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Turbulent flow between concentric cylinders is studied in experiments for Reynolds numbers
800 < R < 1.23 X 10° for a system with radius ratio =0.7246. Despite predictions for the torque scaling
as a power law of the Reynolds number, high-precision torque measurements reveal no Reynolds-
number range with a fixed power law. A well-defined nonhysteretic transition at R = 1.3 X 10* is marked
by a change in the Reynolds-number dependence of the torque. Flow quantities such as the axial tur-
bulent diffusivity, the time scales asociated with the fluctuations of the wall shear stress, and the root-
mean-square fluctuations of the wall shear stress and its time derivative are all shown to be simply relat-
ed to the global torque measurements. Above the transition, the torque measurements and observed
time scales indicate a close correspondence between this closed-flow system and open-wall-bounded-
shear flows such as pipe flow, duct flow, and flow over a flat plate.

PACS number(s): 47.25.Ae, 47.20.Ft, 47.25.Jn, 47.25.Ei

I. INTRODUCTION

Turbulence, although ubiquitous in nature, remains in
many aspects an enigma. Most turbulence experiments
are conducted in open-flow systems. Here we consider
turbulence in a simple closed-flow system. At low Rey-
nolds number the behavior of closed-flow systems is typi-
cally different from that in open-flow systems. With in-
creasing Reynolds number many open-flow systems have
a hysteretic transition from the laminar to the turbulent
state, while closed-flow systems generally display an or-
dered sequence of bifurcations leading from laminar flow
to chaos and turbulence. This raises the question of
whether or not these systems also exhibit different behav-
ior at high Reynolds number. The closed system that we
have studied is flow between concentric rotating cylinders
(the Couette-Taylor system). Our experiments [1] extend
to Reynolds numbers well beyond those previously stud-
ied.

The Couette-Taylor system has several advantages as
an experimental system. The rotation of the inner
cylinder, which drives the system, is amenable to precise
control. Also, because of its simple geometry and high
symmetry, a Couette-Taylor system can be built to tight
tolerances. These two advantages insure well-defined,
reproducible experimental boundary conditions.

The Reynolds number in a system with only the inner
cylinder rotating (as in our work) can be defined as

R= Qa(b—a) , (1)

v

where () is the rotation rate of the inner cylinder, @ and b
are the radii of the inner and outer cylinders, and v is the
kinematic viscosity of the fluid. For low Reynolds num-
bers this system has been extensively studied [2,3] and
has been found to exhibit a well-defined sequence of bi-
furcations leading to weak turbulence [4—6]. The seminal
work of Taylor in 1923 demonstrated that the laminar
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Couette state undergoes a transition to an axially periodic
state, Taylor vortex flow [7]. The next transition leads to
a state with waves on the vortices; Coles (1965) [8] found
that multiple wavy vortex flow states could be stable at a
given R. Subsequent experiments have studied higher in-
stabilities, the transition to chaos, and turbulent Taylor
vortices (Fig. 1) [4-6].

The present study examines the behavior of the
Couette-Taylor system at Reynolds numbers well beyond
the onset of chaos. Using high-precision torque measure-
ments, local wall shear stress measurements, and flow
visualization in the Reynolds number range 800
<R <1.23X10°% we will demonstrate that after a well-
defined transition at R=1.3X 10*, this system behaves
like a wall-bounded shear flow.

The paper is organized as follows. Section II reviews
previous experimental work and theoretical predictions
for the torque. The experimental apparatus is described
in Sec. III. Flow visualization results in Sec. IV show the
small-scale structure as well as the turbulent Taylor vor-
tices. The torque measurements are presented in Sec. V
and are compared with past experiments and theory. In
Sec. VI the behavior of the wall shear stress fluctuations
and the turbulent diffusion measurements of Tam and
Swinney are shown to be related to the torque and Rey-
nolds number. Section VII explores the relationship of
the Couette-Taylor system to wall-bounded shear flows,
and Sec. VIII contains concluding remarks.

II. BACKGROUND

Couette-Taylor flow has been studied extensively at
low Reynolds numbers [9], but there have been few ex-
periments performed at high Reynolds numbers (> 10%).
Smith and Townsend [10,11] conducted Couette-Taylor
experiments in the Reynolds number range 7.2
X 10* < R < 1.2X10° for radius ratio n=a /b =0.667 and
aspect ratio '=L /(b —a)=23.7, where L is the length
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of the annulus. Using a hot-wire probe in air, they ob-
served that the system possessed thin boundary layers
separated by a nearly inviscid core region. The core was
characterized by a mean angular momentum density £,
which was nearly constant. [.L is the axial component of
the mean angular momentum density r#4(7).] In those
experiments, turbulent Taylor vortices persist up to
R =4.2X10* Past this, the vortices “either disappear
into fully irregular, turbulent flow or, more probably, be-
come too fragmented or distorted to be easily distinguish-
able.”

Kataoka et al. [12] also observed the breakdown of
the axial periodicity in a Couette-Taylor system with
n=0.619 and "'=21.1. Using an axial array of electro-
chemical probes, they observed an axial periodicity in the
wall shear stress showing the existence of turbulent Tay-
lor vortices up to R =1.2X 10% for larger Reynolds num-
ber no axial periodicity was observed. Neither Smith and
Townsend nor Kataoka used flow visualization methods
to examine the turbulent Taylor vortices.

Wendt [13] performed the only detailed torque mea-
surements in the Couette-Taylor system at high Reynolds
numbers, which ranged from 50 to 10°. Three different
radius ratios were used, 7=0.680, 0.850, and 0.935, with
respective aspect ratios of ['=8.5, 18, and 42. He fit his
measurements of the nondimensional torque G=T /pv’L
(where T is the torque and p is the fluid density) to

FIG. 1. Flow visualization showing turbulent Taylor vortices
at R =12000, obtained using a 0.1% concentration of Kalliro-
scope added to the working fluid. The inflow (I) and outflow (O)
boundaries are labeled.
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with an uncertainty of 3%. Measurements by Taylor [14]
cover the same range but were not fit to any empirical ex-
pression.

