tion given by Coullet et al. [27]. Third, the wave number
in a11 three examples in Fig. 8 is much higher at the sink
than at the source. Typically, k„„„,—2.7 and
k„„„—3.3. At low oscillation frequency [Fig. 8(h)], the
wave-number profile interpolates almost linearly between
these two values. In contrast [Fig. 8(e)], the wave-
number gradient is concentrated in the near vicinity of
the defects at high oscillation frequency. Outside these
defect cores, the wave-number profile is flat at high fre-
quency. Finally [Figs. 8(c), 8(f), and 8(i)], the oscillation-
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FIG. 8. Amplitude (top), wave-number (middle), and oscillation-frequency (bottom) profiles for three stable source-sink states.
Left: r=1.24596, co=0.61204, and v, = —0.01653. Center: r=1.23557, co=0.98426, and v, = —0.00016. Bottom: r=1.25400,
co=0.417 54, and v, = +0.01223.
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FIG. 9. The solid curve is the oscillation-frequency profile
for a source-sink state at r = 1.243 35. The dots show the fit to
the Doppler-shift form quoted in the text. For this example, the
At parameters are UD pp}

—0.01958 and 6=0.67106. The
regions near the defects, were interference beats are seen, are ex-

cluded from the fit.

frequency profile depends strongly on the source velocity.
The spatial profile of the oscillation frequency is accu-

rately explained as a Doppler shift. In Fig. 9, the solid
curve is the frequency profile for one drifting-defect state,
and the dots show a fit to the form co(x ) = co
—vD, ~~~,„k(x), where co and vo, &„are adjustable pa-

rameters, and the measured wave-number profiles are
used to form k(x):k(x)=k~(x) on the right of the
source, and k(x) = —kI (x) on the left of the source. The
fit is excellent in this and all other cases. Further, as
shown in Fig. 10, the fit parameter UD, „, exactly
matches the temporal derivative of the source position
x„„„„(t)determined by following the point where the
left- and right-wave amplitudes are equal. I think that
the Doppler-shift fit gives a more reliable estimate of the
source velocity than following x„„„,(t) in spacetime.
The spacetime method relies explicitly on accurate ampli-
tude profiles in the vicinity of the source, precisely where
the demodulation technique is affected most by noise,
filter bandwidth, and cross-channel leakage (defined and
discussed below). The Doppler-shift fit is much less sensi-
tive to the accuracy of the demodulation; the data near
the defects are excluded from these fits anyway, since the
oscillation-frequency profiles exhibit hard-to-fit interfer-
ence beats there. Thus, I identify the two fit parameters
U D ppI and co as the source velocity and the spatial ly
averaged oscillation frequency, respectively, and these
numbers are precise to at least three and four digits, re-
spectively.

Because source defects exhibit a Doppler shift, and be-
cause the TW frequency depends on Rayleigh-
number, local heating can be used to manipulate sources.
Making the Rayleigh number higher on one side of a
source than on the other causes a frequency difference be-
tween the two TW components, and the source adjusts its
velocity so that the Doppler shift matches this frequency
difference. This observation can be summarized by the
statement that hot spots repel sources. Figure 11 illus-
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FIG. 10. The source velocity dx„„„„/dt determined by fol-

lowing the source position in spacetime is plotted against the

Doppler-shift velocity UD ppI determined by fits of the type il-

lustrated in Fig. 9, for a subset of the data files analyzed. The
line is a least-squares fit with slope 0.996+0.006. The average

difference between these two velocities, including all the data, is

(0+2) X 10

trates this effect. The defect state under observation in
this figure is the same run as in Fig. 7. At the beginning
of this run, the Rayleigh number was set at r = 1.243 3S,
and the spatial profile of the Rayleigh number, as mea-
sured using the drifting-pulse technique described in Ref.
[22], had the nearly flat shape shown as the curve marked
(1) in Fig. 11(b). At time t =12600 sec, a local heat
source was applied at location 158', producing the
Rayleigh-number profile marked (2). The source
responded by drifting faster to the left, away from the lo-
cal bump in the Rayleigh-number profile, as can be seen
in the time period marked (2) in Fig. 11(a). At later
times, in order to follow the drift of the source, the bump
was moved further and further to the left, as illustrated
by the curves marked (3) and (4) in Fig. 11(b). Interest-
ingly, the sink defect was hardly affected by the manipu-
lations of the source. On the basis of this and other ob-
servations (for example, see Fig. 23 and discussion
below), I conclude that the sink defects are "passive" and
merely tend to follow the sources. The observation that
unperturbed defects drift at constant velocity for long
periods is further confirmation that the cell is extremely
uniform. In a nonuniform cell, sources would get stuck
at local minima in the Rayleigh-number profile.

