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Molecular dynamics of detonation. I. Equation of state and Hugoniot
curve for a simple reactive fluid
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A simple microscopic model of chemical reactions is explored for diatomic exchange reactions
2AB=A2+B2. A pair of atoms bind chemically when they lie within a "square" attractive well. The
presence of a bond, however, leaves the bound atoms in a state in which they have only hard-sphere
repulsion for other atoms. A calculation combining the canonical-ensemble Monte Carlo technique with

molecular dynamics is used to determine the equilibrium composition and thermodynamic properties of
equimolar binary mixtures of A and B atoms, subject to this square-well, hard-sphere interaction poten-
tial for temperatures and densities accessible to detonation waves in a fluid consisting of metastable AB
molecules at an initial temperature c» /20k~ (in which c,,b is the well depth of the ab interaction and k~
is the Boltzmann constant), with c» =3c,&z and cz& = c&z. The calculations for systems of both 216 and

1728 atoms include the pressure, the internal energy, and the mean free times for various types of col-
lisions. The Hugoniot curve for states behind detonation waves is determined for six values of the densi-

ty for the smaller systems and one value for the larger; finite-system effects are found to be small. The
Hugoniot curve is shown to have a concave shape in the pressure-volume plane, typical of exothermic
materials, and the Chapman-Jouguet state is determined.

PACS number(s): 47.40.—x, 47.70.Fw, 82.60.Hc, 03.40.Kf

I. INTRODUCTION

The classical hydrodynamic theory of detonation [1]
presents a remarkably simple picture of a detonation
wave, based on the so-called Chapman-Jouguet (CJ) hy-
pothesis and simple, one-dimensional conservation rela-
tions, as expressed in the Euler equations. Nonetheless,
that theory seems only partially relevant to the observed
phenomenon of detonation for two distinct reasons.
First, steady one-dimensional detonation waves, when
viewed on the length and time scales defined by the chem-
ical process, are found to be unstable for a variety of
idealized, one-reaction detonations in gases [2—5] as well
as for certain models of condensed-phase detonations [6].
In lieu, then, of an understanding of the time-dependent
multidimensional flow, the connection between the
theory and the experimental "fully developed detona-
tion" is tenuous. Second, the initiation of detonation
does not appear amenable to a strictly hydrodynamic ex-
planation because certain physical properties at least of
solid explosives, beyond the equation of state (such as
grain size and crystal structure), are often of controlling
importance. Indeed, little is known theoretically of the
processes that control initiation.

Microscopic approaches to detonation, which have
gained popularity in roughly the past decade, are aimed
at understanding initiation. Classical molecular dynarn-
ics has been prominent among these approaches. Calcu-
lations by Karo, Hardy, and Walker [7], Tsai and Trevi-
no [8], and Peyrard and co-workers [9—11]were based on
so-called "predissociative potentials, " in which a mole-
cule of the explosive is represented as a dimer, bound in a
metastable state through a barrier in the potential-energy

function, the height of that barrier being large compared
to the thermal energy in the quiescent (i.e., unshocked)
explosive. While these models address the problem of
providing for the exothermicity of the explosive, they ig-
nore the fact that dissociation is an endothermic process.
The energy of the explosive arises instead from the
recombination reactions. Thus, the exothermic step
should occur on a time scale no smaller than the mean
free time rather than the scale of the duration of a col-
lision inherent in the predissociative models.

In solids, however, this distinction in time scales be-
comes blurred and dissociation and recombination are
now always separate steps. For this reason, the inadequa-
cy of the predissociative potential seems to lie more in its
oversimplification of the molecular processes involved.
This point of view has been stressed in more recent treat-
ments. These include a one-dimensional calculation for a
nitric-oxide-like potential having the London-Eyring-
Polyani-Sato form by Elert, Deaven, Brenner, and White
[12]. The importance of the chemical dynamics has espe-
cially been stressed by Robertson, Brenner, Elert, and
White [13], who have reported both one-dimensional
and two-dimensional calculations for a reaction
2AB~ 32+B2 using a many-body Tersoft-type poten-
tial. A di8'erent approach has been taken by Larnbrakos,
Peyrard, Oran, and Boris [14] in a three-dimensional
(non-Hamiltonian) calculation in which dimer bonds are
constrained to fixed length through the equations of
motion, at the same time calculating a phenomenological
state function S, (t) of each bond thr"ough the interatomic
forces each of its atoms has experienced. When S;,
exceeds some threshold, the bond is considered broken,
the constraint is relaxed, and energy is released by replac-
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ing the intramolecular constraint by a repulsive inter-
molecular potential energy of the dissociated atoms.

While the role for molecular dynamics in detonation
physics would evidently lie in the initiation problem, as
recognized by much of the previous work, the problem is
of sufficient complexity that the significance of many of
the observations that have been reported seems unclear.
As noted above, from the hydrodynamic point of view
detonations appear to be inherently multidimensional, in
contrast to shock waves in inert materials, which have
been studied with some success through molecular dy-
namics. Moreover, in the direction of propagation, it is
expected that the wave needs to be followed in time and
space over many reaction-zone lengths in order that tran-
sients should decay. Thus the denotation problem can be
expected to require the treatment of a system of consider-
able length not only in the direction of propagation of the
front but also in the transverse direction. In the case of
solid explosives, for which reaction-zone lengths are ex-
pected to be rather short, one is faced with the need to
deal with lattice imperfections whose size and concentra-
tion would also dictate the need to treat systems much
larger than those needed, for example, in the molecular
dynamics of the thermophysical properties of fluids. In
short, the problem is fraught with difficulties on a scale
unprecedented perhaps in molecular dynamics.

