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Least-entropy generation: Variational principle of Onsager s type for transient
hyperbolic heat and mass transfer
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For coupled transfer of the energy and mass in a multicomponent system at mechanical equilibrium a
simple thermodynamic theory is developed, and the damped wave equations of change are derived. We
show that under nonstationary conditions, where relaxation of diffusive Auxes is essential, the evolution
of the distributed coupled transfer of the energy and mass follows the path that minimizes the difference
between the total entropy generated within the system and that exchanged by the system. The principle
is also valid in the limit in which Aux relaxation effects are negligible and the heat and mass transfer,
whether steady or not, obeys Onsager's generalization of the Fourier and Fick laws. For coupled
steady-state processes the principle goes into that of Onsager, yielding his phenomenological equations.
In contrast to the local steady-state nature of Onsager s principle the new principle is global, valid for
both stationary and transient situations, and requires no frozen 6elds. For an isolated, distributed sys-

tern, in which transient relaxation to equilibrium is the only possible process, the principle implies the
least possible increase of the system entropy between any two successive con6gurations.

PACS number(s): 44. 10.+ i, 05.70.Ln, 47.25.Qv

I. INTRODUCTION

The problem of the wave terms in the equations of
change for the energy, mass, and momentum has recently
attracted the attention of many researchers, and even
comprehensive reviews are available [1—3]. Notwith-
standing, the question of couplings among the vector
transport processes is attacked rather seldom in that con-
text [4,5]. The typical working expression for the none-
quilibrium entropy or energy used in the extended ir-
reversible thermodynamics (EIT) [2] contains only scalar
relaxation terms which limit the applicability of treat-
ments based on these couplings. Such couplings are,
however, very important in any process with simultane-
ous heat and mass transfer. This motivates the present
work in which the set of coupled-wave equations is de-
rived from irreversible thermodynamics and the underly-
ing variational principle of Onsager's type is formulated.

The conventional constitutive equations of Fourier and
Fick relate irreversible diffusional fluxes of heat and
mass, respectively, to gradients of temperature and con-
centration. Combining these with conservation laws
leads to parabolic equations of change. However, all
standard equations with parabolic terms have a nonphysi-
cal property: a disturbance at any point in the medium is
felt instantly at every other point; that is, the velocity of
propagation of disturbances is infinite. This paradox is
clear in certain routine solutions of parabolic equations
[6]. An example [7] is the case of heat conduction in a
semi-infinite solid whose surface temperature may sud-
denly increase from T=0 to a constant nonzero T,„,&.

The solution [8], which is expressed in terms of the error
integral, provides T =0 at the time t =0, but for any ar-
bitrarily short time t and arbitrarily large distance x from
the wall, the temperature T(x, t) is nonvanishing, imply-

ing infinitely fast propagation of the disturbance.
Such nonphysical behavior has been pointed out by

many authors; among them [8—15] the dilemma was first
resolved by the acceptance of the hypothesis of heat flux
relaxation. This hypothesis was elevated to the rank of
theory on the basis of many works in nonequilibrium sta-
tistical mechanics, theory of heat conduction, and the
so-called extended irreversible thermodynamics. Solid
justification was obtained from Grad's solution of the
Boltzmann kinetic equation [15], applied either in the
context of phenomenological equations [2,14], or conser-
vation laws [16,17]. Relativistic theories also appeared
[18,19]. Experiments confirming the wave nature of heat
are available [20—22]. In the solid-state community an
opinion is frequently held that use of wave theory is
necessary in the so-called "ballistic" regime of phonon
transfer, which is in fact the wave regime [23—25], and
that failure to appreciate this fact has led to a number of
invalid statements about the heat transfer in solids. Ex-
periments in acoustic absorption and dispersion [26] and
Domanski's analysis [27] of the thermal behavior of
solids heated by laser pulses showed the superiority of the
generalized (wave-type) of Navier-Stokes equation and
Fourier heat equation over their classical counterparts,
particularly in the high-frequency regimes. Extended
thermodynamic theories justifying the unsteady relaxa-
tion terms in terms of the extended, flux-dependent entro-
py are available [1,2,28].

Here we work out a simple thermodynamic account of
vector couplings occurring during the simultaneous heat
and mass transfer. Then we formulate a variational prin-
ciple, of Onsager type, which yields a complete set of
equations describing hyperbolic heat and mass transfer.
The principle is physical insofar as it shows that, from a
reference internal to the system, any coupled heat and
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mass transfer process subject to conservation constraints
evolves so that the growth of the total entropy generated
is as low as possible. By "a reference internal to the sys-
tem" we mean what is described by the partial-
differential equations of the process, regardless of its
boundary conditions. The principle is of general interest
in view of persistent doubts regarding the existence of ex-
act (i.e., of unconstrained type) variational principles for
irreversible phenoinena [29—34].

%hile hyperbolic rather than parabolic equations are
the main interest of this paper, the principle applies
equally well to the limiting case of infinite propagation
speed, when the system becomes parabolic, thus includ-
ing the standard description. The resulting equation set
is composed of the phenomenological equations, conser-
vation laws, and the equations of change for the densities
and fluxes.

The main virtue of the principle is its physical implica-
tion: the difference between the entropy generated within
the dissipative system and the entropy exchanged by this
system is as small as possible. This is valid in both un-

steady and steady situations. For an isolated system this
simply means the least possible generation of the entropy
within the system. For steady-state processes the princi-
ple implies the least possible entropy output for any input
constant in time. It then goes over into the well-known
Onsagerian principle which yields the phenomenological
equations by minimizing the difference between the flux-
based dissipation function and the bilinear expression for
the entropy production. However, Onsager's principle is
local and is valid only for steady states. It is also of the
quasivariational type in the sense that it holds so long as
the thermodynamic forces are kept frozen. For local
quasivariational principles the freezing of the thermo-
dynamic forces can be relaxed [35],but it persists in near-

ly all global unsteady-state formulations known so far
[e.g. , 31,35]. Exceptional in this regard is the collection
of the global principles involving the Lagrangians con-
taining the time explicitly [36], not requiring, in princi-
ple, any frozen fields. However, there are serious
diSculties in interpreting these Lagrangians as the physi-
cal quantities due to the strange behavior of the related
Hamiltonians [37] and difficulties persist in applying
them to any complex (multivariable) dissipative systems
where various degrees of freedom are coupled [38].