Recently, measurements by Tong et al. [15] also re-
ported power-law scaling G~R!® over the range
4X10*<R <4X10° for =0.448. The measurement
technique there, measuring the torque from the motor
power, unfortunately admits several confounding errors:
efficiency losses, drag from bearings and seals, and drag
from end sections. The torque data of Tong et al. and
Wendt fit power laws well, within the errors of the given
torque measurements, but with different exponents.

Observations of power-law scaling in turbulent closed-
flow systems are not isolated to the Couette-Taylor sys-
tem. Rayleigh-Bénard experiments performed by Casta-
ing and co-workers [16,17] yielded power-law behavior
for the Nusselt number Nu (the nondimensional heat
transport) as a function of the Rayleigh number Ra (the
nondimensional temperature difference across the con-
vection cell), Nu~Ra?. Castaing and co-workers found a
“soft turbulence” regime with scaling exponent y =1 for
5% 10°<Ra<4X 107, and for Ra>4X10’, a “hard tur-
bulence” regime with y =2. They also observed that the
probability distribution of the temperature fluctuations
changed discontinuously from Gaussian below the transi-
tion to exponential above the transition. The Couette-
Taylor experiments of Wendt and the Rayleigh-Bénard
experiments suggest that sharp transitions can occur be-
tween distinct regimes in turbulent flow.

Malkus and Veronis [18], using a marginal stability
calculation, predicted ¥ =+ for Rayleigh-Bénard convec-
tion. An analogous marginal stability calculation was
performed by Marcus and co-workers [19,20] for the
Couette-Taylor system. The calculation assumes that the
gap is divided into three radial regions: two thin bound-
ary layers, one near the inner cylinder of thickness §;,
and one near the outer cylinder of thickness §,,, and an
inviscid core separating them. The core is assumed to
have a constant angular momentum density L, an as-
sumption supported by the measurements of Smith and
Townsend [10]. The crux of the marginal stability argu-
ment is that the boundary layer thickness is maintained
such that the boundary layers are laminar and marginally
stable to disturbances such as Taylor vortices.

The next step in the marginal stability argument is to
match the mean angular velocities where the boundary
layers join to the core at r=b—§_,, and r =a +8,,. The
final step is to require that the torques be equal at the
inner and outer cylinders, as they must be when the fluid
undergoes no net angular acceleration (in steady state).
These conditions of marginal stability of each boundary
layer, mean velocity matching, and equal torques, allow
one to solve for the unknowns §,,, 8, the mean angular
momentum density £, and the torque G. The Marcus
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[19] predictions for n— 1 can be extended to arbitrary 7,
yielding [21]

G=0.202(y '—1)"33R>" |
8;n/a=6.32(n"'—1)*3R 723,
8ou/b=8.16(n 1 —1)23R =23 |
£=0.563Qa” .

Similar calculations were done by Barcilon and Brindley
[22], using boundary layers marginally stable to Gortler
vortices, not Taylor vortices, and they obtained the same
scaling of the torque G ~R>/3, which is not surprising
since both Gortler and Taylor vortices arise due to cen-
trifugal instability.

A power-law prediction for the torque can also be de-
rived from a Kolmogorov-type argument [23]. We as-
sume that the energy dissipation rate is constant within
the inertial range, independent of length scale, and given
by

(AU

e=—7,
l

where ¢ is the dissipation rate per unit mass per unit time
for velocity differences AU across a length scale /. We
apply this relation at the largest length scale [
=(b—a) and AU=Qa. Equation (4) then yields
e=(Qa)’/(b—a). The torque, which is given by the to-

tal power dissipated divided by the rotation rate, follows

4)

n(1+7)

~ |R?. (5)
(1—mx)

G=m

This calculation is relevant in the limit of infinite Rey-
nolds number, where the viscous effects are negligible,
and thus the scaling exponent @ =2 might be considered
an upper limit. The value of 2 for a was obtained previ-
ously by Nickerson [24] and was recently derived directly
from the Navier-Stokes equation by Doering and Con-
stantin [25]. The result =2 is useful in understanding
the structure of the velocity fluctuations. Equation (4)
predicts cube root singularities in the flow field
AU=¢!'31'73. This establishes a connection between the
form of the velocity fluctuations and a scaling exponent
a=2. Any deviations from this prediction might lead us
to suppose that typical eddies also follow a different scal-
ing law.

III. EXPERIMENTAL APPARATUS

We designed the experimental apparatus for high-
precision torque measurements and flow visualization at
as high a Reynolds number as was feasible in a practical
table-top experiment. A cross section of the apparatus is
shown in Fig. 2. The outer cylinder is cast Plexiglas [26]
(polymethylmethacrylate) with inner radius b=22.085
cm and a thickness of 3.34 cm. The inner surface of the
outer cylinder is machined to a cylindricity tolerance of
0.023% (50 pm). After machining, the cylinder was pol-
ished until transparent [27]. The axial length of the
working section is L =69.50 cm. The apparatus has a
stainless steel inner cylinder with radius @ =16.000 cm,
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FIG. 2. The Couette-Taylor system consists of a Plexiglas
outer cylinder and a stainless steel inner cylinder (see Fig. 3).
Temperature control is achieved via coolant channels in each
end, separated from the working fluid by thin copper rings.

giving the system a radius ratio n=a /b =0.7246+0.0001
and an aspect ratio I'=L /(b—a)=11.47. The inner
cylinder was machined and ground to a cylindricity toler-
ance of 0.016% and a root-mean-square roughness of 0.2
pm. A 2 kW Compumotor KHX-740 dc servomotor
drives the inner cylinder, with an accuracy (averaged
over one rotation) of 0.2% of the set speed.

The inner cylinder is constructed in three sections of
length 15.69, 40.64, and 15.69 cm, stacked axially and
separated by 0.03 cm gaps (see Fig. 3). The upper and
lower sections are rigidly attached to the rotating drive
shaft, which is directly coupled to the motor.

To minimize end effects in the torque measurements,
only the center section of the inner cylinder senses
torque. It is connected to the shaft via two low torque
precision bearings (static torque 2 gcm each, Miniature
Precision Bearings Part S3240MSO07) and a torque-
sensing strain arm. All of the torque passing to the
center section passes through the strain arm, causing an
elongation and compression of strain gauges (at most
0.1% of their length) bonded to either side of the arm.
The strain arm is constructed of 2024-T4 spring alumi-
num. The strain gauges (Measurements Group Inc.
N2A-13-T006N-350), which change their resistance with
applied strain, have a combined hysteresis and creep of at
most 0.02% of the maximal change in resistance, and
have a temperature coefficient of 0.1%/°C. Calibration
using weights hung at a known radius show linearity of
the strain arm to within the precision of our measure-
ments (0.03% of full scale).