While attempts have been made to deal with the full
complexity of the problem, the more common approach
has been to reduce the complexity through the considera-
tion of one- and two-dimensional systems and, following
Peyrard et al. [10],to explicitly calculate the dynamics of
only those particles lying within a "computational win-
dow" that is advanced along the direction of propagation
in steps that are typically somewhat irregular in space
and time. The effects of these simplifications have not
been fully evaluated.

The present paper begins an attempt to evaluate the
molecular dynamics of detonation by first determining
quantitatively the predictions of the classical macroscop-
ic theory. Rather than a solid, we consider a diatomic
fluid in which the interaction potential of the chemically
active atoms is both highly realistic, in that association
and dissociation are strongly asymmetric three-body pro-
cesses, and highly idealized, in that the potential is nei-
ther a fit to any particular substance nor the derivative a
fundamental (quantum-mechanical) theory. Our ultimate
aim is to study the hydrodynamic fields in shock-initiated
flow in this idealized system and to compare these with
the behavior inferred from classical detonation theory.
While we are not aware of a theorem that the hydro-
dynamic theory necessarily holds in any particular region
of state space, the failure or success of the theory in
describing the molecular-dynamics (MD) results, coupled
with observations of the validity of the fundamental hy-
pothesis of that theory, viz. , partial thermodynamic equi-
librium, can be expected to shed considerable light on the
utility of MD in the study of detonation.

In the present paper, we present our model and apply a
combined Monte Carlo and molecular-dynamics method
to determine the equilibrium composition and the equa-
tion of state from which we generate the Hugoniot curve,

which plays a central role in the classical, Chapman-
Jouguet theory of detonation. The present calculations
differ from the approach taken by Coker and Watts [15]
and Kofke and Glandt [16] in the determination of chem-
ical equilibrium by virtue of our use of a reactive interac-
tion potential. These previous approaches are based on
Monte Carlo calculations in a restricted grand canonical
ensemble, in which one specifies the chemical species that
are present through an atom-in-molecule interaction po-
tential. A similar Monte Carlo approach has been de-
vised by Shaw [17] using a generalized canonical or
constant-pressure ensemble in which the changes in com-
position are accomplished through atomic interchanges
rather than the molecular moves of the previous work.
The present approach is similar to that of Stillinger,
Weber, and LaViolette [18] in the study of polymeriza-
tion of liquid sulfur.

In Sec. II, we present the details of the model. In Sec.
III, we consider the calculation of the thermodynamic
functions, particularly as they apply to our impulsive-
interaction model. We specify the interaction parameters
and thermodynamic state for the calculations reported
here in Sec. IV, along with certain details of our numeri-
cal calculations. We present our results in Sec. V and
close with a brief discussion in Sec. VI.

II. SYSTEM

We consider an "equimolar" mixture of A and B
atoms, having masses m„and m~ respectively, N/2 of
each, at thermodynamic temperature T and specific
volume v contained in a parallelopiped having edge
length L, L, and L, along the three Cartesian axes, so
that U =2L„L~L,/X(m„+ms). These atoms can asso-
ciate into diatomic molecules AB, A A, and BB, which
can also decompose. The dynamics of these processes are
governed by classical dynamics based on an interaction
potential that should include three-body (or more) terms
in order to realistically treat the case of chemical reaction
[lg].

A. Square-well, hard-sphere interaction

Here we choose perhaps the simplest realistic model of
chemical reaction, viz. , a three-body interaction consist-
ing of square-well "attraction, "

P,b(r; ) =c,b u ' '(r;, /o, b, K,b ),
ifx &1

u' '(x, K)= —1 if 1 ~x (K
0 if E~x,

between atom i of species s, (either A or 8) and atom j of
species sj (where we simplify by letting a =—s; and b =s.,
with a, b E [ A, B ] ), whose centers r, and r, are separated
by a vector r; =r, —r-, provided neither i nor j lies
within the attractive well of a third atom. When any pair
of atoms lie in their attractive well, viz. ,
o,&

~ r," & K,bo.,b, they are said to form the ab molecule.
Atoms that are bound into molecules interact with other



JEROME J. ERPENBECK

atoms through a repulsive hard-sphere interaction, which
we choose thus:

ifx (1,
(HS)Il (x)

O 'f 1 (
The choice of the hard-sphere diameter to be equal to,

rather than smaller than, the square-well diameter
K,bo-,b eliminates the possibility that the i,j particles
could discontinuously (in time) appear within (as opposed
to at the boundary of) their attractive well at the instant a
molecule involving i or j, say ik, dissociates.

