
PHYSICAL REVIEW A VOLUME 46, NUMBER 10 15 NOVEMBER 1992

Finite model of two-dimensional ideal hydrodynamics
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A finite-dimensional su(N) Lie algebra equation is discussed that in the infinite N limit tends to the
two-dimensional, inviscid vorticity equation on the torus. The equation is numerically integrated, for
various values of N, and the time evolution of an (interpolated) stream function is compared with that
obtained from a simple mode truncation of the continuum equation. The time-averaged vorticity mo-

ments and correlation functions are compared with canonical ensemble averages.

PACS number(s): 47.15.—x, 02.60.+y, 47.20.—k, 05.20.Gg

I. INTRODUCTION

The vorticity equation for an ideal fluid on a two-
dimensional manifold JK is

0+[0 0]=o
where g is the vorticity and 1( the stream function related
to (by

(2)

g=gPY =+A, f Y, Q=gQ Y (3)

so that (1) reads

+A,pC pr+Qr=0,
where the structure coefficients are defined by

[YpY ]=Y C p

(4)

and are given, by orthogonality, as an integral over three
harmonics. On the two-sphere, Elsasser [1] appears to
have been the first to write down this integral, although
he does not refer to the Poisson algebra. %'e will not
enter into a detailed history of these sphere coefficients.
They occur in the work of Silberman [2] and of Baer and
Platzman [3] in early studies of atmospheric vorticity. It
was noted [4,5] sometime later that the coefficients were
proportional to Clebsch-Gordan coefficients, although

b2 is the Laplace operator on At and [f,g ] is the Poisson
bracket off and g.

This equation has, of course, been the subject of
numerous studies over the years. It will be enough to
mention the analysis of atmospheric motion (in the zero
height approximation) and the theory of turbulence.

A standard approach is to expand g in modes of b2 so
that (1) becomes a coupled-mode equation, the coupling
coefficients being the structure constants of the Poisson
algebra, with factors involving the eigenvalues.

Precisely, we define modes Y and eigenvalues A, by

62Y= —kY
and expand g and P,

with @=A,„Q". The structure constants are

C n' " ~ ~n'+n" '
7

(6)

The problem of mode truncation is a vital one in nu-
merical weather prediction and there seem to be no
theoretical criteria for its optimum solution. One point is
that any truncation does violence to the infinite set of
conserved quantities (which may be taken to be the in-
tegrated powers of the vorticity) for Eq. (1). In Lorenz's
truncation, for example, only the energy and the enstro-
phy were conserved, and this was considered to be re-
markable.

It is therefore of some interest to develop finite-mode
approximations that preserve more conserved quantities.
Such models are suggested by the fact [8,9] that the Pois-
son algebra structure constants [or equivalently, the
structure constants of the area-preserving
diffeomorphism group SDiff(JR)], are the limits of the
structure constants of SU(N) as N tends to infinity, after
a simple change of normalization. We can say that the
commutator of two elements of the Lie algebra of SU(N)
*'corresponds, " in the limit, to the Poisson bracket of two
functions on AL. It can be seen that there are at least N
constants of the motion, corresponding to the energy and
the N —l Casimir operators.

Zeitlin [10] has also suggested and investigated these
models in works that appeared after our analysis was un-

the calculation of the reduced matrix element was
cumbersome.

The two-torus T presents, in some aspects, a simpler
situation and its Poisson algebra was first discussed by
Lorenz [6], who was concerned to truncate an infinite
coupled-mode system (in the atmosphere) to the simplest
nontrivial finite one. The same algebra was later investi-
gated by Arnol'd [7], also in connection with hydro-
dynamics.

The modes on the torus are plane waves exp(in r),
( n& x —n, n&y .& rr—), and the eigenvalues are
A.„=n, nEZ . The expansions of the stream function
and vorticity are

1(t(r) =g 1("e'"', g(r) =g Pe'"'
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dertaken. There are certain differences of detail and em-
phasis. A reference to finite models is also made by Za-
kharov [11].

algebra, up to a normalization constant.
Let v and w be two time-dependent elements of su(N).

They can be expanded in the Lie algebra generators J„,
u(t)=g u "(t)J„, w(t)=g w "(t)J„. (13)

II. MATRIX ANALOG
OF THE VORTICITY EQUATION ON T2

Since we are interested in SU(N) we first present some
standard algebraic material regarding its generators
[12,8,9], which we write in the Weyl [13] form (see also
Schwinger [14])

The summation over n is restricted to the lattice
C ~ —[0j where 0 is the origin. If we wish to extend the
summation to Cz, as we do, u is set equal to zero for
traceless v. Herrniticity is equivalent to the conditions on
the coefficients

1 2 1h 2n n l2 n n vn4 —
v

n wn4 —
w n (14)

where the unitary N XN matrices h and g satisfy
hg =sigh and g =1=h . We choose N odd and
tv=exp(2ikn/N), where k and N are coprime. The
periodicities

and

P

Jn+N Jn ~ k even
P

(8)

Jn' Jn" Jn'+ n"
n" A n'/2 (9)

—Tr(J„J„~) =5"„, (n', n" E C~) .