The present principle is global, it is valid for both sta-
tionary and transient situations, and it does admit varia-
tions of all physical fields present in the system. The
point crucial for this successful formulation is that the
principle involves a four-dimensional functional over a
region in space-time, and not the three-dimensional func-
tionals over space only, considered in earlier works. The
functional is the properly expressed change of entropy,
given in terms of the two dissipation functions. By re-

quiring the least increase of the entropy in any isolated
system (during a transient relaxation to equilibrium) be-
tween any two successive configurations, the principle
shows that the entropy plays a role in thermodynamics
similar to that of the action in mechanics. The main
practical value of the principle lies in that it allows for
derivation of the equations of change in a systematic way

under the given dissipation functions and the well-known
information contained in the conservation laws. It is
demonstrated here for the coupled-wave heat and mass
transfer in Galilean (nonrelativistic) frames.

Through the whole work the macroscopic motion of a
multicomponent system is taken into account in the sim-
plest possible manner, as the motion of the system in
mechanical equilibrium. This is a frequent and con-
venient assumption which allows us to single out heat
and mass transfer processes from the total thermohydro-
dynamic behavior. In this case the hydrodynamic veloci-
ty v, total mass density p, and the pressure P are the con-
stant parameters rather than the state variables, which is
consistent only with uniform motion of the macroscopic
system. Applications to other processes (e.g. , hydro-
dynamics, chemical kinetics, etc.) will be reported.

For brevity, we use throughout the first and the second
substantial derivative operators, d/dt =8/Bt+v grad,
and d Idt =d Idt (d /dt), respectively. In the absence of
macroscopic motion (v=o) these substantial derivatives
simplify to the corresponding partial derivatives. For the
vector sets and matrices characterizing multicomponent
systems we use the notation of de Groot and Mazur [39].
Multicomponent systems composed of n species are de-
scribed by the flux vector J, Eq. (10), composed of n —1

independent diffusive fluxes of mass J,,J2, . . . , J„,and
the energy flux J . Since the sum of all the diffusive
fluxes of mass vanish, the nth mass flux results as the neg-
ative of the sum J&+J2+ ' ' ' +Jn —2+Jn —1' Similarly,
the system state is defined by the vector z of n —1 in-
dependent mass fractions y „y2, . . . ,y„,, and the
specific enthalpy h, Eq. (9). The nth mass fraction results
from the condition that the sum of all n mass fractions
equals unity. Consequently, in the matrix formalism of
Sec. III, all nth components refer to the energy properties
rather than those of the nth mass component.

II. RELAXATION OF PURE HEAT FLUX

Since some information about uncoupled relaxation
processes is in order first, we begin with pure heat
transfer in an isobaric, single-component system moving
with a constant velocity v. The relaxation theory is based
on the supposition that Fourier's, Fick's, and Newton's
laws are asymptotic approximations to a more exact
equation, the Maxwell-Cattaneo equation,

where ~& is the relaxation time of heat flux. The analo-

gous equations for the irreversible fluxes of mass and
momentum have also been found. For mass diffusion an
equation identical with Eq. (1) results from the nonsta-
tionary version of the Maxwell-Stefan equation under
certain broad conditions [40].

Combining Eq. (1) with the simplest conservation law

for the classical thermal energy leads to an equation of
change,
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dT ~ ~p~ d T
(2)

where

co =+a„/~h =QA, /(pCprI, ) (3)

is called the propagation speed of the thermal wave.
When co approaches infinity, Eq. (2) simplifies to the
well-known parabohc equation of heat. On the other
hand, Eq. (2) is of hyperbolic type and its solution [7,41]
for the above-mentioned case of heating of a semi-infinite
solid has this realistic property: two regions exist in a
solid; the first in which the heat transfer has already tak-
en place (disturbed region), and the second where the dis-

turbance is not yet present (undisturbed region). The
temperature T(x, t) has a jump at the distance x =cot
from the source of heat placed at x =0 (heating of solid

by a fluid). In contrast, as mentioned above, Fourier
theory predicts the appearance of the disturbances every-
where, even for distances x, greater than ct, where c is
the light speed, which is of course unphysical behavior.

According to the hyperbolic model the wall heat flux

Jz(x =0) does not start instantaneously, but rather grows
gradually [7] with a rate which depends on the relaxation
time ~z. After some time the wall heat flux reaches a
maximum and then decreases, similar to the Fourier case.
This decrease is a classical effect, occurring because the
temperature gradient at the wa11 decreases in the course
of heating of the solid. The Fourier and Fick theories are
inappropriate for description of short-time effects [42]
and high-frequency transfer. Furthermore, although re-
laxation times are typically very small, such effects can
still have theoretical and practical importance. The abso-
lute value of the relaxation time itself is by no means an
appropriate criterion to judge whether or not the relaxa-
tion terms should be taken into account. Rather the
product of this time and a characteristic frequency (the
reciprocal of a time constant), describing the transient
renewal in the system, is the relevant criterion. Usually
one assumes that the flux relaxation terms are essential
when the frequency of the fast variable transients is com-
parable (or greater) to the reciprocal of a longest relaxa-
tion time of the process.