Figure 12 illustrates the use of these techniques on a
source-front state. Initially, r = 1.259 02, and the
Rayleigh-number profile was quite Oat (dashed curve in

bottom frame of Fig. 12). Since r —r„ the fronts as well

as the source were essentially stationary. At approxi-
mately t =6000 sec, local heating was applied at location
53', producing the full Rayleigh-number profile in the
lower frame of Fig. 12. Since the left-hand front in the
top frame is found near the location in the apparatus
where the applied temperature difference is held constant
by the temperature-regulation system, this front was
affected very little by the local heating. Closer analysis of
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the left-hand front behavior indicates that the front
responds to the Rayleigh number measured ahead of its
half-amplitude point by a distance of approximately 3.5
times the cell height, in agreement with the response of
drifting pulses [22] and spatially uniform TW [3] to
Rayleigh-number nonuniformities. The right-hand front,
finding itself in region where r (r„receded during the
time period that the Rayleigh-number bump was applied
[28]. As in Fig. 11, the source defect, initially at location
300, was strongly repelled by the Rayleigh-number
bump. At t =14000 sec, a flat Rayleigh-number profile
was restored [dotted curve in Fig. 12(b)], and the defect
motion stopped.

V. QUANTITATIVE MEASUREMENTS
OF DEFECT STRUCTURE

In this section, I describe the methods used to analyze
defect structure using profile measurements like the ones

FIG. 11. Manipulation of a source defect by local bumps in

the Rayleigh-number profile. Part (a) shows the spacetime tra-
jectories of the roll boundaries, and the curves in part (b) show

the reduced Rayleigh number profile 5e(x) = [r(x) r]I r, where-
r (x) is the applied Rayleigh-number profile and r is the reduced
Rayleigh number measured with no local heating. Initially, the
Rayleigh number exhibited the flat profile shown as the curve
marked {1)in part {b),and the source and sink defects drifted to
the left [time period (1) in part (a)]. In the time periods marked

(2), (3), and (4) in part (a), the correspondingly labeled
Rayleigh-number profiles in part (b) were imposed by turning
on point heaters on the underside of the cell. The Rayleigh-
number gradient applied across the source enhanced the fre-

quency difference between the left and right TW, and the source
velocity increased so as to impose a corresponding increase in

the Doppler shift.
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FIG. 12. Manipulation of a source-front state by local heat-

ing. Between times 0 and 6000 sec, the flat, dashed Rayleigh-
number profile in (b) was applied, and the fronts and source
were all stationary. Between times 6000 and 15000 sec, a
Rayleigh-number profile of the form of the solid curve in (b) was

applied, and the source and one of the fronts moved according-
ly. Finally, the fiat, dotted Rayleigh-number profile was re-

stored, and the defect motion stopped again.

presented in Figs. 2 and 8. I illustrate the techniques
used by describing the analysis of the source wave-
number profile in the source-sink state in detail. I then
discuss the results obtained for the rest of the defects ob-
served, starting with the source-sink state and finishing
with the source-front state. Except as noted, all ampli-
tude and wave number profiles were analyzed in the same
way.

I have defined the 1ocation of sources and sinks as the
point where the left- and right-TW amplitude profiles are
equal. I have also verified that computing the average of
the positions at which the slopes of the two profiles are
steepest gives essentially identical results. Front loca-
tions were determined difFerently, as discussed below.
With the defect positions thus determined, I then shifted
all the profiles to a standard mesh of distances from the
defect center which covers 60% of the experimental cell.
Left-TW profiles were reversed, so that the "distance
from the defect" increased from left to right for all
profiles. Separate left and right files were made for each
source and for each sink defect. Data near the other de-
fect, on the far right of each profile, were removed before
further analysis.

The next question to be considered is that of symmetry
with respect to reflection through the center of the defect.
Since sources and sinks drift, I expected to find an asym-
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metry in their amplitude and/or wave-number profiles
that is proportional to the drift velocity. A careful search
for such an effect was performed only on the source
wave-number profiles in the source-sink state. The re-
sults of this analysis depended on the oscillation frequen-
cy. At low frequency, the wave-number profiles exhibited
small asymmetries far from the source. These were clear-
ly related only to the fact noted in the discussion of Fig. 8

above that, at low oscillation frequencies, the wave num-

ber exhibits an almost linear increase from k„„„,to k„„k
as one moves from the source to the sink. Since, in most
data sets, the two defects were not exactly diametrically
opposite in the cell, this causes an asymmetry. I was not
able to find a relationship between this rather trivial
effect and the drift velocity.