Splitting up (9) gives the commutation and anticommu-
tation rules

. 2[J„,J„~]=i—sin
N

n A n Jn'+n" (10)

=2 2~-[J„,J„~]+=—cos n" A n' J„+„

Another way of writing (9) is

can be used to bring any n onto the N XN lattice C ~ (the
unit cell), defined by —(N —1)/2&n, &(N —1)/2. We
occasionally use C „to denote the entire square lattice Z .

The most popular choice appears to be tv=exp(4i m/N).
because of the simple periodicity (8).

The Jn satisfy the relations

J„=J „=(J„)

Consider the equation

u + iNP[ u, iu] =0,
which we wish to compare to the hydrodynamic equation
(1) with v the vorticity and w the stream matrices. P is a
constant that will be specified later. There is no real
significance to its value since the overall normalization is
actually arbitrary and could be absorbed into a redefined
time.

In order to correspond with (2), we require that as
N ~ ~, v "~k„w". Assuming that this has been
achieved, the statement about the structure constants is
that as N tends to infinity, the equation that the
coefficients wn satisfy tends to the same equation that the
coefficients of the expansion of f in torus modes satisfy.
Then, in the limit, we might hope to identify w' with g".
This will be made more precise later. Our intention is to
look upon these finite-dimensional models as playing the
role of consistent Lorenz-type truncations although it is
not clear a priori whether they will prove to be of practi-
cal interest.

We turn first to the relation between v and w, and it is
here that we differ from Zeitlin [10]. He simply sets v"
equal to A.„w". We feel that the relation should be ex-
pressible directly in terms of the Lie algebra elements
themselves and it is not clear whether this is true for
Zeitlin's relation.

Looking at (2), we require the Lie algebra analog of the
Laplacian. To find this we recall the significance of the
operators g and h in (7) as stepping operators in the quan-
tum mechanics on the discretized circle [13—15].

It is easy to verify that
2

Lj„—: ([[h,J„],h ']+[[g,J„],g '])=—A„J„,

nl n2 n3 nl +np
n3

(12)
where

~here 3 &23 is the area of the triangle formed by the vec-
tors ni, n2, —(n&+nz).

If n includes the origin, with Jo =1, the J„,n& PN,
form a complete operator basis,

—g J„TJ„=1 TrT .
1

n

(Incidentally, Schwinger [14] chooses k = 1.)
We note [8,9] that as N ~~, the structure constants in

(10) for finite n' and n", tend to those of the torus Poisson

A„(k)=
7T

2
~

k, k
sin +sin

N
(16)

which we recognize as proportional to the eigenvalues of
the difference Laplacian on the discretized torus
(2k'/N)Z~(2k'/N)Z~. The normalization factor is

chosen to give the correct continuum limit. If k=1,
A„~k„=n as N~ao for fixed n. As a set, the An are
independent of k. In fact A„( 1)=A, ( k ), where the com-

P

ponents of n~ are cyclic permutations of those of n ac-
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cording to

np =kn mod(N, N), (17)

is independent of k. The prime means that the n=0 term
is to be omitted. We note that J0, the unit matrix, is the
zero mode XJD =0.

It might be helpful to remark that the continuum V
can be written in terms of repeated Poisson brackets

where k is the mod inverse of k, i.e., kk = 1 mod¹ (See,
e.g., Cizek [16].)

Another way of expressing this is to say that the
discrete g function

, exp(2ik~n. m/N)

„Ep [A„(k)]

G; „.=2NPsin n'hn" 5„".+„~ . (22)

The periodicity (8) has been incorporated by defining the
(quasi-)periodic delta 5 with

only the even powers remain. As N tends to infinity, (20)
should become the continuum expression, assuming that
the u' tend to the P of (5).

The dynamical equations for the stream element
coefficients are

v "(t)=A„w'(t) = —g G,"„-A,w" (t)w' (t), (21)
n', n"

where the summations are restricted to lie on the lattice
C~ —[O] and where the coupling coefficients are given

by

We take the operator X to be the discrete Lie algebra
analog of 62=7 so that the generators Jn are the ana-
logs of the modes Y (plane waves on T ), as befits a
complete set. The relation between U and w is thus writ-
ten neatly as u =Xw and (15) becomes

n+N
51 ', k even

pFC
gn

pEC

(23)

Xw+iNP[Xw, w]=0 . (18)

E—: Tr(uw) =
—,
' g A„w "w1

n

(19)

which we refer to as the energy, is time independent.
Also, quite trivially and independently of the relation

between v and w, the traces of powers of v are conserved

1 I ~ "i. . . nl 2k~S =—Tr(v )= ~ u v cosI 1 y ~ ~ y IA
nl, . . . , nl

(20)

where A &. . .
~

is the area of the (1+I)-gon in P„with
edges n&, . . . , nI, nI+, subject to the restriction
n&+,

—= —g,'. ,n; =(0 modN, O modN).
If k is even, the periodicity of the cosine allows one to

replace A, I by the area of the l-gon,
n, , . . . , —gI 'n;. (In fact the whole polygon can be
pulled back to fit into the unit cell. )

There are X —1 independent 5I, I =1, . . . , N —1, cor-
responding to the anticommutator (11), i.e., the Casimir
invariants constructed from the symmetric dj'I, SU(N) in-
variant tensors [17—19]. S& always vanishes. S2 is the
enstrophy Q.