The arrangement of the torque measurement electron-
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FIG. 3. The inner cylinder is divided into three segments.
Only the inner section senses torque. It is suspended by low
friction bearings, and all of the torque for the center section
passes through a torque-sensing strain arm.

ics is shown in Fig. 4. The two strain gauges form half of
an ac Wheatstone bridge. Slip rings are used to bring the
signal outside of the rotating frame. The bridge is comp-
leted by a seven-digit Gertsch ratio transformer and is
driven at 88.8 Hz through an isolation transformer. The
bridge output is monitored using an Ithaco 391 lock-in
detector, low-pass filtered with a 1.2 s time constant, and
digitized with 12-bit resolution.

Lock-in detection of the strain gauge signal is neces-
sary due to the large noise generated by the motor. To
reduce the noise, care was taken in the placement of
grounds, including a substrate ground for the strain
gauges. Computer averaging the torque signal over a one
minute time period increases the signal-to-noise level to
80 dB for the largest measured torque values; the smallest
torque measurements that we use still have a signal-to-
noise level of at least 56 dB.

To achieve the desired accuracy in the torque measure-
ments, five different water-glycerol mixtures were used
with overlapping Reynolds-numbers ranges, as summa-
rized in Table I. In each fluid the torque was in the range
0.3-8 Nm. The viscosities of the water-glycerol mix-
tures have a large temperature dependence (up to
7.3%/ °C for the mixtures studied); hence precise temper-
ature control was required. At the largest Reynolds
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FIG. 4. Torque is measured using strain gauges mounted in-
side the inner cylinder. The strain gauges form half of an ac
Wheatstone bridge. The bridge is completed in the nonrotating
frame via a ratio transformer. The output signal from a lock-in
voltmeter yields the torque value.

number achieved, R =1.23 X 10°, nearly 2 kW of power is
dissipated in the fluid [28] and must be extracted by the
temperature control system.

Heat is exchanged between a coolant fluid and the
working fluid through end rings that bound the working
fluid axially (see Fig. 2). The end rings are made of
copper, 0.3 cm thick. The turbulent transport of passive
scalars ensures that the generated heat is moved rapidly
to the end rings. Even at the highest Reynolds numbers,
the temperature measured with thermistor probes placed
flush with the outer wall varies by less than 0.01°C
throughout the central section of the working fluid.

A pump circulates the coolant fluid from a tank past
the end rings at a flow rate of 900 liter/min. The fluid
coming from the tank is divided six ways, three for each
end of the annulus, by special manifolds that split the
flow symmetrically to minimize angular gradients. The
flow is returned to the coolant tank via a similar mani-
fold. The temperature of the working fluid is maintained
to within 0.1°C of the set point with a controller that
supplies heat as needed to heating elements while a 4.5
kW refrigerator supplies cooling at a constant rate. The
thermistor control sensor is mounted flush with the outer
cylinder. Temperature control is much better, about
0.01°C, for runs when the rotation rate is not varied over
a large range.

Local fluctuations in the wall shear stress were mea-
sured using a hot film probe (TSI model 1268W). This
probe was mounted flush with the outer cylinder to
within 25 um, in contact with the working fluid. The

TABLE 1. Water and water-glycerol mixtures and their properties.

Glycerol Kinematic Temp. coef. Max. Reynolds Reynolds
by weight Temp. Density viscosity of visc. Q27 number number
(%) (°C) (g/cm®)  (10™2%cm?/s) (%/°C) (Hz) min. max.
0 30 0.996 0.80 2.3 16.5 1X10° 1.2X10°
35 24 1.02 2.7 3.1 14 8x10* 6Xx10°
57 24 1.07 7.6 3.6 12 2x10* 2X10°
70 24 1.10 18.0 5.3 10 6x10° 7X10*
79 24 1.20 39.0 7.3 8 8 10? 2x10*
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sensing element of the probe is 0.030 cm azimuthally by
0.11 cm axially. The probe was run in the constant tem-
perature mode using a TSI model 1653B anemometer. In
this mode the frequency response of these probes exceeds
10 kHz [29]. The output of the constant temperature
anemometer was acquired with a signal-to-noise ratio of
52 dB at rates up to 16 kHz.

The voltage V required to maintain a hot film probe at
constant temperature is often described by [29]

Vi=4r/’+B, 6)

where the calibration constants 4 and B depend on fluid
properties (heat capacity, thermal diffusivity, and viscosi-
ty), the temperature difference between the probe and the
working fluid (commonly referred to as the overheat), the
resistance of the probe, and the type and mass of the sub-
strate. It is best to calibrate such probes in situ during
each run. To calibrate our probes, the mean voltage from
the probe was compared to the measured torque over a
range of rotation rates. The torque T was used to find
the mean wall shear stress at the outer cylinder
7,=T/27b*L. The calibration constants 4 and B can
be determined by linear regression of V2 as a function of
713, Although linear regression yields a good fit for the
data, the residuals show a systematic curvature. This sys-
tematic deviation led us to use the following fit to the
data:

V:=Cr*+Dr,/>+E . ¥)

The coefficients C, D, and E were calculated for each run.
They deviated only slightly from run to run with the
same fluid, but were quite different for unlike fluids [21].

IV. FLOW VISUALIZATION

To complement our measurements of torque and wall
shear stress, we visualize the flow by introducing a 0.1%
concentration of Kalliroscope [30] into the working fluid.
Kalliroscope is composed of small (~ 20 um width) flat
flakes that locally align with the stream surfaces [31].
Figure 5 shows photographs of turbulent states at
R=6.0X10% 2.4X10% 4.8X10% and 1.2X10° well
beyond the onset of chaos (R ~10* [5]); see also Fig. 1,
R =1.2X10* The smallest length scale clearly decreases
with increasing Reynolds numbers. Although turbulent
Taylor vortices are observed at moderate Reynolds num-
bers, no vortices are discernible [32] above R ~10°.
Above R ~10° large-scale structures are evident but do
not appear to be stationary. At low Reynolds numbers
we find stable states with eight, ten, and twelve vortices.
With increasing Reynolds number, the twelve-vortex
state becomes unstable at R =6X10° to the ten-vortex
state, which becomes unstable at R =1.75X 10* to the
eight-vortex state. The eight-vortex state is stable until
the disappearance of the vortices.