The relaxation times ~ for heat, mass diffusion, and
momentum differ. They are designated here with the
subscripts h, d, and m, respectively. At normal condi-
tions the heat relaxation times are of the order of
~h =10 s for gases, and 10 ' s for liquids and metals.
Relaxation times can be much greater in rarefied gases,
viscoelastic liquids, capillary porous bodies, dispersed
systems, Brownian systems, and superfluid helium; for
capillary porous bodies, for example, Luikov evaluated
effective rd =10 s [43]. Brownian diffusion in the di-
ameter range 10 —10 m is characterized by times
from rd=3X10 to 3 s [44]. These evaluations were
based on use of some experimental data [45] and the ex-
perimentally confirmed Stokes term of the equation of
motion. For liquid helium: ~& =4.7 X 10 s
[22—24,46,47]. Regarding momentum relaxation, which
is ignored here, we refer the reader to the literature

Here v is the kinematic viscosity or the diffusivity of the
momentum. Hence one can compute the relaxation times
of an ideal gas as

T
P

p & d p & m p p

where g is the dynamic viscosity. For ideal liquids the
shear modulus G appears instead of pressure in the for-
mulas (4) and (5). Hence the common propagation speed
of ideal fluids is

co=&6/p . (6)

III. THERMODYANAMICS OF COUPLED HEAT
AND MASS TRANSFER

Consider now a multicomponent system with simul-
taneous heat and mass transfer. Again, the system can
move with a uniform velocity. The basic nonstationary
equation of diffusive transport of matter, the Maxwell-
Stefan equation of diffusion, leads to the unsteady relaxa-
tion terms in the phenomenological equations [40].
Below we will show that these relaxation terms are
justified by irreversible thermodynamics. However, the
classical expressions for entropy and entropy sources do
not apply in the present (relaxation) case because the flux
relaxation phenomenon is a consequence of local none-
quilibrium in the macroscopic medium. Both phenome-
nological [55] and statistical approaches [2,14,16], the
latter based on Enskog and Grad's iteration methods,
lead to the conclusion that the entropy of a medium not
in local equilibrium diff'ers from the static (i.e., equilibri-
um) entropy, and the diff'erence depends on all diff'usive

fluxes J,,J2, . . . ,J„,,J . Evaluating this (negative) ex-
cess entropy is the objective of the so-called extended ir-
reversible thermodynamics [1,2,5,16,17,28,55 —64], and of
many other formulations of irreversible thermodynamics.
Despite differences in various approaches, the basic pro-
cedure can be characterized by the representative scheme
outlined below, the simplest possible. (Again, for brevity,
we ignore the momentum diffusion and any possible
nonuniformity of the macroscopic motion. The latter
simplification allows the constant density assumption. )

The difference between the true local entropy of a

[26,42,48 —50].
It is both theoretically interesting and practically use-

ful to know that propagation speeds for the disturbances
of the energy, momentum, and mass are similar. For the
ideal gas their equality is a theorem of kinetic theory.
They all are equal to the propagation speed of the shear
waves (G/p)', where G is the shear modulus, equal to
the pressure P for the ideal gas. The common value of
co=(G/p)' can be interpreted as a consequence of the

unity of the transfer phenomena occurring in a thermal
wave front [51—54] and it is a suitable approximate hy-
pothesis for starting a general treatment. For the ideal

gas,

cg = QDg /1' cd =+Dd /1rd c~ =Qv/1 ~ =+P/p

(4)
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g g 'Y,l J 'd Jk .
1 1

(7)

The nth of the mass fractions and mass fluxes were elim-

inated, so the last term of Eq. (7) deals with the energy
flux as its formal nth component; the concentration term
is collected with the differences of the chemical potentials
p„—IM, . [See the end of Sec. I and Eqs. (9)—(11).] This is

a simplest possible generalization of the classical Gibbs
equation which in the quasilinear case can be written in

the concise matrix form

nonequilibrium state s and the thermostatic entropy s'",
which Onsager called the "kinetic entropy" or the "flux
entropy, " is associated with the tendency of every ele-
ment of a continuum to recover thermodynamic equilibri-
um during the relaxation of diffusive fluxes of heat and
mass; when the fluxes J tend to zero, the entropy density
goes to a maximum s'q. Since any relaxation is an ir-
reversible process the flux entropy s-s', defined with
respect to a stable local equilibrium, is always negative, a
consequence of the concavity of the entropy around any
macroscopically stable equilibrium.

The flux entropy is in fact ill defined unless either the
equilibrium reference state or the relaxation path is
specified. This is because the definition of a nonequilibri-
um state carries with it an infinity of possible equilibrium
states to which the system can relax, depending on con-
straints. The ambiguity associated with the reference has
led, on occasion, to apparent paradoxes and inconsisten-
cies [16,17]. Due to constancy of P, v, and p in the uni-
form fiow, the definition of the flux entropy used here
corresponds to the reference state of both constant ener-

gy or enthalpy, in the entropy picture of thermodynarn-
1cs.

The contribution of flux entropy in the total nonequili-
brium entropy expression is expressed by the last term in

the formula
n —1

ds = T 'de+PT 'dp '+ g (p„—p, ;)T 'dy;
1

(pC)
0

0
—I (z) (13)

where a=(z, J ) . Amongst the quantities specified
above only the evaluation of the inertial matrix I might
cause some problem. A suitable way leading to I is out-
lined at the end of this section.

As in local equilibrium theory, one may ask about the
form of the entropy source which corresponds to the
Gibbs equation (7) or with its integrated counterpart Eq.
(8). The answer is found by analogy with classical none-

quilibrium thermodynamics, by combining the Gibbs
equation with the equations describing the conservation
laws for mass and energy. Under our assumptions of
negligible compressibility and absence of viscosity terms
the conservation equations are

dy,
p = —V J

dt

dh
p = —V J

dt

(14)

(15)

From Eqs. (7), (14), and (15) the following entropy bal-

ance is obtained:

a2
P r [7' k l= —

~BJ;BJk

[inertial (kinetic) matrix] . (12b)

Under our assumptions of constant v, p, and P, the
specific enthalpy h is the relevant state variable. Matrix
C has purposely been defined at the static limit (J=O) to
make the equilibrium data of direct use. However, this
leads to the complications of the Hessian matrix A' of the
entropy density ps corresponding to Eq. (8), and allows
one to identify (pC) ' with the submatrix of this Hessian
only in the close-to-equilibrium approximation,