These invariants also arise in the analyses of the gen-
eralized Euler equations of rigid body motion [9,20—22],
except that the group there is taken to be SO(N) so that

At this point it is convenient to discuss the conserva-
tion properties of (5). We first need the fact that 2 is
Hermitian, i.e.,

Tr(a Xb ) =Tr(Xa b ),
where a and b are elements of su(N). (Of course a =a).
The trace is the finite analog of integration over AL. It is
then easy to show that the quantity

so that n can be restricted to the unit cell. In (23),
1=n'+n" and the sums are actually restricted to pEC3
because adding two elements of C z can take us only to
the "nearest-neighbor" unit cells.

As N ~~, the 6"„„-tend to the Poisson algebra struc-
ture constants (for fixed n' and n" ) and we expect (21) to
turn into Lorenz's torus equation. However it is neces-
sary to be careful when taking the N~00 limit. One
cannot simply substitute the limiting form of (22) directly
into (21) because of the behavior of terms for which kn' is
of order N, for example. To elucidate this limit we shall
rewrite the equation in coordinate representation, but
first another motivation for this particular step will be
given.

The aim is to solve Eq. (21) numerically for given ini-
tial conditions, and then to compare with the correspond-
ing discussion of Lorenz, i.e., with a simple truncation.
Hence there arises a question concerning the appropriate
quantity to construct once the coefficients have been
computed. It is possible to compare the coefficients
directly but this is sensible only for N large, so making
the comparison impractical. A stream "function" is
needed for a global picture, that is, a continuous quantity
constructed from w (t), for any finite N, that can be com-
pared with the conventional stream function f(r, t) after
a numerical integration.

It has been noted [23,24] that the limit N~ ~ is akin
to the transition from quantum to classical mechanics
with, in these references, 4m. /N playing the role of
Planck's constant. This suggests that we regard (18) as a
Heisenberg equation of motion and derive the corre-
sponding classical equation in the standard fashion using,
say, coherent states [25). This would give a concrete con-
nection between w and the "classical" stream function
and will be pursued elsewhere. We have not seen a discus-
sion of coherent states in Weyl's finite formulation of
quantum mechanics although there are several applica-
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tions of the Wigner phase-space technique [26—28], to
which we now turn.

This more formal point of view is provided by the rep-
resentation of quantum mechanics (called "treacherous"
by Groenewold [29]) introduced by Groenewold [30],
Moyal [31],and others, based on the Wigner [32] phase-
space distribution, and much studied since. The quantum
equations are replaced, exactly, by a classical-looking
equation but with the Moyal bracket (actually due to
Groenewold) instead of the Poisson bracket.

In this approach, which a priori is distinct from the
coherent-state method, one constructs the Weyl-Wigner
distributions Tr(aJ„), which are then interpreted as the
Fourier components of the classical quantity correspond-
ing to the operator a. Usually one starts from a classical
quantity and then asks for the corresponding quantum
operator. This is the well-known ordering problem.

A more general ordering [30,33,34] is provided by set-
ting

a(m) =—g Tr(aJt )Q(n)e'1

N n
n

(24)

v(m, t)+ [v, wIM(m, t)=0,
where the finite Moyal bracket [a,b ] M is defined by

(25)

(usually k =1}.The Weyl ordering corresponds to 0=1
and then a (m) is called the Wigner function.

If a (r) is to be real when a is Hermitian, the function
0 must satisfy 0'(n}=Q( —n) and we also want 0~1
as N ~ 0() . Typically, Q(n) is a trigonometric function of
the product n, n2. A Gaussian form for 0 is associated
with normal or antinormal ordering.

The quantity that corresponds to the commutator
[a,b] is the Moyal bracket (if 0= 1) and, in this case, the
coordinate-space representation of the vorticity equation
(15) is (the proof is given shortly)

and the transform is defined by

n i (2rr/N )kn. rji y p i (2 rr/N) n(n

neC y nECN

n 1 —i(2m /X) kn-%
2

(28)

1
Q dr(2 (r)e

(2~)2 T2

(29)

and a n=a", where n stands for a pair of reordered sets of
all the integers. We have used the continuum replace-
ment

2

mECN

It is formally attractive to define the transformed gen-
erators, J(m), by

—i(2rr/N)kn ii)
ne

nECN

Cz is the dual lattice. We often identify C~ and C~.
The expressions provide periodic extensions of a (m) and
a" off the corresponding unit cells.

As a technical point of some interest, the appearance
of the factor of k in (28) is related to the use of the eigen-
values A„(k ) of (16). If we had simply chosen to set k = 1

in (16) (but not in the definition of co), then the k in (28)
must be unity too. There is nothing wrong in this, but it
would not then be possible to write the dynamical equa-
tions in purely Lie algebra terms, as we have done in (18}.
We believe this is of more than aesthetic importance.