The potential energy of the system having
configuration r =(ri, ri, . . . , rz) can be written explicit-N

ly in terms of three-body contributions as follows:

1
U~(r ) =

2 g P,b, (r, , r, , rk ),
i (j(k

(sw) 0
P,b, (r;, r~, r&)=e,bu' ',K,b F~kF~k+u'

&ab

riJ

+ab ~ab
(1 Fo F&—v )

~ac QC0 QC

(1 F; Fp,—)

(sw) Jk g F p + (Hs)
Ebc 0 bc ij ik

~bc Kb Ob
(1 F; Fk)—, (3)

in which c:—sk and I';. is a unit-step function,

F,)=A(r,, lK bcr b 1) .

[In writing Eq. (3), we understand the vanishing of an F,
factor to eliminate from the right-hand side of the equa-
tion the potential energy function u that multiplies it, re-
gardless of whether u is infinite. ]

The interaction potential simplifies somewhat when we
impose additivity on the interaction lengths, so that we
obtain the O,b from the core diameter of the atoms,

Oa+Ob
0ab

One could further reduce the potential parameters by im-

posing additivity on the square-well and hard-sphere in-
teractions,

+a~a ++b~b
ab ab 2

but we have not done so in the calculations reported here,
choosing the K,b independently instead.

B. Detonation model

We define a model for detonation based on the above
interaction by considering a system consisting initially of
metastable AB rnolecules. That is, the thermal energy of
the "quiescent" system is small compared to the well

depth c.~z, while the well depth for at least one of the
other molecules is considerably larger, say c~~ )&c.~z.
The first condition assures that the quiescent, unshocked
explosive will not decompose spontaneously and the
second assures that considerable potential energy will be
released in the formation of the A A molecule.

Our overall aim is to study the development of detona-

tion as, for example, a piston is moved into the system
and a compression wave moves away from the piston, ex-
citing chemical reaction through enhanced collision
rates. We wish to compare the behavior of this micro-
scopic system with that predicted by reactive hydro-
dynamics. In the present paper we are concerned princi-
pally with the hydrodynamic aspect of the problem at the
level of the Chapman-Jouguet theory, which depends
only on the equations of state of the quiescent explosive
and the equilibrium mixture behind the zone of chemical
change.

For the interaction potential Eq. (3) our aim, then, is to
determine the equilibrium equation for state. For the
present case, in which we have a reactive interaction po-
tential, the classical methods of Monte Carlo and molecu-
lar dynamics can be applied directly, without considera-
tion of the chemical potentials of the various atomic and
molecular species that are present.

For our equilibrium Monte Carlo and molecular-
dynamics calculations, we imposed the usual periodic
boundary conditions in which the X-particle system is re-
plicated throughout space by translation of the system by
multiples of the edge lengths L„,L, and L, .

Our Monte Carlo technique is the usual Metropolis
method [19]appropriate to the canonical ensemble. Thus
we make a displacement of each of the atoms in turn (ex-
cluding the first), accepting the new configuration based
on the change in potential energy of the system in accord
with the so-called asymmetric transition probability. It
should be observed in this regard that for temperatures
that are low relative to the well depth of a given molecule
c.,b/k~ a move which would dissociate the molecule
would be rejected with virtual certainty. To achieve equi-
librium at low temperatures, then, our Monte Carlo pro-
cedure will be ineft'ective, and procedures of the types dis-
cussed in the Introduction would be required [15—17].



46 MOLECULAR DYNAMICS OF DETONATION. I. EQUATION. . . 6409

In fact, for the quiescent explosive, we require the
equation of state of the metastable system, not the equi-
librium system, so that our Monte Carlo procedure can
be expected to average the region of configuration space
associated with the pure AB system quite well. On the
other hand, the state behind the detonation is expected to
have thermal energy, which is only somewhat below that
of the most stable species, say c„„.Thus the present
scheme appears to serve quite well for both purposes,
provided we do not attempt to study intermediate tem-
peratures for which equilibration is too slow.

C. Dynamics

The dynamics of our system consist of linear trajec-
tories between binary "collisions. " The latter include
hard-sphere collisions, collisions with the repulsive core
of the square well, and the interactions at the square-well
boundary.

Consider the interaction of particle i of species s, with

particle j of species s . We denote the position and veloc-
ity of particle i by r, and v, , respectively, and let

r=r —r v=v —vi j~ i j
in which we simplify our notation (in this subsection
only) by omitting subscripts on r and v. Similarly, we
denoteo, , byo. , K, , by K, c, , bye, andm, and m, by

f J t J J t J

m,. and m, respectively. Finally with respect to notation,
we define w to be the magnitude of w and w to be the unit
vector in the direction of w.

We consider interactions between particles that are not
bound to other particles and have, then, the square-well
interaction potential of Eq. (1). We distinguish the vari-
ous cases on the basis of the nature of the interaction.
First, we define a type I interaction to be the hard-core
collisions; it occurs only for particles that lie within the
well r &Ko., approach each other r.v &0, and lie in the
collision cylinder of the core r —(r v) &cr The col-.
lision then occurs at time,

r v+[(Ko )
—r +(r v) ]'
U

(10)

—r v+[(Ko) r+—(r v) ]'
V

(12)

In this case, the particles refiect into the well if Q &0,
where

Q =(v.c) —4s/Ju, , (13)

with velocity change Eq. (7). If Q )0, the molecule dis-
sociates, with velocity change

b,v=[ —v c+&Q ]c . (14)

The hard-sphere interaction applies for atoms, at least
one of which is bound to a third atom. Provided the par-
ticles are approaching, r v & 0, and lie within the collision
cylinder r (r v) & (Ko)—, the colli.sion time is given by
the usual hard-sphere expression Eq. (10) for hard-core
diameter Ko and with velocity change given by Eq. (7).