'(pC)-' —
—,'r„:JJ —r, (z)J

'

—r, (z)J —r(z)

s(z, J)=s'q(z) — J I (z) J,1

2p
(8)

where I is the kinetic matrix of the inertial coeScients
y;&. %e use the popular notation of de Groot and Mazur

[39] for the vector set. We designate

(16)

This can be split into the sum of divergence and source
terms,

z=col(y, ,y2, . . . ,y„,, h) (state matrix),

J=coi(J~,Jq, , J„~,J~) (fiux matrix),

(9)

(10)

n

= —~. T ' J, —XpkJk
1

+J -VT

(transfer potential matrix), (11)

az
Bu

$2 eq

aa: (0

(entropy capacity matrix), (12a)

Pn P1 Pn P2 Pn Pn —
1 1u= col

T T ' T T

n —1

+XJu~
1

dJ—J-I-
dt

ds dJ= —V J, +J- Vu —r.
dt dt

where the condition of vanishing sum of all mass fluxes

has been used to present the entropy flux in its conven-

tional form, Eq. (19). More concisely (in matrix nota-

tion),
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Here the diffusive entropy flux J, has been defined as

Jq
—X pa Ja

1

(19)

The condition of nonnegativeness of the entropy source
in Eq. (18) leads to the following matrix phenomenologi-
cal equation:

dJJ=L Vu —I .
dt

(20)

which simplifies to the well-known classical relationship

J=L.Vu, (21)

when I vanishes or 6 and Co tend to infinity. The result
obtained, Eq. (20), can be written in the form of the equa-
tions

dJJ+~ =L Vu,
dt

(22)

(23)

r= —D/co= —Dp/G . (24)

In the general case including thermal diffusion terms, the
matrix of diffusion is related to the Onsager matrix L by
the well-known relation

which constitute the phenomenological equation and the
definition of the relaxation time matrix, respectively.
Equation (22) constitutes the matrix generalization of the
Maxwell-Cattaneo equation (1). It is remarkable that the
moment equations derived from the linearized Boltzmann
equation [2,15,65 —68] are just in the form of Eq. (22).
This equation describes coupled heat and mass diffusion
with finite wave speed which, with Eq. (23), define the ele-
ments of the relaxation matrix. One may see that the ma-
trix ~ has been expressed in terms of the two basic ther-
modynamic matrices, the inertial matrix I (the kinetic
entropy Hessian in the fiux frame), and the Onsager ma-
trix L, Eq. (21). The latter is frequently available from
experiment. However, the formula (23) is likely to serve
to evaluate I rather than ~ because v. is available, in
many cases, in terms of standard quantities. These are
the general diffusivity matrix D and the shear modulus G.
They appear in the matrix counterpart of Eq. (5),

For the ideal gas G =P =pRT/M and
co=(RT/M)' . When pure heat transfer occurs
without mass diffusion, C=C =cpT 5T R /2M, which
yields I z

= 2—M/(SRT P) = 2p—/5TP, in complete
agreement with the kinetic theory, Enskog method [2,14].
The corresponding coefficient in the (specific) energy rep-
resentation, is that of the square of the entropy flux rath-
er than of the square of heat flux, it equals
I', = T C '/pG = Tc '/pG. (This is because
b,e = —Tb,s and q= TJ, .)

The knowledge of I, allows one to find the general ex-
pression for the coeScient g in the nonequilibrium energy
surplus be =(—,')p gJ„used previously to evaluate the
contribution of J, to the related Lagrangian [16]. The
general formula is g = Tp/(cz G) yielding for the ideal gas

g =2m /Sk in agreement with kinetic theory. The
coemcient g also leads to the appropriate value of the
thermal conductivity X=SRPr/2M, consistent with the
relaxation-time approximation of the Boltzmann equa-
tion [16]. When momentum transfer is included the re-
lated entry in the matrix C is (2T) ', yielding
I" = —1/(2PT), also in agreement with kinetic theory
[2,14].

Finally [69], for the isothermal self-diffusion of the two
isotopes A and B where Cz '= RM —'(y„'+ys '), the
kinetic coefficient I z

= P'RM —'(y„'+ys '). This
coefticient preserves the form of the kinetic entropy as
the negative ratio of the kinetic energy of diffusion and
the absolute temperature. That particular form is in

agreement with the Maxwell-Guya law linking the loss of
the availability with the change of the entropy.

Thus Eq. (27) generalizes the previous partial findings,
including the pure heat transfer [10,43,51,53]. In spite of
the above number of results showing the consistency of
the formula (27), its physical meaning is intriguing; it
does not allow a simple interpretation. This is due to the
presence of the static quantities (C and T, etc.) in the for-
mula for the kinetic quantity I . Therefore it should be
stressed that the formula only expresses the kinetic matrix
in terms of the suitable static arguments, but the ap-
propriate interpretation for I is the kinetic part of the
Hessian of the entropy (per unit volume) 8 ps/BJBJ.

In the front of a one-dimensional thermal wave, the
flux contribution to the second derivative of the entropy,
under the constant density assumption

D= —
p 'L C (25)

[39]. Hence Eq. (24) can be written in the simple alterna-
tive form

d ps= —:JJ—= —
—,'I:JJ1 Bps

2 BJBJ
(28)

r= —L C '/(pco ) = —L.C '/G . (26)

(27)

From Eq. (23), I =L ' 7 and hence the general inertial
matrix, in terms of the available quantities, is

can be expressed in terms of the jump of the state z
throughout the thermal wave front by using the front bal-
ance equations. They are quite elementary [55] and yield
J=pco(z —zo). Here the subscript zero refers to the un-
disturbed region; the changes of the density and kinetic
energy have been assumed negligible. Substituting this
result and Eq. (27) into Eq. (28) yields, under the condi-
tion of constant p and the close-to-equilibrium approxi-
mation Eq. (13),
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d (ps)"'"= —
—,
' I:JJ=—,

' pG I:(z—zo)(z —zo)