As N~no, with r=(2~/N)m and a(m) ta(r), the
formulas (28) turn into a standard Fourier series,

a (r) =g a "e'"',

[a,b )~(m)= g a(m')b(m")sin A, (26)
k 8k+

7T I tt
t

with

J = 1 i (2rr/N)kn (t)
Hl e

so that

(30)

A =
—,
' (m r() m'+ m' h m" +m" )r(, m),

1 i (2'/N)kn-m ~ gme Np &X pFC
(27)

the area of the dual triangle with vertices at m, m', and
II

It is clearly possible [35] to generalize the Moyal
bracket to allow for the more general ordering (24) in-
volving 0, but we will not pursue this point here except
to say that (7) and (24) show that the different choices for
k are related to the ordering question.

As mentioned before, one reason for introducing the
coordinate-space representation is that the infinite N lim-
it appears to be more transparent than in the mode rep-
resentation (21), which always remains discrete. We will
deduce a value for the constant P.

Equations (25) and (26) are now derived. The finite
Fourier relation we require reads

TrJ(m)=N for all m,
J(m')J(m") =g f(m', m";m)J(m),

1
Tr[J (m) J(m') ] =Nfi

(31)

J J(m')J =J(m' —m) .

These relations hold for all k but an even value would
be preferred because of the implied simple periodicity of
the J„.

v =g v "J„= gv(m}J(m) .
1

N

The J(m) are Hermitian, and as we have defined them,
satisfy the relations dual to (9)
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If k is even, a short calculation using (27) shows that
the composition constants are given by

dard expression for the finite-difference Laplacian on T,
scaled to give the correct continuum limit, is

T 2
. 8k'.f (m', m";m)=exp i A(m', m", m) (32) b, J(m)= g [J((m))—J(m)],

27T ( )

where A(m', m", m), = —A(m', m", m), is the area of
the triangle (m', m", m) on the dual lattice, given before.

Consider the product of two operators (i.e., Lie algebra
elements)

ab = g g a(m')b(m")J(m'}J(m" }
1

N4 I mtl

g (a eh)(m)J(m),1

all sums being over Cxi. This defines the e or Moyal
product. Therefore from (31}

where (m) are the nearest neighbors to m. Thus
2

b J(m)= [J(mi, mi —1)+J(m„m2+1)

—2J(m „m2)+J(m i+ l, m3)

+J(m, —l, m2}—2J(m„mz)] .

It is easily shown that
'2

([[h,J(m)], h ']+[[g,J(m)],g ']) .
277

( ahab)( m)= g a(m')b(m")f(m', m";m) .1

N
t

Taking the commutator gives

[a,b]=, g [a,b](m)J(m),1

N

where

[a, b](m ) = (a e b be a )(m)—

(33)
Thus one can write

Xu= g v(m)b J(m)= g b u(m)J(m),
1 1

N N

with b, u(m)~V v(r), as required.
The invariants S& too can be recast in terms of v(m).

We write

1Si=
2( g v(m, )v(m2) u(m, )G(mi, . . . , mi) .

( N)2I

2l a(m')b(m")sin A (m', m", m)
8k'.

N2
t

k N
[a b]M(m) . (34)

Equation (15) can then be written as (25), with (26), as
promised, if P=k /2n

The continuum limit of (25) can be checked by replac-
ing m, m', m" by r, r', r", respectively, where
r=(2m. /N)di, etc. (for all k). Then, in the infinite N limit
m~ ~ the suins turn into integrals and just as (28) be-
comes (29), (26) goes over into

k N
[a,b ]M(m) ~ lim

4a

X I dr'dr"a(r')b(r")

(36)

G is related to a finite Fourier transform (a Gaussian
sum) by

G(m„. . . , m&)= —SymTr[J(m, )...J(mi)],1
(37)

where from (30) and (12)

—Tr[J(m, ) J(m, )]
1

nl, . . . , nl

exp i(2k'/N—) g n., tit,. —Ai. . .
&

The symmetrization on the mi can be performed in
various ways. Simply reversing their order gives

I

G(mi, . . . , m&) = g exp —i(2k'/N) g n;'fit;
nl, . . . , nl

Xsin
2kN

A (r, r', r") = [a,b ](r), 2k'.
X cos A1 (38)

(35)

the Poisson bracket, as required. k is assumed to remain
fixed and rH T . (The finite integration ranges could be
replaced by infinite ones, in the limit, to give precisely
the same integrals as in Baker [36].
A (r, r', r")=—,'(rhr'+r'hr" +r"hr) is the area of the
coordinate-space triangle (r, r', r"). The conclusion is
that Eq. (25) becomes the continuum Euler equation (1).

The coordinate-space representation also allows us to
confirm the form of the discrete Laplacian L. The stan-

with the modN condition on gn;.
Another formula results on combining the J(m) in (37)

using the composition law (31) to give

1—Tr[J(m ) . . J(m }]N 1 I

xn„m2, m3
Im, I

Xf(m3' m3 m4} f(mii —ii mi —i mi} .
(39)
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It is interesting to check that, in the infinite N limit, SI
becomes the integrated power of the vorticity function,
that is, up to a renormalization factor,

1
S,

(2~)21 fez.
&& XT

dr, dr, v(r, )
. . v(r, )

S,~f,drv(r)' (40) XG(r, , . . . , r, ) . (41)

and it is instructive to carry the limit through completely
in coordinate space after the summations over the n,
have been done.