D. Monte Carlo molecular-dynamics procedure

Our calculations consist of a Monte Carlo average of
functions of the phase F(x ) determined from a sequence
of points in phase space [x;;i =i, . . . , XNtc], where

xN [N pN]—

Evidently, the particles "associate" or bind by entering
the well, with velocity change

b,v=[ —v c+&Q']c,
2m;mjQ'=(v c) +4s/p, p=
m;+m.

(ii) The atoms lie inside the well but do not have type I in-

teractions, i.e., either they are receding, r v&0, or they
approach but lie outside the collision cylinder of the core,
r (r —v) ) tr In.stead, they interact at the well bound-

ary at time

C

r v+[o —r +(r v) ]'~
(6) =[Pi~p2& ' ~ ' r PN] .

yielding postcollision velocities that readily follow from
the postcollision relative velocity,

v'=v+bv, bv= —2(v c)c,

and the conservation of linear momentum,

m;v,'+m v'=m, v;+m v,
where

c=r(t, )

is the line of centers at collision.
Secondly, we define interactions at the well boundary

as type II interactions. We distinguish two subcases. (i)
The atoms lie outside the well r )Ko., approached each
other r-v&0, lie in the collision cylinder of the well
r —(r v) & (Kcr), and interact at time

The r, form a realization of a Markov chain, generated
by a Metropolis Monte Carlo procedure. Each such
point in configuration space is combined with a point in
momentum space, chosen randomly from the X-
dimensional Maxwell-Boltzmann distribution using the
Box-Muller method [20]. The resulting point in phase
space x, is used as an initial phase for a trajectory x, (t)
generated to a fixed number X, of time steps, each of
length ot. The function F(x ) is averaged in time over
the trajectory, either as a sum over the discrete time steps
or as an integral time average over the trajectory. The
resulting time-averaged values are then averaged over the
N~c trajectories. The statistical uncertainties associated
with the averages are determined from the variance over
the X~c trajectory averages.

As a practical matter, we typically generate the
(i + 1)th configuration through a standard Monte Carlo
cycle from the final configuration of the ith trajectory
rather than from the ith Monte Carlo configurations. Be-
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cause energy is conserved on the trajectory, we are as-
sured that the phase associated with this point has the
same Boltzmann factor as that of the start of the trajecto-
ry. Moreover, the time-reversal invariance of the trajec-
tory and the independence of the Boltzmann distribution
on the sign of the velocities assures the microscopic re-
versibility of the overall Markov chain in phase space.
The practical advantage is that the approach to equilibri-
um is more rapid in the combined procedure. At low
temperatures especially, the approach can be rather slow
[18].

III. EQUILIBRIUM EQUATION OF STATE

Turning now to the detonation problem, we recall the
classical equations [1] relating the quiescent state ( T, u )

having mass velocity u =0, with the state behind the de-
tonation wave ( T, u, u),

ing dynamical temperature

2Z„
T 3k%' (18)

the y sum running over the successive interactions of the
system at times t„tz,. . . . In Eq. (20), i and j denote the
particles involved in the yth interaction and Av; the ve-

locity change of particle i The . overbar in Eq. (17)
denotes the time average over the trajectory

KN is the kinetic energy in the center-of-mass frame of
reference,

p2 N N

K]v=t(. ]v—,K]v= —,
' g m, v;, P= g m, v, , (19)

I

M is the total mass, and 8'N is the virial function, which
for impulsive interactions is

(20)

p(T, u) —po(T, u )= (v —u),D

Uq

f= lim —f f(x (s) )ds .
0

(21)

E ( T, u ) = 3Nk~ T + ( U]v ),— (16)

where the (F ) denotes the ensemble average. While the
pressure can be determined from two- and three-body dis-
tribution functions for a three-body potential [21], we in-

stead evaluate the ensemble average of the dynamical
pressure determined from the time-averaged momentum
fiux across a surface element in the system [22],

e ( T, v ) eo ( Tq, u —) = —,
' [p ( T, v ) +p 0 ( Tq, vz ) ](uz

—v ),
in which D is the detonation velocity, e is the specific
internal energy, and p is the pressure; we add the sub-
script 0 to quantities for the metastable explosive. These
constitute three equations in the four unknowns T, v, u

and D. The first of these equations can be regarded as
determining the mass velocity in terms of the other three,
leaving the second and third relations, the so-called
"Rayleigh line" and the "Hugoniot curve, " which can be
regarded as two relations in two unknowns T and v

parametrized by the detonation velocity. The Chapman-
Jouguet hypothesis selects the solution having minimum
detonation velocity as the solution for an "unsupported"
detonation, i.e., a detonation wave in which the piston is
ultimately brought to rest.