=
—,
' pC '.( z —zo)( z —zo)

d 2( )stat (29)

approximation of gradient u,

J=I.- C 'Vz+(GC)
dt

(30)

Hence one can give an interpretation of the formula (27)
for this example: it can be regarded as the consequence
of the fact that, in the thermal wave front, the kinetic and
static contributions to the second difFerential of the entro-

py are equal. This is the situation similar to the one in
the theory of the infinite lines of the eleetromagnetie field,
for which, in the case of small energy dissipation, the
proportionality of inductance to the reciprocal of the ca-
pacitance can be assumed, as in our Eq. (27). The elec-
tromagnetic result is the consequence of the fact that the
electromagnetic field carries equal amounts of magnetic
and electric energy [70,71]. The formula (27) can also be
an approximation of this sort for not-too-large entropy
dissipation and the constant Quid density. The latter as-
sumption could perhaps be relaxed in more general mod-
els; however the former seems inevitable. Therefore,
while the formula (27) is very useful, we stress that the
general results of the next section need not rely on this
formula, or on the approximations that lead to Eq. (29).
The general results of the following section pertain to ex-
pressions containing the kinetic matrix I explicitly.

IV. ERROR FUNCTIONAL
AND THE VARIATIONAL PRINCIPLE

We will now construct our variational principle
describing the coupled wave heat and mass transfer in a
multicomponent system. We use Eq. (20) in its original
form as well as in the form obtained from evaluation of
the inertial matrix of Eq. (27) and close-to-equilibrium

Consider the following error functional, letting R=L
I2

min f ,'R(z)—:wwdV dt . (31)

Here w is the Aux deviation

w=J —L X (32)

between the actual value of the Qux J and its value L X
resulting from the action of the generalized force X. In
our model

X=Vu —I =C Vz+(GC)dJ dJ
dt di ' (33)

corresponding, respectively, to Eqs. (20) and (30). The
last expression shows the thermodynamic force of the
linear theory (the case of constant equilibrium values of C
and G). The extension from this linear theory to a
"quasilinear form" with a state dependent R, C, and I
and a more exact representation of gradient u in terms of
z and J does not change the resulting equation (35) below.
However, the working form of the thermodynamic forces
[middle term of Eq. (33) in terms of z and J, Appendix]
becomes more complicated. (In particular, these forces
may contain extra space derivative terms contributing to
the state dependent I'.) To avoid lengthy expressions our
examples in the main text (Sec. V) are restricted to the
linear theory.

When the phenomenological Eq. (20) is satisfied, w=o.
Hence the unique absolute minimum of the functional
(31) is zero. In view of the Onsagerian symmetry this
gives rise to the equation

12

min ,'R(z) ww dV d—t=min f [—,'R '(z):XX+—,'R(z):JJ—X J]dVdt
t)

=min —'R '.XX+—'R:JJ— +V ( Jz+ps v )
aps

2
'

2 at

+A, +V (J+pzv) dVdt =0,apz
at

(34)

where J, is defined as J u and X is defined by Eq. (33).
Equation (18) has been used to transform the product X.J
into the four-divergence of the nonequilibrium entropy.
But when doing this the very essential point should be
remembered that this four-divergence is equivalent to
X-J only if all the conservation laws are met. Therefore
the second line of Eq. (34) contains not only the entropy
four-divergence but also the product of a Lagrangian
multiplier vector A. and the four-divergence of the bal-
ance equations. Only then are the upper and lower line
of Eq. (34) equivalent, not only in the sense of their nu-
merical values but also in the sense of their extremum

properties. By overlooking this point, some researchers
worked correctly only with the local expression of Eq.
(34), the integrand of its upper line (see the discussion in
Sec. VI). The presence of both the space and time deriva-
tives in Eq. (34) proves that the integral variational prin-
ciple must involve the four-dimensional integral over the
space and time, even in the limiting parabolic case. On-
sager reciprocity and integrability constraints are yet oth-
er (algebraic) constraints that should be satisfied. They
are obeyed identically by taking L, C, and I symmetric.

Considering the two four-divergence terms of Eq. (34)
we note that the Lagrangian multiplier vector A. must



46 LEAST-ENTROPY GENERATION: VARIATIONAL PRINCIPLE. . . 6365

converge to the transport potential vector u on the ex-
tremal surfaces. This is because only then do the related
partial time derivatives compensate in the limiting case of
the classical Gibbs equation and the flux terms yield the
classical bilinear expression J.gradu. The entropy four-

divergence can easily be taken out of the integral by using
Gauss's theorem. This yields the variational principle
describing the second law between the two fixed times t,
and a subsequent t2,

total 2
1 ~ 1

BpzS(tt)=S(t, +&mi z(f
—J' "dAdt+ J —,'R '(z)XX+ —,'R(z&JJ+J +V (J+pzv& dVdt),

1 1

(35)

or briefiy S(tz) =S(t& )+min(S '"—S'"'"). Here

J,'"=J, +psv, and S "' and S'"'" are the production and
exchange components of the entropy functional. The
change of the entropy itself is then obtained on the ex-
tremal surfaces of the functional (S '"—S'"'"), Eq. (35),
in course of its minimization. S appears as the state func-
tion, in accordance with Bellman's principle of optimality
P2j.

In order for the functional (S ' —S'"'"} to have a
minimum one must require that the first variation
5(S '"—S'"'")=0, for all admissible 5z, 5J, and M, ; in

particular that 5(S '"—S'"'")=0 for those admissible 5z,
5J, and 5A, which vanish on the system boundary. There-
fore the Euler-Lagrange equations should always hold for
arbitrary (preassigned or free) variations of the general-
ized state (J,z, A, ) and for any arbitrary (fixed or variable}
region of the space-time. Furthermore, the four-
dimensional space-time integral of the entropy generation
is the only quantity needed to obtain the partial-
differential equations governing the process under arbi-
trary boundary conditions (the main task of this work).
However, for the purpose of solving any particular prob-
lem, e.g., via direct variational methods, the boundary
conditions should be specified. Then, the variation of the
surface functional of Eq. (35) serves as the basis for these
boundary conditions. For our model this leads to the
phenomenological equation (20) or (30) in the form of the
natural transversality condition describing vanishing of
the normal component of the vector J—L X on the
boundary surface A.