The behavior of the function G(m&, . . . , mI ) as N
tends to infinity is required. As usual we set
r; = (2' /N )m; and write G (r&, . . . , rI ). Taking the ex-
pression (36) for the invariant SI, rescaling the m; to the
r, and changing the summation into integrations pro-
duces

The simplest nontrivial example is I equal to 3, when
the polygons are triangles. Then, immediately, from (31)
and (32)

8k~
G(m»mz m3)=N cos A(mi mz m3)

On rescaling, A (m„mz, m, ) becomes
(N/2') A(r„rz, r 3) and we can now apply another for-
mula given in Baker [36],

kN
lim dr) ' ' dl2 +)cos~ ~ ~

2kN
[A(r&, rz, r3}+A(r& r4 rs)+ ' ' '

+A(ri r~. rz.+i)] F(ri rz r~.+i) —f dr, F(r„.. . , r, }, (42)

G(m, , . . . , m, )=N' 'cos E([m;])
N

(43)

where E( [m, ] ) is given by

E([m;])=
i =2,4, . . . , 1

A(m„m;, m;+, }

(m, —m, +, ) h(m, —m, +, )

—= A([m, ] )+B([m, ] ) . (44)

This is a closed form for the Gauss sum. The first sum-

for v= 1 to give the desired continuum integral of v(r) in
the infinite N limit. We note that in (42) F must be a
reasonable function.

The case of any l will now be discussed. Although (39)
is completely in coordinate space it is not in a convenient
form for the application of (42). In fact, the general form
of G(m„. . . , mI } can be given with no summations. The
expression depends on whether l is even or odd and in
fact, we shall restrict the discussion to odd l for brevity.

We start from the form (38) and begin by replacing nI
by nI

———gI 'n;. This is allowed because of the periodi-
city of the exponential and the cosine. We might then
just as well rename nI as nI and restrict the sum (38) to
closed I-gons, as mentioned earlier.

The evaluation proceeds by alternate application of
(27) and imposition of the resulting 5. The choice of
which n; to sum over is crucial to obtaining a simple
symmetrical result. It is convenient to first perform a cy-
clic permutation of the n, (under which A &. . . , is invari-
ant) so that nb becomes n, where b is the next integer
after I/4. Then, performing the sums in the order nI
downwards, we find

mation is the area of (I —1)/2 triangles connected at the
vertex m, in a windmill sail pattern. The second sum is
that of the cross products of all pairs of vane ends.

Equation (43) with (44) yields (41) with G given by

G (r„.. . , rI ) =N' 'cos [A([r, ])+B([r,])]

=N'-' cos
2kNA

cos
2kNB

2kNA . 2kNB—sin sin
7T 7T

(45)

in terms of rescaled quantities.
A completely immediate application of (42) to (41) is

not possible because the function F now contains N.
However we note that the eFect of the cos(2kNA/m)
terms in (42) in the N~ ~ limit is to force r, to equal

r, +, , (i =2,4, . . . , 21) and also both to equal r&. Since B
has a product structure [see (44)], the cos(2kNB/vr) fac-
tor can be replaced by unity in the limit. We also note
that the same equation as (42), but with a sine [as used in

(35) with an extra factor of N] gives a result of the order
of 1/N and so the second term in (45) goes away. Equa-
tion (42) can now be applied directly with

F(r„.. . , r, ) =v(r, )
. U(rI } to give the required contin-

uum expression (40). Our discussion of the coordinate
representation of the invariants ends at this point.

We can now give a reasonable answer to a question
posed earlier regarding the appropriate quantity to con-
struct from the matrix w(t) that can be compared with
the continuum steam function g(r, t) resulting from a
standard mode truncation of Euler's equations {1). The
Fourier transform (28) suggests the simple interpolation
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w (r, t) = g w (t)e'"'
nECy

(46)

as a possible analog of f(r, t). For convenience, it is this
quantity that is plotted, but it is clear of course that there
cannot be a unique quantity corresponding to g.

We note that the Fourier coefficients in (46) are evalu-
ated at the permuted points n~. This means that for any
k, the plane-wave modes with the smaller ~n, ~, ~nz~ are
associated with the smaller eigenvalues A„(k)=A,(1),

P

as occurs in the continuous case. A naive application of
the N +00 —limit to the momentum-space equations (21)
and (22) does not give the correct result.

There is a peculiarity in that the coordinate-space
treatment of the N~ ~ limit is not easily available to us
for what appears to be the simplest value of k (from the
Fourier transform point of view), namely, unity. For
finite N, the models for different values of the parameter
k seem to be distinct. Our treatment shows, however,
that they will all yield the same continuum limit but we
can vouch for our coefficients only when k is even.

III. MAXIMUM SIMPLIFICATION

We now turn to the practical solution of Eqs. (21)
along the lines of Lorenz's calculation [6]. Since g is real
its Fourier coefficients satisfy the condition g"'=g
The obvious finite equivalent is the hermiticity of w (14).

Lorenz [6] notices that if the coefficients are chosen to
be real at some initial time, they will remain real
throughout the time development. The reality condition
means that w"=w " and using the symmetries A „=A„
and G„'„.=G:„"„=—G,",we can deduce from (21)
that

standard routines. The results for the stream "function"
were displayed in coordinate space using the Fourier in-
terpolation (46). For each odd value of N from 3 to 31
the results were compared with those for a simple trunca-
tion method using the same number of modes.