V. TORQUE
A. Measurements

The torque measurements were designed to determine
the scaling exponent a in G ~R“ Runs were made for
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each of the five fluids in Table I. In the overlapping
Reynolds-number ranges the torque measurements for
different fluids agreed within the experimental uncertain-
ty.

Experiments were repeated several times for each fluid
over the same Reynolds-number range for increasing and
decreasing rotation rates. Since the torque depends on
the number of vortices in the system, procedures for sys-
tematically producing a given number of vortices (using
rapid accelerations and decelerations) were found and ap-
plied in the region R <1.75X 10% where different num-
bers of vortices are stable. For R <1.75X 10%, the torque
measurements were made on fluids containing Kalliro-
scope so the number of vortices could be simultaneously
determined. No difference in torque was discernible in
measurements with and without Kalliroscope. For
R >1.75X10* it was not necessary to use Kalliroscope
since there was no ambiguity regarding the number of
vortices.

For each set of measurements, we first determined the
output from the lock-in amplifier at zero torque; this pro-
vided a baseline for the torque measurements. For a
given fluid, the minimum nonzero rotation rate was
chosen so that the torque measurements would have a
signal-to-noise ratio of 56 dB (see Sec. III). The torque
was then measured at a number of rotation rates (1,
given by Q, . ,=1.035Q,, which gives a uniform spacing
on a logarithmic scale. After each experiment we took a
fluid sample and measured its kinematic viscosity v as a
function of temperature over a 1°C range using Cannon-
Fenske Routine viscometers of sizes 50, 200, and 400 (de-
pending on the fluid) to an accuracy of 1%. The density
p of each fluid used was measured to an accuracy of
0.5%.

In our analysis we consider the nondimensionalized
torque G =T /pV’L .opers Where T is the measured torque
and L. is the length of the torque-sensing inner
cylinder center section. The torque measurements for the
eight- and ten-vortex states are shown in Figs. 6 and 7.
At small R the torque for the eight-vortex state, which
has an average axial wavelength of 2.87(b —a), is larger
than that for the ten-vortex state, which has an average
axial wavelength of 2.29(b —a), but for R >3000 the
torque is larger for the ten-vortex state, as Fig. 8 shows.
Measurements made for increasing and decreasing Rey-
nolds number showed no hysteresis for either flow state.

B. Transition in turbulent flow

As mentioned in Sec. II, many theoretical predictions
and experimental observations take the form of power
laws G ~ R “. As in the analysis of Wendt [13], it is possi-
ble to fit our data to two power laws: a=1.30 for R < 10*
and a=1.73 for R >10* Although these power laws fit
our data well, a closer look at the torque measurements
reveals a systematic deviation from power-law behavior.

The high precision of our torque data enables us to
determine the local slope a(R)=09(log;,G)/d(logoR).
The accurate measurement of derivatives is difficult be-
cause the process of differentiating naturally increases the
noise in any given signal. Several techniques were tried
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FIG. 5. Photographs of flow states at (a) R =6000, (b) R =24 000, (c) R =48 000, and (d) R =122 000, obtained using Kalliroscope
flow visualization. Eight vortices are visible in (a) and (b) and possibly (c), but not in (d).
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to determine a(R): forward differencing, center
differencing, linear least squares, and polynomial least
squares. A practical tradeoff between the locality of the
derivative and the accuracy of the slope measurement
was obtained using linear least squares to compute the lo-
cal exponents.

In each case we computed the slopes around points
spaced Alog;oR =0.02 apart, over a window spanning a
width Alog;oR <0.1 (6 or 7 data points). Data from each
run were separately analyzed in this way so that uncer-
tainties in viscosity and density do not affect the slope
data. The composite slope data were obtained by averag-
ing the slope data from individual runs within bins of
width Alog,,R =0.05. The resultant slope data for eight-
and ten-vortex states are presented in Fig. 9.

Surprisingly, there is no range of R in which « is con-
stant. For the eight-vortex data, a increases monotoni-
cally from a=1.23 to 1.87. Thus there is no Reynolds-
number region described by G ~R“.

The slope measurements reveal a sharp transition evi-
denced by a discontinuity in a at R;=1.0X10* for the
ten-vortex data and a sudden change in da/d(log;yR) at
R;=1.3X10* for the eight-vortex data. The eight-
vortex slope data fit the following relation:

0.0080
v =040 cn?/s 0076
r " ml
0.176 0.027
11 r 11 1
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FIG. 6. Experimental measurements for the nondimensional
torque for 800 < R < 1.23 X 10%, taken for a flow with eight tur-
bulent Taylor vortices for R < 10°. The horizontal bars above
the graph indicate the Reynolds-number range for each fluid
studied.
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1.66+0.647 loglo(R /RT) 5 R <RT
@~ 11.66+0.1111log,o(R /R7) , R>Ry .

Thus for eight vortices,

5.726+0.3235(log,,R )?
—1.002(log;R) , R <Ry
1.190+40.0555(log,,R )? ©
+1.203(log,oR) , R>R7 .

log,,G =

The marginal stability exponent a=73 is not observed
over any range of the Reynolds number. This contrasts
sharply with Rayleigh-Benard convection, where the
marginal stability prediction Nu~Ra'’? is observed in
the range 10*<Ra<10’. Note that for the eight-vortex
state the transition occurs when the local exponent passes
through the marginal stability value, and for the ten-
vortex state the exponent jumps to approximately the
marginal stability value at the transition.