The third of Eq. (15), the Hugoniot curve, is seen to be
independent of detonation velocity and is therefore the
locus of possible final thermodynamic states behind a de-
tonation wave. To evaluate it requires the specific inter-
nal energy and the pressure as functions of temperature
and specific volume. The total internal energy in the
canonical ensemble is given by the well-known expression

The determination of the Hugoniot curve consists,
then, of the determination of the pressure and the inter-
nal energy at a series of temperatures for each value of
the volume, to yield the Hugoniot function

h (T,v)=e(T, u) eo(T, v~)—

—
—,
' [p (T, v)+p]](T, , vq )](uq —v), (22)

(Ã, ] )(Ã —2)

N(l (Hs))
(23)

in which Ã, &
is the number of molecules. (ii) The mean

free time between intramolecular hard-core collisions fol-
lows similarly from the collision rate I" for such col-
lisions,

which can be interpolated to the roots of h ( T, v) =0.
In addition to computing the functions that enter into

the Hugoniot function, we also count the various types of
collisions. From these, we compute the mean free times
for five types of events. (i) The intermolecular mean free
time to ' is defined as the time between repulsive col-
lisions of a bound atom and any other atom outside the
molecule, inasmuch as collisions of free atoms always re-
sult in the formation of a molecule. We compute to
from the hard-sphere collision rate I'""by noting that in
time to ' (ignoring any distinction between the two
classes of events involved) each particle will have under-

gone one such collision, on the average. We therefore
define to ' to be the time for 2(N, ] )(N —2)/(2N) such
collisions and we write

+kB TMD
PMD

(24)

in which pMD is dynamical pressure on a trajectory hav-
(iii) The mean free time between intramolecular
reflections from the well wall is similarly written
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(25)
B. Molecular-dynamics averaging

(iv} The mean free time between dissociative events is
written

(26)

(v) The mean free time between associative events is

(N„)—1

2( I (as) )
(27)

Each of these five quantities defines a time scale for a dis-
tinct fundamental process.

in which N„ is the number of free atoms. We note that
the frequencies of events of the latter two types should
balance at equilibrium,

(I (ds)) (I (as))

The dynamical trajectory is generated through a com-
puter program that proceeds from "event to event;" that
is, the program determines a minimum time for each par-
ticle, namely, the earliest time for which an interaction
with another particle takes place, based on the interac-
tion types discussed in Sec. II. In order to minimize the
number of such interactions that need to be considered,
the program uses cell tables whereby only interactions
with particles in neighboring cells need to be calculated.
New interaction times for a particle need to be calculated
only after that particle changes cells or undergoes an in-
teraction.

At intervals of time 5t the functions of the phase, for
example, the potential energy, are evaluated to form a
trajectory average. The microscopic pressure Eqs.
(17)—(20), however, involves 5 functions in the time and is
evaluated through the integral-time average Eq. (21) as a
sum over interactions. The time 5t is chosen to be

IV. CALCULATIONS 5E =0.1t*, (31)

We describe now the specific calculations that are re-
ported here, including the parameters of the interaction
potential, the thermodynamic state of the quiescent sys-
tem, the details of the time averaging, the initial phase
for the equation-of-state calculations, and the general na-
ture of the statistical analysis of our results.

A. Specification of problem

We consider the system defined by the following pa-
rameters:

in which t * is a crude approximation to the intermolecu-
lar mean free time of the system, viz. , the low-density
Boltzmann mean free time for N/2 hard spheres of mass
m„+mB and equal in volume to the AS molecular
volume,

2Vi*=
N(2o )

1/2(m„+ms}p
O —O'A +OB3= 3 3 (32)

where p=1/(ksT). For each system, the trajectories
were extended to the same number N„ time steps
X,=3000, before beginning a new Monte Carlo cycle.

mB= ~4mA
—15

C. Initialization of the phase

OB=OA ~

&AA =&AB =3

(28)

EBB=1.1,
&AA =3~AB ~

~BB AB

so that the heat of the reaction

2AB—A2+B2 (29)

is c, AB per molecule of reactant. For the quiescent state
of the system we choose a volume of 7Vp in which Vp is
the volume of a close-packed system of X/2 hard spheres
of diameter EABo.„B,viz. ,

Vp= 2 3N(K„~o~a) (30)

The quiescent temperature is 0.05cAB/kB, so that the
heat of reaction is 20 times the thermal energy in the
quiescent Quid.

The initial configuration of the system for each state
(T,v) is ultimately derived from a face-centered-cubic lat-
tice of AS molecules for the quiescent state. That
configuration consists of A atoms occupying the lattice
sites with a 8 atom attached to each A at a random radi-
al position within the attractive well, at a latitudinal an-
gle with respect to the x axis chosen randomly in a nar-
row range about m/4 and with a longitudinal angle of
m/4.

For densities greater than the quiescent state, the ini-
tial configuration was derived from the final configuration
for a neighboring state, using either uniform expansion or
contraction of the system to effect any required change in
density. In the case of contraction, the density is in-
creased in steps as permitted by the nearest pair of parti-
cles, with a number of Monte Carlo moves used to
"equilibrate" between each contraction. For systems in
which the primary cell has edge lengths that are multi-
ples of those for smaller systems at the same state point,
the initial configuration was derived from the final
configuration of the smaller system by filling the larger
cell with translated copies of the smaller.
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D. Analysis of the results

The calculations produce a series of values for the pres-
sure and the potential energy, one for each trajectory. In
many cases, the first few trajectories appear not near
equilibrium, as seen from the trajectory-averaged values
of the potential energy. We ignore these trajectories in
computing our overall averages and estimates for the sta-
tistical uncertainty. In order to assure the absence of ap-
preciable serial correlations between successive trajectory

averages, we apply a number of the standard test of ran-
domness [23].