Consequently, to determine the internal behavior of the
system in terms of its partial-differential equations, the

I

z, Vz, , =
—,'R '(z):XXBJ BJ

Bt Bx

minimum should be sought for the four-dimensional
(space-time) functional of the entropy production

S '"=min —'R '(z}:X Vz,
2 BJ M

Bt Bx

XX Vz, , +—,'R(z):JJBJ BJ
Bt Bx

+A, +V (J+pzv) dVdt, (36)clpz

CJ(z, J)=
—,'R(z):JJ, (37)

and the second is force dependent. Through the forces X
the function 4 involves the derivatives of the extended
state (z, J) with respect to the space-time variables (x, t),

where the role of the derivatives of the extended state
(z,J) with respect to the space-time variables (x, t) has
been emphasized. The integrand over the four-volume,
or the thermodynamic Lagrangian, is numerically equal
to the entropy from the source. However, as seen from
Eq. (36}, the production from this entropy source has to
be expressed in terms of the field variables in a specific
way; the form of the integrand is essential. To preserve
the generality of the formulation, allowing arbitrary (un-
steady or steady) behavior with no restriction to frozen
fields or a finite wave speed, the two dissipation functions
have to be used and the conservation laws must be incor-
porated. The first dissipation function is the flux depen-
dent

=—'R (z): Vu —I .—1 dJ
2 dt

dJ
Vu —I .

dt

=
—,'R '(z):

r
C .Vz-

2p

r, (J.V)J —I .
p dt

r„
C .Vz-

2p

r,' (J.V}J—r."
p dt

(38)

In the last line of this equation, Eqs. (8) and (13) were
used to express the gradient of u in terms of gradients of
z and J. In the linear theory the terms with I, and I „
are ignored and matrices C and I are evaluated at equi-
librium. It is easy to see that the numerical values of

both dissipation functions are equal, i.e., N=%', when the
phenomenological equation holds (Onsagerian property).

The working form of the functional describing the
linear coupled-wave transfer of the energy and mass is
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S~'"=min —'R '(z): C ' Vz —I . dJ
dt

C .Vz —I . +—'R(z}:JJ+A, +V (J+pzv) dVdt,—1 dJ apz
dt 2 at

(39)

where the evaluation of (27) of the matrix I as —C '/G
can be used. The more complicated counterpart in
"quasilinear theory" is obvious in view of the third line of
Eq. (38); generalizations of this sort need not, in princi-
ple, be written down here; see, however, Eq. (41) and the
Appendix. To determine the governing partial-
differential equations we extremize the dissipation in-
tegral with respect to the field variables z, J, and A, , or pz,
J, and A, . (The mass density p is the constant parameter
only since the convection is uniform. )

It is known from variational calculus that the in-
tegrands of functionals can be "gauged" by adding (or
subtracting) to them any four-divergence term since it
does not change the equations of motion. Gauge trans-
formations occasionally lead to more manageable forms

X= +V [(J+pzv) A, ]
a(pz Z)

at

aA—pz —(J+pzv) VA, .
at

(40)

The four-divergence is rejected and the functional (39}
takes the form containing A. through its derivatives only.
However, we give a generalization of this result corre-
sponding to the "quasilinear theory, "where all the terms
in the last line of Eq. (38) are essential,

than the original integrand; from gauged forms, for ex-
ample, certain integrals can more easily be separated. An
equivalent, manageable form of the functional (39) is ob-
tained by transforming its A. term into the following sum:

f2—Sraiss min i R '(z):
2

1

r„
C ~ Vz-

2p

r,
(J V)J —I'.

p dt

r„
C ~ Vz-

2p

r,
(J V)J —I'.

p dt

+—'R(z):JJ—pz —(J+pzv) VA, dV dt'aA,

at
(41)

(see the transfer equations corresponding to this "quasi-
linear theory" in the Appendix). The superscript T per-
tains to the transformed version of the original S '" (see
explanation of the negative sign below). The form (41)
has some advantage when the nonequilibrium reciprocal
temperature and Planck potentials are the state variables
since they are represented by the components of A, . In
the linear theory the evaluation (27) of the matrix I as
—C /G can be used at equilibrium, and the terms with
derivatives of I ignored.

Then

The integrand of the functional (41) or (42) is no longer
equal to the entropy production. Its physical interpreta-
tion is the complete negative thermodynamic Legendre
transformation of entropy at disequilibrium, —s (u, w),
where w= —I J is the thermodynamic conjugate of J.
This corresponds to the Mathieu function P /T at equi-—
librium. In this regard it is worth pointing out the role of
the Legendre transform of the entropy in fluctuation
theory [73].

The conservation laws can be satisfied identically after
introducing the so-called Biot vector [74],

dJ—S "'=min —'W(z): Vz+
2 Gdt

dJ
Gdt

aHJ+pzv=
at

(44)

+—,'R(u):JJ

aA—pz. —(J+pzv} VA, dVdt,
at

(42)

with

pz= —V.H

where W is the new symmetric matrix defined as

W=(C-')' R-'.C-'=(C.R.C)-'

%'hen these representations of J and z are substituted
into the entropy functional (38) the A, term disappears
and the process can be described without any loss in the
generality by a functional of the single vector H. The
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dJ—J=L Vu —I
dt

(46)

with the sign of J reversed. This is the mirror-image
solution (for t'= t) corres—ponding with the growth of
the heat fluctuations and the related decrease of the en-

tropy. The so-called antithermodynamic branch is of
course enormously less probable than the thermodynamic
one.