The largest exponent value that we observe, a =1.87, is
well below the prediction a=2 obtained in Eq. (5) from a
Kolmogorov-type analysis. This indicates that the torque
T has a viscosity dependence (in contrast to the Kolmo-
gorov assumptions), although that dependence is relative-
ly weak, T~+"!® at the highest Reynolds numbers ob-
served. If Eq. (8) continues to be valid above the
Reynolds-number range studied, then the viscosity

v =040 ci?/s
r 1
0.176
—

T T T T T T TT

10 r T T

10 F s .

AN

12

FIG. 7. Experimental measurements for the nondimensional
torque for 1.4X10° <R <1.75X 10% taken for a flow with ten
turbulent Taylor vortices. The horizontal bars above the graph
indicate the Reynolds-number range for each fluid studied.
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FIG. 8. (a) Comparison of the measured torque G for eight-
(+) and ten (-) vortex states as a function of R. (b) Difference
between the ten-vortex torque measurements and the torque of
the eight-vortex state obtained from Eq. (9).

dependence would disappear at R =1.5X 107, where Eq.
(2) yields a=2. Since this is an upper bound for the ex-
ponent [25], there must be a departure from Eq. (8) be-
fore R=1.5X10".

The deviations from Kolmogorov scaling a=2 may
imply a particular form for the velocity fluctuations. We
follow the argument backwards, which led to the Kolmo-
gorov G ~R? scaling. At a particular Reynolds number,
the torque scales as G=C(79)R?* where C(7) is an un-
known function of the radius ratio. The power, given by
the torque times the rotation rate, gives the dissipation
rate €:

EZVZ—G(QG )a+1(b —a )a—3

_ 2
Clqy L= (10)

m(1+n)y

We then make the reverse substitution from the original
argument Qa-—->AU and (b —a)—1, to find a relation for
the velocity differences AU:

AUOCEl/(1+a)v(a*2)/(a+1)1(3—a)/(1+a) , 11

which would lead to a Reynolds-number-dependent ve-
locity structure function. We suggest that this implied
deviation from Kolmogorov scaling may hold in this and
other wall-bounded shear flows.
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FIG. 9. Local exponent for the torque «a
=3(log;oG)/3d(logoR ), calculated from torque measurements
using least squares over a range Alog,,R =0.1: (a) measured for
an eight-vortex state (@) and described by Eq. (8) (line); (b) mea-
sured for a ten-vortex state (@). At R=1.75X10* the ten-
vortex state becomes unstable to the eight-vortex state. For

R > 10°, turbulent Taylor vortices are not observed.

C. Comparison with theory and past experiments

Our measurements of the torque show only small devi-
ations from the measurements of Wendt. Figure 10 com-
pares the fits of Wendt [Eq. (2)] with the eight-vortex
torque data. Figure 11 shows that although the marginal
stability result Eq. (3) does not describe the observed lo-
cal exponents, it is close in overall magnitude. Figure 11
includes the curves for Couette flow torque and the
torque from the Kolmogorov-type calculation [Eq. (5)],
which can be considered lower and upper bounds.

VI. BEHAVIOR OF GLOBAL
AND LOCAL PROPERTIES

We have shown that the torque measurements do not
have a simple Reynolds-number dependence. A compli-
cated dependence on Reynolds number is also observed in
other quantities characterizing the flow; however, we find
that these quantities are simply related to the global
torque. Specifically, we examine the effective axial
diffusion coefficients, as measured by Tam and Swinney
[33]), and the wall shear stress characteristics: time
scales, probability distributions, and distributions of the
first time derivative.

A. Wall shear stress

We first consider a local quantity, the wall shear stress
measured at a single point on the outer cylinder. The
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wall shear stress 7, =pv|du /9r|,—, is the local quantity
corresponding to the torque. The wall shear stress de-
pends on axial position due to the turbulent Taylor vor-
tices, but here we consider 7, only at a single position,
midway between the ends of the annulus. The aximuthal
probe size (0.030 cm) is larger than the boundary layer
thickness & (see Table II) for R > 10%; therefore, we only
consider wall shear stress data for R < 10°.

The time scales of the fluctuations in 7, decrease as the
Reynolds number increases, as can be seen in the time
series in Fig. 12. To quantify this we examine the times
between zero crossings for the wall shear stress fluctua-
tions [34,35) 7, =7, —7,. Figure 13(a) shows histograms
of the probability distribution of these zero crossings for
two values of the Reynolds number. In the range
10° <R < 10° a single distribution function describes all
of the zero crossing data when scaled by the mean time 7
between zero crossings, as Figure 13(b) illustrates.

The nondimensional mean time between zero crossings
fv/(b—a)* characterizes the local time scale in the
boundary layer. This can be compared to another esti-
mate of the boundary layer time scale obtained from the
global torque measurements. First we estimate the mean
boundary layer thickness & at the outer cylinder, using
the definition of the wall shear stress:

_ 9—1 - Zﬂaz
ialad e r_bfpv bs (12)

10
0.2
, . 0.1
Gav—Gwendt
Ggy
-0.1
-0.2 :
3 4 5 6
10 10 R 10 10

FIG. 10. Measured nondimensional torque for eight vortices
(+) compared with fits from Wendt [line, Eq. (2)] [13].
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where we have assumed a core of constant angular
momentum .£ =y Qa?, and we have used ¥ =0.5 as indi-
cated by measurements of Smith and Townsend [10]. Us-
ing the torque measurements to calculate the mean wall
shear stress 7,, we solve for the boundary layer thick-
ness:

Qa? mabR
5= = . (13)
2b7, (b—a)G
The shear velocity u* is often used as a characteristic ve-
locity within the boundary layer

1/2 ) 1/2
Gv

2mb?

(14)

We can now define a nondimensional boundary layer time

; v ) v __R n(2m*)!/?