The conservation of E and of the Sl was used as a
check of the algorithms and algebra. The initial
configurations are discussed in the next section.

IV. VORTICES ON A LATTICE

For the sake of having something definite, it is interest-
ing to propagate a system of lattice vortices. A suitable
set of initial stream coefficients for a single vortex situat-
ed at m =m; would be

exp(2ik~ (ih —ih, )/N)

A (k)nEC~ n

(48)

They are independent of k. Further, g w, (m) =0. The
mode coefficients are w;"=exp(2ik~ m;/N)/A„(k) if
n+0 and w, =0. For the vorticity,
u;"=exp(2ik~ m;/N) if n+0 with u; =0. In coordinate
space, u;(m)=N 5 —1 showing that the vorticity is

mostly concentrated at the point m, , justifying the term
"vortex. " The smaller, negative value of —1 makes the
total "integrated" vorticity emu;(m) zero as necessitated
by the compactness of the domain. However, it is not
possible to conserve the vorticity located (in some sense)
at m, , which can leak away.

As N and m tend to infinity, the discrete stream func-
tion w;(m) of (48) turns into the Epstein g function, ex-

cept at x =0, y =0,

A„—(w" —w ")=—,
' g (A„—A„.)G„"„.(w" +w ")

n', n"

X(w" —w '
)

, exp(in r)w;(m)~ g ' =Z
/2 /2 (2),

nEC
(49)

showing that if the condition w"=w " is valid for all n
at some time, it remains valid.

For N =3 the number of independent real coefficients
is four. This is the smallest number that we can take for
a consistent group-theoretical structure. Lorenz makes a
further identification, that is also propagated in time, and
this reduces his number to three. In general, the number
of coefficients in our maximum simplification is
(N —1)/2.

For real w", w can be rearranged into

w= —,
' g w"(J„+J „) .

The combination of generators that occurs on the right-
hand side gives just the generators of the subgroup
U(SU((N + 1)/2) SU((N —1)/2) ), which means that
the torus has actually been turned into a tetrahedron
[37], which might not be unreasonable for discussing at-
mospheric motion on the whole earth.

In all our calculations k was set equal to 2. The nu-
merical procedure consisted of choosing an initial distri-
bution of the coefficients w' and then integrating (21) by

in Epstein s notation [38]. For simplicity, we have set
k =1 and m; =0. x and y are the coordinates of r with
x = 2vrm2/N and y =—2mm, /N. In the limit we would
regard x and y as being continuous and restricted to the
range —~ to m. It should be remarked that for any fixed
value of m, the difference between w;(m) and the g func-
tion evaluated at r=2m5/N will be a zero constant that
decreases with increasing m.

We can now compare (49) with some results for the
stream function on the torus derived in earlier times.
Greenhill [39] and Hicks [40] give the streain function in
a rectangle. The expression on the torus can be found in
the intermediate calculation, but perhaps the easiest
method of proceeding is the following.

The stream function on the torus for a vortex at the
origin is given as the image expression (cf. [40])

(x/2ir+Mi ) +(y/2m+M2)
(x y)= ln

4m. ~ (M+M )

where the sums run over all the integers and x and y are
restricted to the range —~ to m.. Up to an additional con-
stant,
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P(x,y) =- K 1

27r ]3s M [(x/2~+M]) +(y/2vr+M2) ]' s=0

/2~ y/2
Z 0 0 (s)

K Z
s =o 2'

x /2~ y /2~
0 0

at s =0 yields

=sr' I (1—s/2)Z
h h

(2 —s)/2 —1
0 0

1 2

0 0
0 0 h, ——h2

Evaluation of the transformation formula [38]

h, h2
'~ I (s/2)Z 0 0 (s)

I

Kronecker's formula has been rediscovered a number of
times since. These formulas can be used for numerical
evaluation of g (50), although there exists a form in terms
of incomplete I functions that is generally more efficient,
except for small x +iy.

For a single vortex, a glance at Eq. (21) reveals that w"
vanishes for all n and the vortex is thus stationary. The
energy is given by E=w ( 0)=+[1 /A„(k)) and the en-
strophy is S2=N —1. Both these quantities diverge as
N —+ oo.

The stream matrix coefficients for a set of vortices is

since

h, h2
Z 0 0 (0)=0

ifh, and h2 are not integers. Hence

0 0
(x,y)= — Z x/2~ y/2m. (2) . (50)

Looking at (49), it can be seen that the discrete stream
function w, (m) tends to the torus stream function f(x,y)
as N ~ ~ for strength K = —4~ .

Hicks [40] gives an expression for g(x,y) in terms of
simpler 0 functions. This is, up to the usual additive con-
stant,

g(x, y) = (x —y )4~ 4m

+In[0](z/2m. , i)8,(z*/2', i)], (51)

0]( u ],el)] )0]( u p, cop )
Z

h h
(2)=2m h, vrln—

1 2 'g CO] 7) C02

(52)

where g is the 0edekind function
il(co)=q' ' g„" ](1—

q "). The variables h, and h2 are
to be taken in the range from 0 to 1. For the square torus
co]=co& =i, q =e, and u, =u2 =(x+iy)/2 . Com-
paring (52) with (50) and (51), we see that Hicks and
Greenhill had earlier obtained an equivalent reduction.

where z=x+iy and 0](u) is denoted by H(2ICu) in
Hicks and Greenhill. Using the Jacobi transformation
formula for 6] functions, it is easily checked that P(x,y) is

symmetrical in x and y. Our definitions of L9 functions are
those of Oberhettinger and Magnus [41], where a brief
discussion of the motion of vortex systems can also be
found in Chap. 4.