At high oscillation frequency, the situation is different.
In this case, most of the wave-number gradient is concen-
trated in the cores of the defects, with a flat profile in the
regions between the defects —this was also noted in con-
nection with Fig. 8 above. Thus, in these data sets, the
unequal source-sink distances primarily affect only the
lengths of the flat-wave-number-profile regions and not
the shapes of the profiles in the defect cores. Thus, any
measured asymmetry in the defect cores would probably
represent the intrinsic response of the defects to their
drift. However, no effect greater than the noise could be
identified. I suspect that this is because the drift veloci-
ties are low: The highest ratio of drift velocity to TW
phase velocity of all the data was 0.08. Because the
asymmetries in the profiles are so small, I averaged the
left- and right-TW profiles in all the subsequent analysis,
and this essentially cancels any true drift-velocity-related
asymmetries in the high-oscillation-frequency wave-
number profiles. The result of this averaging in the case
of the asymmetric, low-oscillation-frequency source-sink
states is effectively to yield profiles characteristic of
source-sink states in which the defects are exactly diame-
trically opposite one another in the cell.

The next step in the analysis is to explicitly examine
the oscillation-frequency dependence of the profile under
study. Figure 13 shows the frequency dependence of the
source wave number at several different distances from
the defect. The data at each spatial position exhibit a
scatter of about +l%%uo, caused by wiggles due to optical
distortions. Since the distortions move around the image
in a way which is unrelated to the defect drift, this scatter
is essentially random and can be averaged away. In the
present case, this was done by fitting the frequency
dependence at each spatial point using a heavily
smoothed cubic spline, as shown by the curves in Fig. 13.
In other profiles, no frequency dependence was observed,
and I simply averaged all the profiles together in such
cases. Because of this averaging, the source-sink wave-
number profiles are accurate to much better than +1%,
and the amplitude profiles are accurate to +1—2%%uo. The
source-front state profiles are somewhat less precise, as
noted below.

Figure 14 shows the spatial profiles of the source wave
number in the source-sink state, as interpolated to several
different oscillation frequencies using the spline fits in
Fig. 13. At all frequencies, the wave number is very low

3.0—

CC

2.9—

Z

0
& 2.8—

2.7—

0.5 0.6 0.7 0.8 0.9 1.0
OSCILLATION FREQUENCY

FIG. 13. The wave number measured at different distances
from the source in the source-sink state is plotted as a function
of oscillation frequency. From bottom to top, the distances
from the source, in units of the cell height, are: inverted trian-

gles, 1.83; circles, 6.41; squares, 8.71; triangles, 11.00; and dia-

monds, 15.58. The solid curves are heavily smoothed spline fits

to the frequency dependences at each spatial point.
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FIG. 14. Wave-number profiles near the source defect in the
source-sink state are shown for different oscillation frequencies,
as interpolated using the spline fits shown in Fig. 13. Curves
a —e are for frequencies 0.50, 0.65, 0.80, 0.95, and 1.10, respec-
tively. The horizontal bar labeled k~ represents the center of
the Eckhaus boundary found in I. In this and subsequent
figures, the arrow shows the direction of TW propagation.

behind the source, rises to a maximum at the defect
center, exhibits a sharp dip, and then rises again. (An as-
sessment of how much of this reproducible behavior is
real and how much is an artifact of the demodulation
process will be postponed until the demodulated ampli-
tude profiles are discussed below. ) Beyond the initial
minimum at x /d -4, the wave-number profile for the
lowest frequency increases smoothly with distance from
the source, as previously mentioned. The "core" region,
over which the wave-number gradient is concentrated,
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shrinks in space as the frequency increases, so that, for
the highest frequency in Fig. 14, the half-width of the de-
fect core is about 12 times the cell height. Figure 15
shows the sink-wave-number profiles for the source-sink
state, interpolated to slightly different frequencies than in
Fig. 14. Once again, the extent of the core region shrinks
as frequency increases. Because the averaging described
above effectively produces the wave-number profiles for a
state of diametrically opposite defects, the wave numbers
at corresponding frequencies in Figs. 14 and 15 are seen
to match at a distance x id=20. 62, which corresponds
to —,