“(b—a)?  u* (b—a) G (1—7)
In Fig. 14 we compare t,;, the boundary layer time from
the torque measurements, and 7, the mean time between
zero crossings. Both times have the same scaling and
show strong curvature in the range 3X10° <R <2X 10%.
Thus 7, a local dynamic property of the flow, scales with

il

(15)

11
10 1
i

T T Ty T T LRI R R |

I Kolmogorov,
10
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raal T N R TT] T

10 73 4 5
10 10 10 10
R

6

FIG. 11. A comparison of the measured nondimensional
torque for eight vortices with the marginal stability pre-
diction [Eq. (3] [19,20], Couette flow torque (2],
G =4mq[(1+7)(1—7)*]"'R, and the Kolmogorov-type predic-
tion [Eq. (5)].
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TABLE II. Representative values in an eight-vortex state of the measured nondimensional torque
(G), local scaling exponent (a), thickness of the viscous sublayer (at y ¥ =35; see Sec. VII), boundary lay-
er thickness [8, Eq. (13)], Kolmogorov length [Ix =(v*/€)!/*, where e=v*GQ/m(b>—a?)], and shear ve-
locity [u*, Eq. (14)].
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Thickness

of sublayer
R G a (cm) 8 (cm) Ix (cm) u*/Qa
10° 3.97Xx10° 1.27 0.439 0.4612 0.115 0.0693
10* 8.44x10° 1.62 0.0950 0.217 0.0301 0.0320
10° 4.21x108 1.70 0.0135 0.0434 0.006 36 0.0226
10° 2.68X 10 1.87 0.001 35 0.006 83 0.00127 0.0180

ty1, a quantity derived solely from a global mean quantity,
the torque.

We now consider the distribution functions of the wall
shear stress measurements. As shown in Fig. 15(a), the
distributions of 7, exhibit log-normal behavior:

P(1,)=(Ae®V'm/A)exp{ —[In(7, /A)]*/4A} . (16)

Here A is the most probable value of the wall shear
stress, and the mean is given by 7, = Ae**. The standard
deviation is given by

o, =T =1)1"2 . (a7
The value of A observed in our experiment is 0.221+0.03
over the range of Reynolds numbers studied with the hot
film probe. As can be seen in Fig. 15(a), values of 7, that
are several times the mean value can be observed in the

distribution. The observed standard deviation of the wall

tQ/2m

FIG. 12. Time series of the wall shear stress from a hot film
probe for (a) R =6800, (b) R =16000, (c) R =44000, and (d)
R =120000. The sequence illustrates the decrease in time scales
with increasing Reynolds number. Each time series is over four
inner cylinder rotation periods.

shear stress o, scales simply with the mean of the wall
shear stress (and therefore with the torque), as is illustrat-
ed in Fig. 16(a) and is suggested by Eq. (17). Here we
again find that a local property scales simply with the
global torque measurements.

This behavior is further seen in the Reynolds-number
dependence of the first time derivative of the wall shear
stress data. The time derivatives were estimated by a
sliding least-squares procedure applied over a time
At=2.7X10"7(b—a)*/v. A typical probability distri-
bution of dr, /3t is shown in Fig. 15(b). These distribu-
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FIG. 13. Probability distribution for the time between zero
crossings of the wall shear stress fluctuations 7, =7, —7,, for
R=6.10X10* (@) and for R=1.22X10° (+). (a) The unnor-
malized times. (b) The times between zero crossings ¢ normal-
ized by the mean 7.
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tions are skewed with asymmetric exponential tails simi-
lar to the velocity derivative distribution functions ob-
served in homogeneous turbulent flow [36] (but with
skewness of opposite sign); the asymmetry is clear in Fig.
15(c), which is on an expanded scale. Figure 16(b) com-
pares the standard deviation of the time derivative distri-
butions Tar, /o @S @ function of Reynolds number with

the ratio o _/ty); the graph demonstrates that the distri-
butions of the time derivatives scale with the wall shear
stress and time scales already observed in the system.

B. Turbulent diffusion

The turbulent transport of passive scalars in the axial
direction of a Couette-Taylor system was investigated ex-
perimentally by Tam and Swinney [33]. They injected
dye into the fluid and measured the time dependence of
its concentration at different axial positions. Those mea-
surements indicated that the dye transport could be well
modeled by a diffusive process. Although the effective
diffusion coefficient D4 was found to scale roughly as
Dz~ RP, the scaling exponent 3 increased as a function
of the Reynolds number, as in our torque measurements.
We can relate these transport measurements to the
torque by making use of the Reynolds analogy [37],
which asserts that the effective momentum diffusion
coefficient v, (the turbulent viscosity) is proportional to
the turbulent diffusivity of a passive scalar: v,=cD
(where ¢ is an unknown prefactor). This untested hy-
pothesis is widely used in the analysis of turbulence [37]

=3
10

T T TT

tv

(b—a)?

e L s

T A A

10 10 10
R

FIG. 14. Time scales from the mean time 7 between zero
crossings (+) for the wall shear stress fluctuations 7, =71, — 7,
and the boundary layer time ¢y, =8/u* obtained from the
torque measurements (@) [see Eq. (15)]. Both times have been
nondimensionalized using the viscous time (b —a)?/v.
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FIG. 15. (a) Measurements of the probability distribution for
the wall shear stress (@) at R =1.22X 10°, compared with a fit
to a log-normal distribution (line), log,oP(7,)
= —13.6(log,o7,)*—0.175log,7, — 1.46. (b) Measurements of
the probability distribution for the time derivative of the wall
shear stress 37, /0t at R =1.22X 10°, as calculated locally using
a least-squares procedure over the time Ar=2.7
X1077(b—a)*/v. The lines are exponential distributions
P=0.0574¢ */%% for x >0 and P=0.258¢*"%*® for x <0,
where x=(d7,/9t)/0 and o is the standard deviation of
d7,/0t. (c) The central part of the probability distribution
function shown in (b) with the probability on a linear rather
than logarithmic scale; the two curves show the result from the
exponential fits to the tails of the distribution function. The dis-
tributions were formed from a 5X 10° point time series for the
wall shear stress, which was sampled at 2048 points per revolu-
tion of the inner cylinder.
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R R

FIG. 16. (a) A comparison of the mean wall shear stress 7,
with the standard deviation of the wall shear stress o, Both

quantities have been made nondimensional by multiplying by

27b%/pv?. (b) A comparison of the standard deviation of the

first time derivative o3, ,5, with o, /t, the ratio of the stan-
w w

dard deviation of the wall shear stress and the boundary layer

time #,. Both quantities have been made nondimensional by
multiplying by 27b%(b—a)*/(pv?).

and is crucial for understanding the interior structure of
stars [38]. As we will now show, our measurements pro-
vide direct support for the Reynolds analogy.

