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Wigner function of relativistic spin- —particles
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Using the recently developed relativistic Wigner formulation for the density matrix of spin-2

particles, we study the J =
2 Coulomb-like and cavity relativistic states. One of our objectives

is to understand the sharing of the total angular momentum of a quantum state between the spin
and rotational degrees of freedom, arising due to the spin-orbit coupling. Another is to demonstrate
that the 4 x 4-matrix Wigner function is the appropriate generalization from the 2 x 2 form of the
nonrelativistic theory.

PACS number(s): 03.65.Bz, 31.15.+q, 11.10.@r

Recently, Bialynicki-Birula, Gornicki, and Rafelski [1]
have developed the relativistic Wigner phase-space for-
mulation within the strong-field approximation to QED
for the spin-2 Dirac-Heisenberg density matrix. In this
note we would like to demonstrate that the 4 x 4-matrix

Wigner function is the appropriate generalization of the
nonrelativistic density-matrix Wigner function. Accord-
ingly, the relativistic spin- 3 particle in an external elec-
tromagnetic field can be described by the 16-component
gauge-invariant Wigner function:

Wa p (r, p, t) = ds ~ 'P'V (r + s/2, t) pir(r —s/'2, i) exP(—i
Z/2

dAs A(r+ As, t) l.

Here A is the vector potential and the line integral as-
sures that the expression we consider is manifestly gauge
invariant. In the examples below, A = O. It is convenient
to decompose this 4 x 4 matrix as follows:
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i=1 J
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where f() is the phase-space charge and gt is the phase-
space current density; similarly ft, go form the pseudo-
four-vector phase-space density, with go being also the
spin density, viz. , g()

—
3 Tr(o W); f3 is the pseudoscalar

density, while fs is the scalar mass density. The structure
functions g2, g3 are the electric and magnetic polarizibil-
ity phase-space distributions.

We will now obtain the explicit form of the relativistic
Wigner function for a localized stationary spin-2 particle

y+cn a J+ =
2 state. The four-component Dirac wave

function is
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—

l
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where y, is the two-component spin function.
Phase-space densities obtained from Eqs. (1)—(3) can

be written in the form

h
g()

—sA+ hr x 8& + 2r(r s) + 8„(8& s—)P 2 P

—sir+ —8 lD,
4 ").

ft —[hs 8„]B—[2s r]C,

gt ——[h8„—2s x r]B —[2r+ hs x 8„]C,

f2 = —[2s r]B —[hs 8p]C,

g3 ——[2r+ hs x 8P]B —[h8& —2s x r]C,

fs ——A —
l (r) + —(8&) —hs (r x 8&) l D,
(, h'

h2
g3 —sA — hr x 8„+2r(r s) + —8 (8 s)

2 P P

h'—sir+ —8
l D,

4 "&.

where the following auxiliary functions were used:

A(r, p) = f dxe 's'"i" O(r+ x/2)O(r —x/2),

(6)
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C(r, p) = Irx (f dx e 'r'"~" G(r + x/2)
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where we introduced the spin direction vector, s
yJoy„which for g, = yy becomes s = (0, 0, +I). The
spin-unpolarized distributions are averages of the spin-
polarized quantities. The total energy and angular rno-
mentum contained in the state are the generators of the
symmetry transformations and are given by [1]

dI'(cp gi + mc fs)

where y = gl —Z2n2. In the nonrelativistic limit p ~
1 —Z n2/2 and we find practically all angular momen-
tum in the spin density of the state. For Zo, ~ 1, y ~ 0
and we find that 3 of the spin is in the rotational degree
of freedom. More generally we note that when the in-
tegral of the scalar density vanishes, Idr)I((+l@(+l = 0,
we have f drFz = JdrG2 = 2, (with the last results
holding by virtue of normalization of the wave function),
which just leads to the last result.

For the bag-type cavity states [3], with a cavity of ra-
dius R = 1 we find

h (4 1ur —sin~cos~)L=s—
3 (~ —1)sins~ )

hdI'(r x p) f0+ dI' —gp,
2

(17) h
s —0.35,

where dl' = drdp/(2z)s. Similarly, the total charge Q
defined in units of e through the formula

dF f(),

J= L+S,
where

(19)

L = dI'(r x p) fo(r, p, t)

is conserved by virtue of gauge invariance.
One easily finds that the charge Q and energy E have

the same values as the spin-unpolarized quantities. The
spin polarization of course has influence on the angular
mornenturn J as we expect: the spin-unpolarized angular
momentum gives us null results, but t;he spin-polarized
angular momentum J gives us nonzero components:

I)i (1u —si n~c os~ I ))S=s—i—
2 k3 (u —1)sin ~ 3)

h
s —0.65, (26)

where the energy ~ = 2.04 is in natural units for the
J = 2, K ———1 state. About a third of the spin is
transferred in this case to the rotational degree of free-
dom. This interesting property of the relativistic cav-
ity states was noted in the context of hadronic structure
studies, as it reconciled the ratio of the weak interaction
axial vector to vector coupling constants g~/gi with ex-
periment [4]. Along this line we note the magnetic mo-
ment of a (confined) fermion

and

h4= s —— drF(r)F(r)23
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can be written as

e
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so that, as expected,
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and the last factor is unity for a normalized state with
= 1.
Using the Coulomb wave function [2] for the hydrogen-

like 1s atomic state, we find

gives p, = 0.2R for s = (0, 0, +1) as in Ref. [4].
We believe that this study has conclusively demon-

strated that the Wigner density-matrix formulation pre-
sented for the strong-field @ED is the appropriate gen-
eralization of the Wigner density-matrix concept of non-
relativistic quantum mechanics. We have shown how the
symmetries of the 16 Wigner functions of relativistic par-
ticles can be used to identify their physical meaning and
used them in the study of angular momentum properties
of the particularly interesting quantum states. In that
way we have presented here a consistent discussion of
polarized relativistic J =

&
states, with emphasis on

angular momentum sharing between rotational and spin
degree of freedom. Our examples demonstrate that there
is very appreciable sharing with the orbital rotation due
to relativistic spin-orbit coupling.
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