' of the cell circumference.
It can be read from Fig. 14 that, at the highest frequen-

cies, the TW outside the core regions of the defects exhib-
it a flat wave-number profile with k =3.04S. This coin-
cides almost exactly with the wave number k40=3.0474
of the n =40 spatially uniform T%' state discussed in I.
As shown in Fig. 16, the oscillation frequencies of these
two states also coincide at the low Rayleigh numbers
which correspond to the highest frequencies. My inter-
pretation of these observations is that, at high-
oscillation-frequency, source-sink states consist of local-
ized defects which are separated by wide regions in which
the TW state is identical to the spatially uniform TW
studied in I. The wave number in these regions lies near
the center of the Eckhaus boundary (see Fig. 20 below),
and it is thus very tempting to conclude that it is selected
by the Eckhaus instability rather than the source. At low
oscillation frequency, the defect cores extend throughout
the system, and the Eckhaus instability is clearly not
relevant. These observations also suggest that the
Rayleigh-number dependence of the source-sink-state fre-
quency depends on the cell size. The defect-state oscilla-
tion frequency coincides with the uniform-state frequency
for frequencies above which the core size is sufficiently
sma11 compared to the cell size. In a larger cell, the
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FIG. 15. Wave-number profiles near the sink defect in the
source-sink state are shown for different oscillation frequencies,
as interpolated from spline fits to the frequency dependence at
separate spatial points. Because of peculiarities of the data, in-
terpolation was made to a different set of frequencies than in
Fig. 14. Curves a —d are for frequencies 0.48, 0.63, 0.78, and
0.93, respectively.
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FIG. 16. The symbols represent the Rayleigh-number depen-
dence of the source-sink-state oscillation frequency 8, as ex-
tracted from fits like the one in Fig. 9. For comparison, the
solid curve shows the oscillation frequency of the spatially uni-

form n =40 state measured in I. Below r-1.234, the defect
cores fill only a small fraction of the system, and the defect-state
frequency matches the uniform-state frequency.

Rayleigh-number range over which these two frequencies
are equal would extend to higher values.

The amplitude profiles of the source-sink states are an-
alyzed in the same manner as the wave-number profiles,
with one difference. The amplitude profiles typically do
not saturate completely as one moves further and further
from the source. Instead, as can be seen in Fig. 8(d), the
amplitude continues to grow, albeit slowly, until it drops
abruptly at the sink. To compensate for the fact that the
source-sink distance is not the same for all data sets, I
normalize each amplitude profile to its value averaged
over some small domain far from the source before
searching for a frequency dependence.

As shown in Fig. 17, the source amplitude profile de-
pends on oscillation frequency. Moving downstream
from behind the source, the amplitude initially grows
abruptly, with a slope that decreases with frequency, and
then reaches a frequency-dependent plateau before con-
tinuing to grow downstream. The dashed line in Fig. 17,
taken from low-frequency data in the source-front state,
appears to match this trend. Intuitively, one would ex-
pect that, as the TW leave the source at higher velocity,
the initial rise in the amphtude profile would be stretched
out, and this is confirmed by these data. By contrast, as
shown in Fig. 18, the amplitude profile of the sink is in-
dependent of frequency. This profile exhibits a (10—90)%
width of 3.8 times the cell height, which is quite a bit
sharper than even the sharpest source profile (shown for
reference in Fig. 18 as the dashed curve).

It is useful at this point to consider some of the artifac-
tual features of the demodulation process and how they
affect these amplitude and wave-number profiles. The
main artifact in this process comes from what I call
"cross-channel leakage. " Behind the source and ahead of
the sink, the opposite TW component is present at 100%
amplitude and cannot be completely removed by the
demodulation. My experience is that this stray signal is
attenuated only by a factor of about 100 by the demodu-
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FIG. 18. The solid curve shows the amplitude profile near
the sink defect in the source-sink state. Each individual profile
used in this average was normalized so that its amplitude, aver-
aged over a domain centered at x/d =10, is unity. The error
bar shows the standard deviation of those individual amplitude
profiles. The averaged profile is sharper than the sharpest
source-amplitude profile (dashed curve, copied from the dashed
curve in Fig. 17). Note that the TW are still growing in ampli-
tude as they reach the sink.