V. EQUATIONS OF TRANSFER
FROM THE ENTROPY FUNCTIONAL

Any variational formulation has virtue of conciseness:
the single equation for the scalar quantity (here, the total
entropy generated) stands for the whole set of the
differential equations. Physical insight is achieved more
easily when one follows the properties of the single physi-
cal scalar rather than the whole set of related equations.
Moreover, with a functional at our disposal, various
direct variational methods can be applied to obtain ap-
proximate solutions, which exhibit, as a rule, very good
accuracy [75].

Here we show a linear equation set resulting from ex-
tremizing the functional (42). The Euler-Lagrange equa-
tion for the vector k constitutes the conservation equa-
tion,

price paid for this apparent simplification is that the en-

tropy functional in this case involves the second deriva-
tives of the vector H with respect to the space and time
coordinates. This is not surprising in the case of irrever-
sible processes. The corresponding Euler-Lagrange equa-
tion is complex (the second-order variational problem},
although the resulting thermodynamic equations of
motion (in terms of the J and z variables) are the same.

It is also worth pointing out that the squaring pro-
cedure in the error expression w, Eq. (31), had introduced
the second solution for the flux J. Besides Eq. (20), one
also has

of the functional (42), where A, =u, this equation is
obeyed by the generalized Fourier-Fick equation (20) and
its mirror image, Eq. (46), in the form of the extended
Fick equation,

dJJ=—pD- Vz+
Gdt

(20')

dJ—J= —pD Vz+
Gdt

(46')

For I' of Eq. (27) the stationarity condition of the entro-

py functional with respect to the state vector z is the ma-
trix wave equation of change,

C. =D V z— (50)
dt c dt

yielding at A, =u the wave equation of diffusion,

dz D V2z —d z
dt c dt

(51)

The flux associate of the above equation,

d J D V2J
d'J

dt c dt
(52)

results from combining the stationarity conditions of the
entropy functional with respect to the variables J and k
under the condition of the vanishing vorticity of the flux
J,

VXJ=O, (53}

obeyed by Eqs. (20) and (49). On the other hand, taking
the divergence of the phenomenological equation (20),
and using the conservation laws, Eqs. (14) and (15) or Eq.
(47), the same matrix wave equation is obtained.

If, instead of the state variables z, Eq. (9), the transport
potentials, Eq. (11), are used, an alternative form is
found,

Bpz
at

+ V (J+pzu) =0 . (47}

k=u . (4&)

This is the matrix form of the conservation laws for mass
and energy, Eqs. (14) and (15). The stationary value of
the multiplier vector is the nonequilibrium transport po-
tential vector, Eq. (11),

du p d UpC. = —L V u-
dt c dt

The flux associate of Eq. (54),

dI d I
pC = —L V2I—

dt cQdt

(54)

(55)

R-J=VA, ——I -R - C Vz —I .d dJ
dt dt

(49)

with I = —C '/6, Eq. (27). On the stationary surfaces

It is interesting that an analogous interpretation of the
Lagrange multipliers appears in information-theoretic
thermodynamics although that formulation is different:
it pertains to the maximum of the entropy with respect to
the initial distribution over the states, and those multi-
pliers are equilibrium quantities [76]. The stationarity
condition of the entropy functional (42) with respect to
the flux vector J has the form

is the simple transformation of Eq. (52) with the new vec-
tor I=(pC) 'J. It characterizes diffusive transport in
terms of intensive rather than extensive quantities; in the
linear case the components of I are products of the trans-
port potentials u and corresponding velocities of diffusion

v, =J, l(pz, ), i =1,2, . . . , n In resting syst. ems the sub-

stantial derivatives simplify to the partial derivatives and
Eqs. (50)—(52), (54), and (55) contain on their right sides
d'Alembertians instead of the usual Laplacians of stan-
dard parabolic models.

The above equations hold for arbitrary boundary con-
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d2T
V T —, (56)

pc = —pTD~C V y—dT
c2dt 2

d2T+g V'27
c2dt2

ditions; the latter can, however, be obtained from the
general Eq. (35) too. When the state variables and their
derivatives are varied on the boundary surface A, the sur-
face integral of Eq. (35) plays a role. For free variations
of the state the transversality condition results in the
form of the phenomenological equation (30) describing
the vanishing of the normal component of the vector
J—L.X on the boundary A; see [4,65 —68] for a thorough
physical discussion.

The physical content of Eqs. (51) and (54) is obscured
by their matrix form. We operate here with the not-so-
common quantities z and u. Therefore another represen-
tation is useful where the cruxes, forces, and diffusivities
are transformed to the quantities related to the sensible
heat flux Ji, =J~ —gk hk Jk rather than to the irreversible
energy Aux J~. As a result of such transformations the
following wave system is obtained:

T2

dt q dt T

which was not really constructive. It was an advance,
nevertheless, because it relaxed the frozen force require-
ment by introducing the trivial (derivativeless) criterion,

min —,'R 'XX+—'R.JJ—X-J d V . (60)

Note that there is no integration with respect to the time
here. Minimizing this expression with respect to either X
or J yields the same equation J=L.X, since R ' =L. If
the classical representation X=gradu is substituted into
Eq. (60) then the so-modified functional (with J and u the
variables) yields J=L gradu and div(J —L.gradu)=0, by
independent variation of J and u, respectively. The latter
result is a consequence of the former. While they both
are correct the set is incomplete; the conservation laws do
not follow from Eq. (60) and hence the related parabolic
equations of change cannot be derived unless one applies
the artificial restricted variations to a transformed ver-
sion of Eq. (60).