Incidentally, Kronecker [41] reduced the Epstein
function (49) to a form in 0 functions,

w(m)=g w;(m),
4~

where the K; are the vortex strengths. For two equal vor-
tices setting m2= —m, and K2=K, = —4m, we get real
coefficients w"=2cos(2knn m, /N)/A„(k), w =0 so
that we can place this configuration on the tetrahedron.
The enstrophy equals 2(N —2), while the next invariant
is 4(16—N ).

The systems with N from 3 to 31 were evolved in time.
We present the results in Fig. 1 for SU(9) as being typical.
The initial position of the vortices was at m, =(1,0). In
our view no particular pattern emerges.

In any finite scheme, the localizability of individual
vortices is lost, the vorticity can become redistributed,
and it is difficult to model the motion of ideal point vor-
tices in this way, unless possibly N is extremely large.
However the evolution for SU(31) shown in Fig. 2 offers
no evidence for such a trend.

The results for SU(5) were somewhat atypical and are
displayed in Fig. 3. The vortices appear to be rotating
around each other. The mode-truncation calculation
starting from the same stream function yields results of a
generally similar nature. A number of other initial
configurations were also propagated with, again, roughly
comparable outcomes.

V. STATISTICAL BEHAVIQR

The numerical results so far presented are for relatively
short-time evolution. It has been suggested by Kraich-
nan [43] that two-dimensional turbulence can be statisti-
cally modeled on the assumption that the system is er-
godic and can, after a sufficiently long time, be described
by a microcanonical or even a canonical distribution. In
the latter case, two "temperatures" can be introduced as
Lagrange multipliers for the conserved quadratic quanti-
ties, the energy E, and the enstrophy Q.

A number of computer experiments have been per-
formed in both the viscid and inviscid cases on the trun-
cated versions of the Euler and Navier-Stokes equations
to test this idea. The results are suggestive but not con-
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elusive.
The models discussed in the present work allow a simi-

lar numerical analysis. These systems, having more than
just the two conserved quantities E and 0 of the truncat-
ed theory, might provide a more realistic arena in which
to explore the statistical hypothesis.

%ith this in mind the systems were evolved for long
times, at a reduced numerical accuracy for speed pur-
poses. The quantities E and the S& were found typically
to be conserved to one part in 10 to 10 over the extend-
ed time period. Vorticity moments and correlation func-
tions were evaluated by simple time averaging since actu-
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FIG. 1. Double vortex stream function for SU(9) plotted on the torus at evolution times t =0, 1, 2, 3, 4, and 5.
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al ensemble averaging was impractical. The results were
compared with the canonical distribution values where
appropriate. The basic theory can be found in Kells and
Orszag [44], for example, and so we need not give many
details.

The canonical vorticity distribution is given by

which, for large T, are to be compared with the ensemble
averages (53).

The mode correlation function C(s) is defined by

C(n, T;s)= f g"(t)P(t +s)dt .
TM~(n, T s) —o

with the partition function Z= fP(g)dg. The relation
with the parameters in Ref. [44] is a=C ' and P=D

Ensemble averages are

(P(g) ) = fP(g)P(g)dg .

In terms of the two temperatures a and P the moments of
the vorticity are

(53)

The time-averaged moments are

The prefactor is a normalization. If C(s) does not tend
to zero with increasing s the system is probably not er-
godic and cannot be described by a statistical ensemble.

Three starting distributions were chosen. One was the
double vortex discussed in Sec. IV, another was a vortex-
antivortex pair, and a third was a more or less random
arrangement. In the latter case the coefticients in the
truncated model were adjusted to give the same energy
and enstrophy as the corresponding SU(N) model so that
the calculated canonical temperatures a and P should be
the same.

Figures 4 and 5 display some results using the double

X

FKx. 2. Double vortex stream function for SU(31) plotted on the torus at evolution times t =0, 0.5, 1.0, and 1.5.
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vortex starting configuration for SU(9). The figure cap-
tions are descriptive. Figure 6 shows the long-time evolu-
tion of the corresponding stream function. For the dou-
ble vortex the values of the two temperatures were calcu-
lated to be a =2.925 518 8 X 10 and P=0.242 236 45.

The presentation is limited to these data sets for
reasons of space and also because one would really Bke to
explore much larger N values. More extensive data and

discussion is contained in Ref .[48].
As a measure of the accuracy of the evolution algo-

rithms, we tested the conserved quantities. The following
are the values of the SU(9) energy and the first three
Casimir invariants S2, $3, and S4, at t =0 (the first num-
ber in the brackets) and at t = 1000 (the second number):

E ( 14.754 915 2, 14.754 914 5 ),
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FIG. 3. Double vortex stream function for SU(5) plotted on the torus at evolution times t =0, 1, 2, 3, 4, and 5.
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S2 ( 158.000 037, 158.000 058 ),
S3 (

—308.0002, —308.0035),
S4(38 022. 0096, 38 022. 0630) .