FIG. 17. The solid curves show the amplitude profiles near
the source defect in the source-sink state for different oscillation
frequencies. Each individual profile used in this interpolation
was normalized so that its amplitude, averaged over a domain
centered at x/d =22.7, is unity. Curves a —e represent frequen-
cies 0.50, 0.65, 0.80, 0.95, and 1.10, as in Fig. 14. The dashed
curve shows the average of the amplitude profiles in the source-
front state. In that state, the oscillation frequency was
0.48+0.06. A consistent broadening of the profile with increas-
ing frequency is seen.

lator filters, using typical filter settings. Thus, leakage of
the opposite TW component is an important component
of the profiles in Figs. 17 and 18 for x/d ~ —3 and is
dominant for x /d ~ —5. It is for this reason that the TW
amplitude profiles decay only to 1% levels far behind the
defects in Figs. 17 and 18. In contrast, there is no oppo-
sitely propagating TW component beyond the front
profile in Fig. 21 below, and its amplitude drops all the
way to zero. A rough correction for this "cross-channel
leakage" could be made in the case of the source-sink
state by computing the profile A'(x) = A(x) —a A( —x),
where e-0.01 is adjusted so that the amplitude drops to
zero far behind the defect. This correction causes a negli-
gible change in the (10—90)% width.

The spatial domains over which the wave-number
profiles in Figs. 14 and 15 have been plotted do not in-
clude the regions where this cross-channel leakage dis-
torts the amplitude profiles. However, the sharp spatial
variations of the wave-number and amplitude profiles
also might cause other distortions of the wave-number
profiles. Experiments with artificial data reported in Ref.
[19] found that sharp amplitude variations do not affect
the wave-number profiles, and my experience since has
been that wave-number profiles are distorted only at too-
narrow demodulator bandwidth, and even then only in
spatial regions where the signal is strongly attenuated.
Further, experiments with artificial data that match these
source-sink states suggest that, with the exception of the
part of the wave-number profile behind the source where
k (2.65, all of the behavior in Fig. 14 is real. All of the
sharp rise in the profiles in Fig. 15 seems to be real behav-
ior too.

The noise and distortions in the amplitude and wave-
number profiles computed for the source-sink state have
been substantially reduced by averaging. This improve-
ment has been less successful in the case of source-front
states because they do not tend to drift in the cell. Since
all the source-front data were acquired in a single three-
day period, the wiggles caused by optical distortions in
the data were also basically stationary. Thus, averaging
reduced noise but not distortions.

The amplitude profile near the source in the source-
front state has already been displayed in Fig. 17. Figure
19 shows the wave-number profile near the source in this
state, interpolated to four different oscillation frequen-
cies. (Note that the frequencies in these data lie in a nar-
row range which is close to the lowest frequency in Fig.
14.) The rise and dip very close to the defect center have
the same appearance as the front profiles in Fig. 14. In
this state, however, beyond about x/d —10, the wave-
number profiles flatten out at all frequencies, never
exceeding a value of about 2.9. This wave number is low
not only in comparison with the source-sink-state wave
number; it is also low with respect to the Eckhaus bound-
ary measured in I. This is shown in Fig. 20, where the
left and right ends of the horizontal arrows marked a —d
represent the wave numbers measured at positions
x /d = 10 and 27, respectively, in the corresponding
profiles in Fig. 19. The wave number at the center of the
source lies well outside the Eckhaus boundary for all the
defect states studied in this work. In the source-front
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FIG. 19. Wave-number profiles near the source defect in the
source-front state are shown for different oscillation frequencies.
Curves a —d are interpolations to frequencies 0.40, 0.45, 0.50,
and 0.55, respectively. Unlike the profiles in the source-sink
state, these wave numbers remain low even far from the source.

states at the lowest Rayleigh numbers, much of the rest
of the wave-number profile is also outside the Eckhaus
boundary.

Finally, Fig. 21 shows the spatial profile of the TW am-
plitude near the front in a source-front state. This ampli-
tude profile was found to exhibit no frequency depen-
dence over the rather narrow frequency range of the data.
The location x ld =0 was defined as the 50&o amplitude
point in the right-TW front for each data set, and the
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FIG. 20. The arrows marked a —d illustrate the behavior of
the corresponding wave-number profiles in Fig. 19 as one moves
from point x/d=10 in the wave-number profile (tail of arrow)
to point x/d =27 (head of arrow}. The curve is the parabolic fit

to the Eckhaus boundary found in I, and the solid circle
represents the wave number in the flat part of the co=1.10
profile in Fig. 14. The wave number at the source always lies

outside the Eckhaus boundary, and much of the rest of the
wave-number profile in the source-front states is also outside
this boundary.