To calculate the torque we estimate the flux J of angu-
lar momentum £ across the gap:

L(r=a)—L(r=b)
b—a

2
J=v, =cD g %“:% (18)

The torque is given by the angular momentum flux times
the area A of the inner cylinder:

JA 27rn2cDeﬂrR

G= , (19)

pviL (1—n)%v
where we have divided by pv?L to nondimensionalize the
torque. In Fig. 17 we compare the measured torque [39]
with estimates of the torque using Eq. (19) (with
¢=0.176). The good agreement supports the assumption
that the diffusion of momentum is proportional to the
diffusion of a passive scalar in turbulent flow. The agree-
ment is within the experimental uncertainty, although the
dye transport data do not have sufficient precision to re-
veal the transition at R;. The nonunity value of the con-
stant ¢ may indicate anisotropy between radial and axial
transport.

In conclusion, we find that local quantities such as the
turbulent axial diffusivity, the local characteristic times
scales, the distributions of the wall shear stress, and the
distributions of its first time derivative are simple scaling
functions of a global quantity, the torque G, and the Rey-
nolds number R.

10 T T rrrrTry T T ™TrTrTrTT

8
10 F k
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10 a2 s 3 aaal PSS S T
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FIG. 17. A comparison of the torque computed from the axi-
al diffusion measurements (+) [see Eq. (18)] with the measured
torque (@).

VII. SHEAR FLOW TURBULENCE

We now will show that above R the flow behavior is
similar to that of wall-bounded shear flows characterized
by a turbulent boundary layer. In Sec. VI we observed
that a local quantity, the mean zero crossing time 7,
characterizes the time scales observed in the boundary
layer as the Reynolds number of the system is varied.
Measurements of 7 were also performed by Shah and An-
tonia [35] for flow in a duct at large Reynolds numbers.
In Fig. 18 we directly compare the values of 7 for the two
different flows. The excellent quantitative agreement
above Ry of the Couette-Taylor and the duct flow time
scales suggests that above Ry (1.3 X 10%, the flow in our
system may be similar to turbulent wall-bounded shear
flows in open systems.

Turbulent boundary layers have been extensively stud-
ied in pipe flow, plane channel flow, and flow over a flat
plate. In these cases the mean velocity profile u(y) ap-
proaches a universal form when scaled by the shear ve-
locity u*=1/7,/p and the distance from the wall y is
scaled using y " =yu*/v (y =0 at the wall). A typical
boundary layer contains a viscous sublayer for y ¥ <5
with the velocity profile u t=uy/u*=y™, connected to a
logarithmic layer that extends over a large range of y * at
large Reynolds numbers [40]. In this logarithmic bound-
ary layer the mean velocity profile takes on the simple
form u"=Alog,oy " +B, where A4=5.75=(In10)/x,
B =5.5, and « is the von Karman constant [41-43].

This velocity profile can be derived by assuming that
along an infinite plate, the mean shear stress o in a tur-
bulent flow is constant, independent of y. Thus the aver-
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FIG. 18. Time scales of the mean time between zero cross-
ings for the wall shear stress fluctuations ;, (1, =7, —T7,), mea-
sured in the present experiment (+) and compared with mea-
surements by Shah and Antonia for duct flow [35] (@). Both
times have been nondimensionalized using the viscous times ¢,:
(b—a)*/v for Couette-Taylor and d?/v for a duct of width d.
The Reynolds number for duct flow is R =u,d /v for centerline
velocity ug.

age streamwise linear momentum transmitted in the y
direction by each fluid layer is constant [44]. To derive
an analogous expression for the mean velocity profile in
our flow, we shall use the Prandtl [45] expression for the
form of o(y) in turbulent flow:

2
o(y)=priy? gy— (20)
In cylindrical coordinates Eq. (20) becomes
2
du
=pHb—r) | — 21)
o(r)=pk“(b—r) ar | (

where we consider the distance b—r from the outer
cylinder wall.

In our system the conserved quantity in the flow is the
flux of angular momentum (proportional to the torque)
and not the flux of linear momentum transferred by each
fluid layer. Using this we obtain the following expression
for o as a function of the radius r:

2
T _pvG (22)

o= rd  2mr?

where T =pv2LG is the torque and A the area of a cylin-
drical fluid element at radius r. Equating the two expres-
sions for o(r) we find
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172
1

du v

dr « 23)

G
2T

Integration of Eq. (23) yields the azimuthal velocity
profile u,(r) near the outer wall:

172
G

27

:.—"_
kb

u,.(r) In +C|. (24)

out(

b—r
r

The constant of integration C in Eq. (24) is determined
by matching u,,(r) with the viscous sublayer at
y =y =5 [46]; u, (yt=yd)=yiu*. Here u*
=(v/b)(G /2m)""? is the shear velocity at the outer wall.
We then obtain

ln[

Note that the expression for u,, becomes the more fa-
miliar expression for the velocity profile of the logarith-
mic layer in the limit where the radius of the outer
cylinder becomes infinite. [This can be seen by writing
Eq. (25) in terms of the distance from the wall
y=(b—r).]. In a similar fashion the expression for the
azimuthal velocity profile u;,(#) near the inner cylinder
becomes

u*b
we

b—r
r

—1 | t+wys (25)

u*b
Ve

r—a

+1 | tkyg

’

(26)

where we used the fact that shear velocity at the inner
wall must satisfy u *=u} 7 for the torques to be equal at
the inner and outer cylinders.

We now assume that the mean velocity profile outside
of the viscous sublayers is composed of the two logarith-
mic boundary layers given by Egs. (25) and (26) that
match at midgap. We can use this profile to calculate the
dependence of the torque on the Reynolds number. Thus
equating u;, and u,, at r=(b+a)/2 we find (when
G >>1)

7%=Nlogw\/6 +M , 27
with N=[(1—%%)In10]/9xV27=1.50 and
1— 1
M=N|ln||—1 |——= l+xpd |=—1.56.
T+n | ydvar | 20

Defining the skin friction coefficient [47] as ¢,
=G /R*=2wb*r, /pv*R?, Eq. (27) becomes
L NlogoRVe, +M . (28)
s
Equation (28), which is analogous to the Prandtl-von
Karman skin friction law [40,42], predicts a linear rela-
tionship between l/x/cf and log,oR \/cf. We test this
linear relationship in Fig. 19 for R > R and find reason-
able agreement with both the predicted form and
coefficients. By linear regression the data yield N =1.52
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FIG. 19. A comparison of a Prandtl-von Karman-type skin
friction law (solid line) with the experimental torque data (@)
[Eq. (28)].

and M=—1.63. This value of N yields a von Karman
constant k=[(1—7?)In10]/(V27N7)=0.40, which is in
excellent agreement with the value of k=0.41 observed
in pipe flow; the value of M (—1.63) obtained from the fit
is within 5% of the value given by Eq. (28) (—1.56). Fig-
ure 20 compares the observed torque with that from
the Prandtl-von Karman form with the empirical
coefficients. The local exponent for the model can be cal-
culated from Eq. (28):

1 logoe o

a= |-+
2 ZMJ

(29)

1 G+—
0810 N

This local exponent displays the slow variation in local
exponent a observed in the experiment for R >R, as
Fig. 21 illustrates.