V. RESULTS

We have studied the system described above at the
quiescent state V =7Vo, T =0.05', /k~T, as well as for
six values of the volume between 6VD and 4VD for a range
of temperatures between 4T and 7.6T . The states that
were studied are listed in Table I, which includes several

TABLE I. Parameters and results for Monte Carlo molecular-dynamic calculations of the equilibri-
um properties of equimolar mixtures of A and B particles interacting through the reactive square-well
hard-sphere potential for the various values of the volume V, relative to the reference volume Vo, Eq.
(30), and temperature T, relative to the depth c, » of the potential well of the AB molecule: N is the to-
tal number of particles in the system; N« is the number of distinct trajectories generated, of which the
last n Mc yields statistically independent estimates of the thermodynamics functions of the mixture; N;„,
is the total number of interactions, in millions, computed for all trajectories; pV/Nk& T is the compres-
sibility factor; and ( U) is the average potential energy. Each trajectory extends to 3000 time steps 5t,
Eq. (31), except those for the metastable, molecular AB state, V =7VQ T =0.05K, gg/k~, which extend
to 300 time steps per trajectory. The numbers in parentheses are the standard deviations, relative to the
low-order digit of the mean values.

V

Vo

5.2

4.8

4.6

0.05
0.20
0.24
0.26
0.28
0.30
0.24
0.26
0.28
0.30
0.34
0.20

0.24

0.30

0.32

0.34

0.24
0.28
0.30
0.32
0.34
0.24
0.26
0.28
0.30
0.32
0.34
0.20
0.24
0.30
0.34
0.38

216

216

216
1728
216

1728
216

1728
216

1728
216

1728
216

216

216

NMc

100
30
30
40
33
30
29
30
30
30
30
30
20
30
30
40
22
30
20
30
20
30
30
30
30
30
30
30
30
30
30
30
40
40
30
20
30

nMc

90
11
19
20
26
20
22
30
21
21
20
15
20
21
20
30
13
18
14
14
20
21
10
23
26
30
19
25
26
25
16
19
18
16
24
10
28

7.5
73.2
59.8
73.8
55.8
45.7
56.7
54.2
50.6
46.6
39.7
67.9

381.0
58.6

471.9
61.1

269.4
42.9

226.7
58.6

210.7
58.6
49.7
45.8
42.6
40.3
57.3
53.7
49.1

46.1

42.9
40.0
82.3
73 ~ 5

45. 1

26.7
36.7

pV
Nk~ T

1.1958(4)
1.2765( 59 )

1.3325( 39 )

1.3562( 30)
1.3774( 33 )

1.4054(41 )

1.4574(47 )

1.4917(41)
1.5096(43 )

1.5278(44)
1.5633(37)
1.4308( 64)
1.4224( 14)
1.4838( 52 )

1.4937(21 )

1.5776( 37)
1.5670( 17)
1.6028( 52)
1.5907( 12)
1.6126(40)
1.6061( 15 )

1.5416(47 )

1.5967( 38 )

1.6218( 51 )

1.6403(49 )

1.6574(48 )

1.5939(36)
1.6138(48 )

1.6402(49)
1.6672( 58 )

1.6933(53)
1.7151(73)

1.6660( 36)
1.7625(99)
1.8595(46)
1.9193(100)
1.9447( 59 )

(U)
Nk~ T

10.0000(0)
4.4190( 160)
3.4591( 110)
3.1774(70)
2.8945(77)
2.6134(55 )

3.5311(97)
3.2083(89)
2.9427( 78 )

2.7021( 100)
2.3031(70)
4.4660( 100)
4.4874( 32 )

3.5905(91)
3.5660( 32 )

2.6795(76)
2.6967( 34)
2.4824( 61 )

2.4819(28)
2.3018(53 )

2.2925(26)
3.5934( 72 )

2.9613(100)
2.6953(72)
2.4835( 77 )

2.3200( 70)
3.5794( 54)
3.2686( 61 )

2.9807( 80)
2.7163(95 )

2.5254( 62 )

2.3095( 88 )

4.6073(67 )

3.6811(110)
2.7524( 56 }

2.3378(91 )

2.0649( 52)
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parameters of importance, including the number of parti-
cles N. Note that only for a volume of 5 Vo have we stud-
ied systems of 1728 particles; otherwise we have treated
216 particles. The table also lists the total number of in-
teractions N;„,encountered for the NMc trajectories. As
previously noted, the first few trajectories tend to sample
regions of phase space rather far from equilibrium, so
only the final nMC of these trajectories are used in com-
puting averages and statistical uncertainties of the ther-
modynamic functions. The values of XMc and nMc are
also given in Table I. The number of trajectories discard-
ed depends on the details of the starting configuration,
which typically was representative of equilibrium for a
nearby state point.