0.8—
UJ
Cl

0.6—

UJ

~~ 0.4-

0.2—

0
—5

I

0 5 10
DISTANCE FROM FRONT x/d

FIG. 21. The average amplitude profile near the front in a
source-front state is shown. Moving downstream from the
right, the TW continue to grow weakly until the amplitude
drops sharply at the front. Beyond the main drop in amplitude,
there is a small shoulder, and then the amplitude decays entire-

ly. The profile appears to be fully resolved and unaffected by
leakage through the demodulator filters.

profile of the opposite TW component was reversed and
shifted until the best overlap with the right-wave profile
was found. The profile in Fig. 21 is just the average of all
the left- and right-TW amplitude profiles, once again nor-
malized to the amplitude averaged over a spatial domain
far from the front. The drop in amplitude at the front is
quite sharp: The (10—90)% width is 3.0 times the cell
height. Far beyond the front, because there is no cross-
channel leakage in the demodulation in this state, the
wave amplitude drops to zero. The narrow shoulder
structure seen for —6 5x /d ~ —2 appears to be real.

VI. QUALITATIVE OBSERVATIONS
OF DEFECT BEHAVIOR

I conclude the descriptive part of this paper with a few
final qualitative observations of defect structure and evo-
lution. While the structure of the amplitude and wave-
number profiles have been well documented in the previ-
ous section, it is also worth considering how the actual
convective rolls behave in defects. This is the subject of
Fig. 22. In the upper left of this figure, raw spatial sha-
dowgraph signals spanning a time range of a bit less than
half an oscillation cycle are shown for a source defect.
During this time period, an adjacent minimum and max-
imum in the center of the graph are pulled apart, giving
birth to a new pair of extrema in between the original
two. Since the extrema of the shadowgraph signals
represent roll boundaries, this evolution represents a sin-
gle convective roll that first expands in width and then
splits in three. A sketch of this process is shown in the
lower left part of Fig. 22. The evolution of a sink defect,
shown in the upper right part of the figure, is different.
Here, two adjacent minima in the center of the pattern
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bility well before the frequency drops to zero. In this
case, the defects were drifting rather rapidly, and, as not-
ed above, the sink tends to follow the source rather close-
ly in such a situation. In this run, the decay of the de-
fects begin with the sink moving even closer to the
source. Then, the TW in the space between simply re-
versed their propagation direction, and the defects disap-
peared. This behavior is seen only at high Rayleigh num-

ber, and the reason for this is clear from the
concentration-field measurements reported in Refs.
[29,30]. The propagation of the pattern in this system is
caused by a roll-to-roll contrast in ethanol concentration
which varies with Rayleigh number. For an individual
convective roll to reverse its propagation direction as in
Fig. 24, it has to exchange ethanol with its neighbors by
diffusion. This diffusion is enhanced at high Rayleigh
number by the more vigorous circulation of Quid inside
the convection rolls.

Figure 25 illustrates the fate of the source-sink state at
low Rayleigh numbers. In this case, the low-amplitude
regions in the vicinity of the defects open up into quies-
cent regions, and these grow at the low Rayleigh number
in this run, causing a transition to the conductive state
everywhere the cell. Interestingly, this happens substan-
tially above the saddle-node Rayleigh number. In this re-
gime, as noted above, the TW between the defects appear
to be identical to the spatially uniform n =40 TW state.
Thus, after the decay of the defects, the system is in the
same state locally as it was during the decay of the uni-
form n =40 TW state illustrated in Fig. 26 of I.

VII. DISCUSSION

The experiments described in this paper demonstrate
how to produce, manipulate, and characterize two states
of stable spatiotemporal defects: a source-front state and
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FIG. 25. Decay of a source-sink state at low Rayleigh num-
ber. This run began 5000 sec after the Rayleigh number was re-
duced to 1.23159. The amplitude minima near the defects
turned into true quiescent regions, which then grew to fill the
cell, much like the state in Figs. 25 and 26 in I. The Rayleigh
number in this state was quite a bit above the saddle-node Ray-
leigh number r, = 1.22643.

a source-sink state. I begin this discussion by describing
other interesting defect states which have not been ex-
plored in this work. I have not produced or studied a
sink-front state. It is not clear that such a state can be
maintained in this system —see below. I have not seri-
ously examined source-sink states which consist of larger
numbers of defect pairs. A state of four defects is in fact
easier to produce in this apparatus than the two-defect
states described above. However, finite-size effects are al-
ready evident in the single-pair source-sink state at all but
the highest frequencies, and they would certainly dom-
inate in all source-sink states with more than one pair of
defects, in a cell of the present size. In this vein, I have
not explored the effect of system size —a substantially
larger cell would be hard to construct. I also have not
been successful at making motionless source-sink defects
at the highest Rayleigh numbers. A diametrically oppo-
site pair of motionless defects would probably persist to
higher Rayleigh numbers than that in Fig. 24, in which
moving, nearby defects lose stability. I have also alluded
to the fact that approaching fronts seem to repel each
other like the forward-facing pulses described in Ref.
[22]. This suggests that front collisions could be explored
just like pulse collisions. This has not been done, howev-
er. Finally, I have not made observations of defect be-
havior at other values of the separation ratio g, and it is
not clear whether the behavior observed here would be
duplicated in experiments with other Auids. Such experi-
ments will be performed in the future.