Onsager's functional (59) can be distinguished from our
functional (41) in the steady-state case. Indeed, let us
consider the parabolic counterpart of Eq. (41),

lz—S "'=min —'R ':(C ' Vz)(C ' Vz)
f 2

I

+—'R:JJ—pz
BA,

2
'

at

with

C=diag(C ', —C 'T ), D~=(pT) 'Lr .
—

(J+pzv) VA, d V dt . (61)

Here Lz. is the part of Onsager's matrix related to the
thermal diffusion. This set operates with the most com-
mon variables, temperature T and concentrations y; and

simplifies to the classical set [39] for c0 approaching
infinity. It is expected that Eqs. (56) and (57) will de-
scribe heat and mass transport better than the classical
equations, especially in highly nonstationary cases, e.g.,
during the travel of sound and especially shock waves, of
electromagnetic waves through a medium with thermal
diffusion, or of ultrasonic or dielectric drying of solutions
of solids —in general, when heat transfer or change of lo-
cal thermodynamic variables occurs at a rate comparable
to the internal relaxation of the system. An illustration is
the equation set of the "quasilinear generalization" in the
Appendix.

dz
p +V J=O

dt

R J=V'A,

(62)

(63)

In t%e steady-state situation the derivatives BA, /Bt vanish.
Then, when only J is varied and A, converges to u on the
extremal surfaces, Onsager's equation (60) and hence the
Fourier-Onsager structure result from Eqs. (61) or (41) as
steady-state conditions. In that sense Onsager's formula-
tion is limited to the steady state. In the nonsteady situa-
tion Eq. (61) yields, as the Euler-Lagrange equations with
respect to the variables A, , J, and z, a more general out-
come. It is the parabolic set representing (at A, =u) the
classical linear model of the unsteady heat and mass
transfer,

VI. RELATION TO PREVIOUS APPROACHES pC- =pD. V2z= —L V2u
dt

(64)

Onsager [77] proposed the local quasivariational prin-
ciple whereby the phenomenological laws are obtained
from a prescription of making stationary the restricted
variation (frozen u) of the expression for power:

min J ( —,'R:JJ—J.Vu)dV . (59)
U

This yields J=L.X as the only outcome. Approaches re-
lated to Eq. (59) were pursued later in many works, e.g. ,
[35,39,78]. The explorations with frozen fields culminat-
ed in the method of the local potential [31] but it was at
the same time seriously criticized as physically dubious
[29,30]. Gyarmati's local principle [35] shifted the prob-
lem from the space of J and u into the space of J and X

where Eq. (62) is equivalent to the conservation equation
(47). The distinction between dA, and C '.dz is implied
by the above set. However, the nonequilibriurn field A.

converges to the field u, such that du=C '-dz, as our
experience proves. Then the three above equations be-
come dependent, the third resulting from the first two.
This is well known from the classical theory. The possi-
bility of independent dA, and du =C '.dz proves that in
the parabolic description (consistent with local equilibri-
um) it is impossible to preserve the entropy or any other
thermodynamic variable in terms of the classical state z
only. The entropy becomes a function of the extended
state (z,J, . . . ), in agreement with Truesdell's equipres-
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ence principle and extended thermodynamics [2]. Even
more can be said: as our work in progress shows, the en-

tropy and its source can be put into a single canonical
formalism yielding a fundamental equation and associat-
ed evolution equations. This fundamental equation coin-
cides with the classical one only at equilibrium.

The formulation given in this work is physically ac-
ceptable insofar as it shows that any coupled heat and
mass transfer process operates so that the increase of the
total entropy generated is a minimum, subject also to the
constraints defining the process. This principle holds
equally well for the hyperbolic theory and the limiting
parabolic theory as an exact (i.e., unrestricted type) varia-
tional principle provided that the distinction between the
fields A. and u is made for a system away from equilibri-
um. At the steady state, its parabolic version, Eq. (61),
resembles the "governing principle of the dissipative pro-
cesses" [35]. However, the related integral formulation
of Gyarmati for unsteady states suffers the limitation
characteristic of the constrained (quasivariational) formu-
lation, namely its time derivative is frozen to be that of
the classical state [4,35].

The three-dimensional integral over the volume (used
even for the unsteady-state processes) should be contrast-
ed with the four-dimensional space-time integral treated
in this work. Working in three space-like dimensions,
one must of course freeze the time derivatives; there is no
place for them in the three-dimensional Euler-Lagrange
equation. However, little has been written so far about
the limitations of such formulations. Our embedding of
the process in the four-dimensional space-time has result-
ed in the following benefits: physical insight into the re-
lated functionals in terms of the entropy state function
rather than entropy production, interpretation of the La-
grangian multipliers as the nonequilibrium thermo-
dynamic intensities, removal of artificial frozen fields, and
the nontruncated field equations. Topics of the research
in progress include the convergence problems of the vari-
ational solutions (related to the stability of equilibrium
and nonequilibrium asymptotic states) and the nonlinear
generalizations of the variational principle.

1
u =u'q — J.I,(z).J,

2p
(A 1)

J=L(z).
I „:JJ

C
2p

~ Vz

r,
(J V)J —I'.

p dt
(A2)

The equations of change for z and J may again be ob-
tained via minimizing the entropy functional (41). They
are now coupled with respect to z and J,

dz F„:JJ
1 —C.

2p

d z
~ VZz

codt

r„
+Vz V D. 1 —C

2p

—
p V [D C I, (J V)J]+p Vr (A3)

—1 &dJ
dt

and

dJ
dt

I „:JJ
1 —C

2p
V~ dJ

cOdt

I„—pVz —D 1 —C.
dt 2p

+—[D C I, (J V)J]—d dJ dr
dt dt dt

(A4)

corresponding with the nontruncated dissipation func-
tion, Eq. (38), and the entropy functional, Eq. (41). While
the phenomenological equation preserves the form (20),
new terms appear when it is expressed in terms of the ex-
tended state z, J,
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APPENDIX: EQUATIONS OF CHANGE
IN QUASILINEAR THEORY

The transport potentials Bs /Bz, of the quasilinear
theory [Eq. (8) with z-dependent I ], are given by

When the terms with the derivatives of I are ignored and
the coeScients are constants evaluated at equilibrium
(the linear theory), these equations go into the decoupled
set, Eqs. (51) and (52). The first of the Eqs. (A3) can also
be obtained by taking the divergence of Eq. (A2) and
combining it with the conservation law, Eq. (47); the
second, (A4) by taking the total time derivative of Eq.
(A2) and using this conservation law. In future work we
will show that an essential simplification of the equations
of this sort can be achieved when a canonical nonlinear
formalism is used.
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