A case of slow approach to equilibrium is illustrated in
Fig. 1 for the system T=O. 2e„„/ks, V=4.0Vo, the
starting configuration of which was the final
configuration of the twentieth trajectory of a
T =0.le„„/k~ realization at the same volume W.e see
the very gradual approach to equilibrium of the average
potential energy on successive trajectories. Thus, we
choose nMC=18, discarding the first 22 trajectories of
Fig. 1. These final 18 trajectory averages give no indica-
tion of further serial correlation and appear to be normal-
ly distributed on the basis of, for example, the mean-
square —successive-difference ratio test [23].

For temperatures appreciably below 0.2c„~/k~, the
rate of the chemical reactions appears to be so slow that
the present Monte Carlo molecular-dynamics method be-
comes rather ineffective in reaching the "equilibrium" re-
gions of phase space. This equilibration "phase" is a fa-
miliar feature of Monte Carlo and molecular-dynamics

A. Thermodynamic functions

The equilibrium composition was determined for each
state point through the mole fraction of each of the 5 dis-
tinct components, viz. , free atoms A and 8, and three
distinct molecular species. Note that the present model
avoids the ambiguity in identifying molecules, inherent in
many classical models of chemical reaction based on soft
interactions. The mole fractions of the principal species,
free 8 atoms and A A molecules, are shown as functions
of temperature and volume in Figs. 2(a) and 2(b), respec-
tively. The data for each volume are fitted to a quadratic
function in the temperature, for T ~024 E/k s, of the
form

k~Tf (&,u)=~f(U)+bf(u)
wa

+Cf ( U )
~AB

(33)

simulations but is here controlled by chemical reaction
rather than the relatively rapid thermal transport pro-
cesses. Thus the 22 "discarded" trajectories of Fig. 1 in-
clude 1.9X10 MC moves and 4.5X10 collisions, values
that are many orders of magnitude larger than would be
required, for example, to equilibrate a system of hard
spheres at a similar density. For the systems of 1728
atoms, the Auctuations (relative to tnean values) are
smaller than for the 216 atoms, so that the approach to
equilibrium is effectively slower. Perhaps the Monte Car-
lo procedures discussed in Sec. I would be more appropri-
ate for these temperatures.

I—
CQ

Z 4

A

V

The fitted curves for the mole fractions are shown in the
figures. The mole fraction of free A atoms is no more
than 0.005 for the entire range of volume and tempera-
ture covered in these calculations. The mole fraction of
AB molecules is much higher but remains in the range
I0.02,0. I ] throughout. Finally, the mole fraction of 88
molecules lies in the range I0.09,0.31), decreasing with
increasing temperature and volume. On the other hand,

TABLE II. The Hugoniot temperature ratio Tq(v)/Tq, pres-
sure ratio pz(v)/p~, and detonation velocity D as functions of
reduced volume V/Vo for the square-well hard-sphere interac-
tion having interaction parameters Eq. (28) for the quiescent
state V, =7Vp& Tq =0.05cgg/kg.

I

10
I

20

trajectory

I

30 40

FIG. 1. Average potential energy per particle for the 40 tra-
jectories of an equimolar reactive mixture of A and 8 atoms at a
volume of four times the reference volume Vo, Eq. (30), and
temperature 0.20m, „z/k&. The solid horizontal line marks the
mean of the final 18 trajectories, and the dashed lines mark one
standard deviation above and below the mean.

V

Vo

6
5.2
5

4.8
4.6
4

216
216
216

1728
216
216
216

5.578{10)
6.022( 14)
6.083( 13)

6.099(6)
6.217( 15 )

6.405( 13)
7.011(21)

pq

7.495{26)
10.39(4)
11.25(4)
11.24(2)
12.37(5)
13.80(5)
19.72( 10)

' 1/2

D
(I„+m~)

k~ Tq

10.428( 14)
0.344( 13 )

9.263( 13 )

9.257(6)
9.303( 14)
9.449( 12)

10.220( 19)
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the mole fraction of AB increases slightly with tempera-
ture and decreases with volume over the range of our cal-
culations.

The compressibility factor and the potential energy per
particle are given in Table I, and are plotted against tem-
perature and volume in Figs. 2(c) and 2(d). The curves in
the figures are fits of the form of Eq. (33), but omitting
the quadratic term in those cases where the data are
sufficiently linear. The reduced potential energy per par-
ticle, shown in Fig. 2(d), is seen to be nearly independent
of volume over the range studied. We recognize, of
course, that our analytic representation are expected to
fail outside the temperature range of the fit. The eC'ect of
system size can be seen from the V = 5 Vo results in Table
I to be small and of marginal statistical significance with

respect to any of our observations.
The time scales at which various collisions take place

are summarized by the mean free times for each of the
five types of events discussed in Sec. III. We plot three of
these, the intermolecular to

' and the intermolecular to"
and to"', as functions of volume and temperature in Fig.
3. These values were estimated by averaging the values
for the individual trajectories given by Eqs. (23)—(27).
We see that over the limited state space of these calcula-
tions, the intermolecular mean free time is roughly
0.09t*, the intramolecular times to' are about half that,
while the dissociation times are the longest, ranging from
about 4t* at T=0.2c~z/kz to less than t' at the higher
temperatures. The recombination times also decrease
with increasing temperature, although not so rapidly.