Although this model does not explicitly use a core of
constant angular momentum density, the model gives a
core region with angular momentum density L/
Qa*=0.5 (within 2%), as shown in Fig. 22. Thus the an-
gular momentum density for this model shows the same
qualitative form as in the measurements of Smith and
Townsend [10]; however, the measured boundary layer
thickness is much smaller than that given by the
Prandtl-von Karman model.

The agreement between the observed torque and the
Prandtl-von Karman model suggests a direct compar-
ison between the skin friction coefficient that we ob-
served, and those for pipe flow and flow over a flat plate.
The skin friction coefficient (the dimensionless drag force)
is defined as ¢, =87, /p@* for pipe flow, where 7 is the
mean velocity, and cf=27'w/pu?,o for flow over a flat
plate, where u , is the velocity far from the plate [42].
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FIG. 20. The measured nondimensional torque for eight vor-
tices () compared with the Prandtl-von Karman model (+)
[Eq. (28)] with N=1.52 and M = —1.63.

The Reynolds numbers used for comparison are
R =ud /v for pipe flow (where d is the diameter of the
pipe) and R =u _ x /v for flow over a flat plate (where x is
the distance from the leading edge of the plate) [42].
Since the Reynolds numbers are defined in different ways,
we scale them using a transition Reynolds number R .
In our system the transition occurs in the presence of
centrifugally driven disturbances. For the other wall-
bounded shear flows, we choose the minimum transition

2.0 -
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FIG. 21. The measured local exponent « for the eight-vortex
state (@) compared with the local slope from the Prandtl-von
Karman model [line, Eq. (29)].
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FIG. 22. The angular momentum density for the two loga-
rithmic layer model .L =ru y4(r) normalized by the specific angu-
lar momentum of the inner cylinder Qa? for R =5.03X10*
(solid line), R =10° (dotted line), and as measured by Smith and
Townsend (+) at R =5.03 X 10* [10].

Reynolds number for the transition to turbulent shear
flow in the presence of disturbances. The transition Rey-
nolds numbers used are R;=1.3X10* for the Couette-
Taylor system, R;=2.3X10° for pipe flow [42], and
R;=3.2X10° for flow over a flat plate [42].

As can be seen in Fig. 23, the skin friction coefficients

T

06 | .
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0.5

04 L

0.3 1

0 0.5 1
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FIG. 23. Skin friction coefficients for turbulent flows for the
Couette-Taylor system, a pipe, and a flat plate (with zero pres-
sure gradient), as a function of R /Ry, where Ry is taken to be
the transition Reynolds number in the presence of background
disturbances. (R;=1.3X10* for Taylor vortex flow, 2.3 X 10°
for pipe flow, and 3.2 X 10’ for a flat plate.)
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FIG. 24. A summary of theory and experiments for the local
exponent for the torque, a =3(log,,G ) /3d(log,,R ), including the
Kolmogorov-type estimate (dotted line, @ =2), the measured ex-
ponent for an eight-vortex state (@), the local exponent from the
Prandtl-von Karman-type estimate [solid line, Eq. (29)], the fit
from the experiments of Wendt [dashed line, Eq. (2)], the mar-
ginal stability estimate of Marcus (dotted line, aZ%), and the
exponent for Couette flow torque (dotted line, a=1).

for these three systems exhibit the same qualitative be-
havior with Reynolds number, decreasing monotonically
with upward concavity. This and the agreement with the
boundary layer time scales from duct flow suggest that
there may be a single fluid dynamical description for all
turbulent wall-bounded shear flows. A priori one might
have expected major differences between the closed
Couette-Taylor system, where the transition is nonhys-
teretic, and open flows such as pipe flow, duct flow, and
flow over a flat plate, where the transition shows large
hysteresis. The similarity is also surprising considering
the differences in downstream and radial pressure gra-
dients and differences in wall curvature.

VIII. CONCLUSIONS

We performed high-precision torque measurements
over a large range of Reynolds number. No simple
power-law scaling for the torque G ~ R “ describes the ob-
served results over any range of Reynolds number, as is
shown by the results for a(R) summarized in Fig. 24.
The deviations from a Kolmogorov-type calculation (pre-
dicting a=2) lead us to suggest that the typical velocity
fluctuations AU follow a scaling AU~ @/1%a for
separations /.

In addition, we have found that above a nonhysteretic
transition at R;=1.3X10* this closed system behaves
like open wall-bounded shear flows (pipe flow, duct flow,
and flow over a flat plate) at high Reynolds numbers, in-
cluding conformity to a Prandtl-von Karman-type skin
friction law.

Although the torque was observed to be a nontrivial
function of Reynolds number, other measured flow prop-
erties (axial diffusivity, local time scales, and distributions
of local quantities) are simple scaling functions of the
torque and Reynolds number.
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FIG. 1. Flow visualization showing turbulent Taylor vortices
at R =12000, obtained using a 0.1% concentration of Kalliro-
scope added to the working fluid. The inflow (I) and outflow (O)
boundaries are labeled.
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FIG. 2. The Couette-Taylor system consists of a Plexiglas
outer cylinder and a stainless steel inner cylinder (see Fig. 3).
Temperature control is achieved via coolant channels in each
end, separated from the working fluid by thin copper rings.
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FIG. 5. Photographs of flow states at (a) R =6000, (b) R =24 000, (c) R =48 000, and (d) R =122 000, obtained using Kalliroscope

flow visualization. Eight vortices are visible in (a) and (b) and possibly (c), but not in (d).