The integer parts of the SI are the exact values. The eval-
uation of the highest Casimir invariants from the stream
function coefficients is very time consuming due to the
multiple summations.

The statistical results are inconclusive. We find no in-
dication of nonergodic behavior but the evidence for a
statistical description is still only suggestive. The results
are perhaps better than one would expect for systems
with a small number of modes when treated by a canoni-
cal distribution, which, moreover, ignores the other con-
served quantities. The microcanonical distribution would
be more relevant but the evaluation of the statistical aver-
ages is then itself an involved numerical procedure,
which we have chosen to avoid.

The truncation results differ in no essential aspect from
the corresponding SU(N) cases, except that the vorticity
second moment of the highest mode does not relax to the
canonical distribution value for large times. There is also
nothing in particular that distinguishes the other starting
configurations, although our numerical experiments are
not yet very extensive in this respect.

The statistical mechanics of systems of this type, with
many conserved quantities, remains to be elaborated.
Zeitlin [10] makes some relevant remarks on the struc-
ture of the phase space.

VI. COMMENTS AND CONCLUSION

In this paper we have been mainly concerned to set up
the SU(N) models and to discuss the nature of the infinite
N limit, which is not obvious. We have also presented a
sample selection of numerical results that should be re-
garded as exploratory rather than definitive.

Our numerical approach was unsophisticated. For the
truncated system (which is sometimes referred to as the
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function of energy eigenvalue A„calculated (by time averaging)
at several evolution times t. The diamonds correspond to the
initial values, the crosses to t =750, and the stars to t =1500.
The circles indicate the values calculated on the basis of a two-
ternperature canonical distribution. The initial configuration
was the two vortex one. The relaxation to the canonical values
is better than might have been expected in view of the relatively
small number of modes.

FIG. 5. Second moment of vorticity and correlation function
for three modes of the SU(9) model as a function of time
(k =n ). The horizontal levels for M2 indicate the values ex-

pected from a canonical distribution. Note the start of the vert-

ical axis. Although the ordering of the levels is not reproduced,
the general agreement is more than acceptable. The behavior of
the correlation function is consistent with an ergodic develop-
ment.
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Galerkin approximation) some impressive speed advan-
tages could have been achieved by using pseudo-
spectral [45] or collocation methods combined with fast
Fourier transforms. This is, apparently, not possible in
the SU(N) models because of the nonlocal coupling terms
in the coordinate-space form (25). The whole point of the
pseudospectral method is to calculate the mode-coupling
terms in the representation in which they are local. For
the SU(N) cases we do not seem to have this option.
Without some technique corresponding to the pseudos-
pectral one, the SU(N) models could never be viewed as
numerical alternatives to the standard truncation or finite
element methods.

It might be expected that as N becomes bigger the re-
sults for the group model and those for the truncated sys-
tem should approach one another. There was no evi-
dence for this in the short-time evolutions that we have
performed. Also there was no indication that the quanti-
ties conserved in the continuum theory were progressive-
ly better conserved in the truncated versions as N in-

creased. Perhaps the values of N are still too small or it
might be that the N~~ limit has not been closely
enough considered and that the expectation is unfounded.

More disturbing is the oscillatory behavior of an "en-
tropy" g„in/„/A, as a function of time. These evalua-
tions are at a preliminary stage and have not been
displayed. They may indicate that the systems are not er-
godic or that the number of modes is small.

A corresponding analysis can be performed on the
two-sphere. Although the coupling coefficients are more
complicated, the eigenvalues are simpler, being the same
as in the N~~ limit. A discussion will be presented
elsewhere.

Calculations have also been done on a triangular lattice
corresponding to a regularly slanted torus. For real
mode coefficients, the results are relevant for motion on
the surface of a regular tetrahedron whereas the square
torus discussed in this paper gives a degenerately flat
tetrahedron. It would not model the earth too well. This
tetrahedron is in fact one of the flat Riemann surfaces
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discussed elsewhere [37] and it would be possible to ex-
tend the present calculation to these.

Whether or not this whole class of models proves to be
of use in approximating continuous theories, they at least
provide an interesting set of dynamical systems. More
realistically, the effect of viscosity could be investigated
by analyzing the Navier-Stokes equation.

Another interesting question concerns the Lagrangian
stability of the motion, i.e., of the trajectories in the Lie
group. It is known that the Eulerian (or Lie algebra)
motion can be stable, yet the Lagrangian one unstable in
the continuum case, being related to the sectional curva-
ture of the group of area-preserving diffeomorphisms. It

is of interest to consider the discrete analog of this.
The computations were carried out on a Hewlett-

Packard workstation. Transference to a more powerful
machine is planned and it is hoped to reach large values
of N.

Note added. After this work was completed we were
apprised of the paper by Miller, Weichman, and Cross
[46], in which this finite class of models is also discussed.
No numerical calculations are given and there are a num-
ber of formal differences with our setup, particularly the
choice of the discrete Laplacian. Also recent work by
Rankin [47] contains some information on the SU(ac )

limit, mostly in a particle-physics context.
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