There is some overlap between the results described in
this paper and previous observations of spatiotemporal
defects in TW systems. Joets and Ribotta observed
motionless sources in experiments on convection in
liquid-crystal layers [12]. They also observed states in
which unidirectional TW reversed direction, sometimes
instantaneously. They referred to the latter case as "twin
boundaries. " These observations can be characterized as
source defects in which the source moves faster than the
TW phase velocity. In the case of "twin boundaries, " the
source velocity is infinite. By contrast, in the present
work, the source velocity is always much slower than the
TW phase velocity, and it is my intuition that this must
always be so in this system. Joets and Ribotta also saw
"shocks": spatiotemporal dislocations which appear
periodically in a unidirectional TW state. Such defects
are not seen here. Finally, the merging of a source and
sink, as in Fig. 24, was reported by Couder et al. [13].

Spatiotemporal defects in TW convection in binary
Auids in an annulus were also a dominant subject in the
work of Bensimon et al. [11]. There, however, we mostly
described the role of random arrays of dislocations in
spacetime in the transient process by which complex TW
states "anneal" into unidirectional TW. We were unable
to stabilize a stable source-sink state; indeed, we could
only stabilize a source defect by inserting a wall in the
cell to serve as the sink. In both experiments, source de-
fects have been found to be delicate and to drift. Bensi-
mon et al. were able to see one defect state that I have
not seen in the present experiments: a sink-front state.
However, this state was not quite stable. The TW fre-
quency was anomalous, and the fronts receded slowly and
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ultimately lost stability. The double-forward-facing
pulses observed in Ref. [22] could be described as a sink-
front state of fixed length. However, it is unclear wheth-
er a truly stable sink-front state of arbitrary length can be
made in this system.

The present experiments have shown that source de-
fects ean drift without deceleration. Because of this drift,
the emitted TW exhibit a Doppler-shifted frequency. Be-
cause the frequency also depends on Rayleigh number,
local heating can be used to push sources around. The
sink defects, on the other hand, appear to behave passive-

ly, typically drifting along with the sources. The observa-
tion of beats in the oscillation-frequency profiles near
source and sink defects is a clear indication, independent
of the results of complex demodulation, that the cores of
these defects consist of oppositely propagating TW with
comparable amplitudes and slightly different frequencies.

The amplitude and wave-number profiles in the vicinity
of the source defect are similar in the source-sink state
and the source-front state. The source wave number is

low, k„„„,-2.7, and the amplitude grows from zero to a
nearly saturated value in a spatial domain whose size in-

creases with increasing TW frequency. In the source-
front state, the wave number remains low downstream

and is apparently selected by the source. In the source-
sink state, the wave number increases downstream to a
value k„„-3.3 at the sink on the other side of the cell.
In one sense, this increase in wave number is not surpris-
ing: as TW approach a sink, they are compressed. How-
ever, this compression does not seem to happen in the
source-front state. In considering this apparent
difference between the two states, it should be remem-
bered that source-front states have only been studied at
much higher Rayleigh number than the source-sink states
because the fronts would recede too fast at the lower
Rayleigh numbers. Thus, the profiles in the two states
are not directly comparable. In a very much larger cell,
high-frequency source-front states could be studied for
long times before the motion of the front emptied the
cell. The interesting question that could be resolved by
such experiments is whether the wave number grows to
large values far from the core of the source defect in
high-frequency source-front states.

The wave-number profile in the source-sink state de-
pends strongly on frequency. At low frequency, the
wave-number profile consists of a smooth interpolation
between the values at the defects. At higher frequency,
the wave-number gradient is concentrated in core regions
of decreasing size, which are separated by regions of uni-
form wave number. This shrinking of the core of the
source wave-number profile as the frequency increases is
a bit counterintuitive. One might expect that, with in-

creasing TW velocity, the source wave-number profile
would be stretched out in space, like the amplitude
profile, rather than compressed. In the uniform-wave-
number regions observed at high frequency, the wave
number and frequency are the same as in the n =40 spa-
tially uniform state. The fact that this state lies in the
center of the Eckhaus band makes it tempting to con-
clude that the Eckhaus instability selects this state,
despite the role of the source in the selection that is clear-

ly seen in the source-front state. This is discussed further
below.