0.50

0.46

0.42

0.38

0.34

0.30

0.26

~ 4vp

o 4.6V 0
— — — (), 4.8V 0

g5VO

——v 5.2V p

0.46

0.42

0.38
X

0.34

(b)

4 g

4
'. I).'

I

~ 6Vp

——v 5.2Vp

——p 5Vp

(), 4.8V p

— —o 4.6V p

4VO

0.22 I

0.2
I

0.3
kT/c

A

~ 6Vp

I

Q 4
0.30 I

0.2
I

0.3

kT/s A

I

0.4

2.0

(c)

I

4

x I

1.8

1.6
CQ

z:

1.0 I

0.2
I

0.3
kT/E

A

4.6
(Y

. X 4.8. '

4
5.2~V

.k

I

0.4

I—
CQ

V

kT/s A

x V/VO —4

o V/VO = 4.6

&& V/V O
——4.8

o V/VO ——5

vV/Vp =5.2
z V/VO =6

I I

0.4

FIG. 2. Mole fraction of (a) free A atoms x~ and (b) BB molecules xz~, (c) the compressibility factor pV/Nk&T, and (d) the re-

duced average potential energy per particle ( U) /Nks T of equimolar reactive mixtures of A and B atoms as functions of temperature

for six values of the volume V relative to the reference volume Vo, Eq. (30). The curves are least-squares fits to the data.
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B. Hugoniot curve

h (T,v)=0, (34)

The function h ( T, u), Eq. (22), can be computed direct-
ly from the Monte Carlo molecular-dynamics values of
the internal energy and pressure, thereby obtaining a set
of time-averaged values that can be fitted, for each value
of the volume, to a quadratic in the temperature, similar
to the least-squares-fitting procedure above. It can also
be evaluated from the analytic representations for the
average potential energy and pressure; the results via ei-
ther path are virtually indistinguishable. Using the direct
least-squares fit, we solve the resulting quadratic in the
temperature for the Hugoniot point,

namely, T=T&(u), from which we also compute ph(v)
through Eq. (33). For our six values of the volume and
two values of the system size, we obtain the Hugoniot
states shown in Table II and the pressure-volume
Hugoniot "curve" shown in Fig. 4 for the 216-particle
systems; the dotted line in the figure is a spline fit to the
points.

The detonation velocity corresponding to each
Hugoniot point is obtained from the second line of Eq.
(28) and the values are also listed in Table II. The 1728-
particle value is seen to lie close to that for 216 particles.
The tangent to the Hugoniot curve through the quiescent
state (v~,p~) yields then the CJ detonation velocity. The
least-squares fit of D to a quadratic in the volume yields
at the minimum,

0.10
I

~ 6V0

v 5.2Vp

p 5Vp

&& 4.8V 0
46VO

"4VO

0.07
(b)

0.06

0.08

I

0.2

() &3

c)

I

0.3

AB

(c)

I

0.4

0.03

0.02 I

0.2

I

z 6Vp

v 5.2Y0
p 5Vp

&& 4.8V p
o 4.6V 0
x 4V0

x 0
8

I

0.3
kT/e A

"4Vp
o 4.6V p
o 4.8VO

5V0
v 5.2Vp
a, 6Vp

I

0.4

0 I

0.3
kT/e

A

I

0.4

FIG. 3. Mean free time to ' for three types of events for equirnolar reactive mixtures of A and B atoms as functions of temperature
for six values of the volume V relative to the reference volume Vo, Eq. (30): (a) a= m, intermolecular collisions; (b) a=c, intramolec-
ular collisions at the molecular core, irrespective of the type of molecule, and a =ds, for intramolecular dissociating events.
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30 VI. DISCUSSION

20

U

15

CL

10

D=9.2

0.5 0.6 0.7 0.8
v/v

0.9

VCJ =(4.96+0. 13)Vo,

k~T
DCJ = (9.286+0.006)

Pl g +Ply

1/2 (35)

FIG. 4. Hugoniot curve (dotted) for the quiescent state
V&

=7VO T& =0.05K&z /kp and the Chapman-Jouguet Rayleigh
line (solid), tangent to that curve.

The square-well hard-sphere Quid is found to yield a
Hugoniot curve of the form expected for an explosive,
with a CJ detonation velocity that seems reasonable for
the rather low density we have considered for the quies-
cent state.

The principle difference between the present approach
and those based on nonreactive potentials is our use of a
combination of Monte Carlo and molecular dynamics to
determine the thermodynamic functions, rather than a
Monte Carlo procedure in which the Markov chain in-
corporates changes in molecular composition explicitly.
Rather, in the present approach the Monte Carlo aspect
of our calculation basically provides statistically indepen-
dent estimates of the thermodynamics functions, acting
then principally as a device for estimating statistical un-
certainties of our results. The present approach depends
strongly on the existence of a dynamical path in phase
space from the starting configuration to the equilibrium
composition. As we see at lower temperature, the time
needed to reach equilibrium can be quite large. It would
seem that the convergence of our results could well have
been improved by incorporating atomic exchanges in the
Monte Carlo as well.

The goal of the present calculations is that of setting
the stage for nonequilibrium calculations of detonation
waves by determining the predictions of the classical
theory of detonation. These nonequilibrium calculations
are currently in progress.
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