Interestingly, the downstream increase in local wave
number observed in the defect states in this paper is ex-
actly the opposite of the trend seen in pulses [22] at this
separation ratio and in confined states of arbitrary length
seen at more negative separation ratio [31]. In those
states, k (x) is high at the trailing edge and drops to a low
value at the front of the confined state. The increase in
the local wave number near the front in the source-front
state studied here is especially puzzling, since it appears
that this front is stabilized by the same microscopic
mechanism as the leading-edge fronts in the earlier
confined states [30, 32].

The comparative shapes of the amplitude profiles of
the different defects can be summarized by the statement
that sources are noticeably wider than sinks, which in
turn are slightly wider than fronts. Sources grow wider
with increasing frequency, while the amplitude profiles of
sinks and fronts appear to be independent of frequency
over the narrow frequency ranges in which they can be
studied. The (10—90)% width over which the TW ampli-
tude decays in sinks and fronts, 3.0d to 3.8d, is similar in
magnitude to the distance downstream at which pulses,
fronts, and uniform TW respond to Rayleigh-number
nonuniformities —3.5d to 4.7d. The relationship be-
tween these two similar lengths is unclear.

A comparison of the source-front states described
herein and the neutrally stable fronts studied in rectangu-
lar cells [24] leads to the conclusion that they are the
same state. In Ref. [24], I also showed that the TW
behind the front in a rectangle have the same frequency
and wave number as TW which fill the cell. This implies
that the Eckhaus instability plays no role in TW convec-
tion in a rectangular cell, because the wave number is
selected by the source, which in this case corresponds to
one of the end walls. This suggests two interesting ques-
tions which could be answered by further experiments in

rectangular cells: First, how does a full-cell, unidirec-
tional TW state decay to the conductive state at the
lowest Rayleigh numbers? In an annulus, this decay is
caused by the Eckhaus instability. In a rectangle, some
other mechanism is probably responsible. My guess is

that a front will form at the leading-edge end wall; if this
happens, then it will recede across the cell. Second, are
TW states sensitive to sideband modulations at low Ray-
leigh numbers? In an annulus, the Eckhaus instability
would probably cause such a sensitivity. In a rectangle,
the Eckhaus instability might be truly absent or just
suppressed by the source end wall, and the response of
the system would be different. These questions are
planned to be addressed in the near future.

Some of the observations presented in this paper can be

interpreted in the light of theoretical studies of defect be-

havior in model systems. Coullet et al. [27] studied one-

dimensional TW in a two-dimensional system using cou-

pled, cubic, complex Ginzburg-Landau equations
(CGLE). Using analytical and numerical techniques,
they found solutions in the form of source and sink de-

fects. The wave number downstream was selected by the
source, which could move at constant velocity, causing a
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Doppler shift. The numerically computed source ampli-
tude profiles were wider than those of the sinks, as in
these experiments. van Saarloos and Hohenberg [33]
studied a broad class of coherent structures —sources,
sinks, pulses, and fronts —in a more general CGLE con-
text. They found that both the cubic and the quintic
CGLE generically exhibit a continuous family of sink and
front solutions but only a discrete family of sources. In
this light, the present experiments would be interpreted
by saying that the source defect selects the downstream
wave number, and the sink or front that is found on the
other side of the cell is simply the member of the continu-
ous family of solutions whose upstream wave number
matches that selected by the source. If there is no front
or sink solution with the correct upstream wave number,
or if the selected wave number lies outside the Eckhaus
boundary, then the state cannot be stable. In this inter-
pretation, the Eckhaus instability affects the stability of
the TW state outside the defect cores but plays no role in
selecting that state. Thus, the Rayleigh number at which
the source-sink state decays (Fig. 25) is determined by the
stability of the defects and has no connection with the
Eckhaus instability, even though the T%' far from the de-

feet cores have the wave number and frequency of spa-
tially uniform TVV in the rniddle of the Eckhaus band.
Also, the "passivity" of the sink defects in the present ex-
periments corresponds to the existence of a continuum of
sink solutions in this context.

Despite the fact that the defects seen in these experi-
ments display some of the properties predicted in work
on CGLE models, there is much theoretical work to be
done on this subject. First, the theoretical papers cited
here make a few comments about the detailed structure
near the cores of defects. Second, theorists have hardly
begun to consider the role of spatial variations in Ray-
leigh number that were explored here and especially in I
and in Ref. [22]. Finally, it was established in I that the
behavior of spatially uniform TW states in this system is
not well described by CGLE models. A different theoret-
ical approach will certainly be necessary to explain defect
behavior in detail as well.
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