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Rods to self-avoiding walks to trees in two dimensions
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The mean-square radius of gyration (Ro) and a shape parameter X=(Ro;„)/(Ro,„)are studied
as a function of the number of bonds, bends, and branches of self-avoiding lattice trees on the square, tri-

angular, and honeycomb lattices. We identify the universality classes, and exhibit the crossover scaling
functions that connect them. We find (despite doubts recently raised) that there is a universal crossover
from rods to selfavoiding walks, embodied in (Ro ) -N'U(Nw), where w iz) is an appropriately chosen
nonlinear scaling field reducing to the stiffness fugacity z as z~0; that "rigid trees" (which are
bond clusters that branch but do not bend) are in the same universality class as branched polymers or
free trees; that the crossover from rods to rigid trees has the universal form (Ro' ) -N'8'(Ny'), where y
the branching fugacity; and that the crossover from self-avoiding walks to branched polymers has the

2v
universal form (Ro ) -N ' Y(Ny~), with v

v
=

—,
' and P= —'„'.

PACS number(s): 05.50.+q, 36.20.Ey, 64.60.Ak, 05.70.Fh

I. INTRODUCTION

The work reported here originates in an ongoing [1—5]
study of "planar vesicles" —that is, closed self-avoiding
chains or polygons embedded in the two-dimensional
plane which are, additionally, (a) subject to a pressure
differential hp=p;„, —p,„, between interior and exterior
and (b) endowed with a rigidity modulus tc which tends to
keep successive links of the chain aligned parallel. As the
pressure hp, rigidity tc, and chemical length (measured by

the number of self-avoiding "beads" or disks) are
changed, the sizes and shapes of the vesicles vary
markedly. Indeed, they exhibit a number of relatively
sharp crossovers and transitions from one form to anoth-
er [1—5]. In particular, for bp =0 one observes [1,4] flac-
cid self-avoiding (s) polygons of linear dimensions in-

creasing as N ' with vs= —,', while when a increases, these
approach rigid circular shapes of dimensions proportion-
al to N.

If, on the other hand, K is small and a large negative
pressure differential is imposed, the flaccid polygons col-
lapse into branched-polymer or treelike (t) configurations

[1—3] of linear dimensions increasing as N with

v, =0.64. Note that since the interior of a vesicle is
minimal in the limit Ap ~ —~, each branch of a tree or
branched-polymer vesicular configuration has a double-
stranded character. When the rigidity ~ increases at fixed
N, one observes [1,5] initially a reduction in the number
of branches. This eventually leads to an unbranched
semiflexible chain, which for large N must behave as an
open self avoiding walk (S-AW; also denoted s) or chain.
Then, under further increase of ~, such chains cross over
to increasingly straight and rigid rods (r) of dimensions
proportional to N (or, equivalently, having v, =—1).

Recent Monte Carlo simulations [5] of the highly col-

lapsed or deflated regime of vesicles exhibit a rather rapid
crossover from the rod to tree forms, associated, indeed,
with a relatively sharp specific-heat (or energy-
fluctuation) peak. Furthermore, this peak appears to
sharpen as ~bp ~

and N increase, suggesting some sort of
asymptotically sharp transition. Owing to the double-
stranded nature of the vesicular trees, SAW's, and rods,
however, the Monte Carlo simulations are hard to bring
to equilibrium in this regime. More crucially, theoretical
considerations make it difficult to envisage how a truly
sharp transition might arise in this regime of the model,
notwithstanding the suggestive "experimental" data.

For these reasons it is desirable to understand the
rigidity-induced crossover from trees to SAW's to rods
without the complexity of double strandedness and a
direct connection to vesicles. The literature devoted to
self-avoiding walks is, of course, very extensive, and trees
or branched polymers have also been much studied.
However, the effects of rigidity and of a naturally related
branching fugacity on the sizes and shapes of trees seem
to have attracted rather little attention. In particular, the
various crossover regimes and associated scaling func
tions do not seem to have been analyzed; but, to under-
stand the tree-SAW-rod behavior seen in the study of pla-
nar vesicles, it is just these crossovers and scaling func-
tions that are needed. The crossover from rigid rods to
SAW's has been of interest since early theoretical work
on polymers [6]. However, some issues have only recent-
ly been broached, and certain puzzles regarding univer-
sality have been raised [7].

Accordingly, we have undertaken a primarily numeri-
cal study of trees or branched polymers embedded in the
two-dimensional plane with a view to understanding their
shapes and sizes and associated transformations in these
induced by the introduction of rigidity and variable
branching. We have chosen to focus on self-avoiding lat-
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FIG. 1. The (y, z) plane, illustrating the special limiting cases,
including rods (r), SAW's (s), trees or branched polymers (t), and
rigid trees (rt). The arrow pattern indicates the dominance of
the underlying renormalization-group fixed points; more con-
cretely, the arrows point towards the critical models that deter-
mine the asymptotic behavior in the intermediate regimes. Typ-
ical configurations are presented for the square, triangular, and
honeycomb lattices in the limits that y and z are small, large, or
of order unity, in all combinations. Note that for y~ ~, the
maximally branched trees have a linear structure on the square
lattice, but can branch (but not bend) on the triangular and
honeycomb lattices, whereas for z~~, the maximally bent
walks assume linear forms on the triangular and honeycomb lat-
tices, but can bend (but not branch) on the square lattice.

tice trees, utilizing the square, triangular, and honeycomb
lattices with the specific intention of identifying and
checking universal features in two dimensions. For these
lattices we have collected and analyzed shape statistics
for trees with regard to topology, specifically the number
of ends and of the number of bends in the graphical
embedding of the tree in the lattice. Where data were not
available in the literature (or not suitably classified), we
have generated and crosschecked further extensive data
sets [8].

Our specific classification of graphs is set out in Sec. II,
where we introduce fugacities y (for ends) and z (for
bends). Both of these fugacities are needed to account for
the main effects of the rigidity modulus in highly debated
vesicles: Note, indeed, that the energy scale associated
with an "atomically" sharp, "hairpin" bend at the ends
of a vesicle collapsed into one double-sided rod should be
regarded as being physically distinct from the rigidity en-
ergies associated with relatively smooth bending along
the length of a flexible rod. Beyond that, of course, it is
of independent interest to distinguish both ends and
bends. The two-variable space thus defined by y and z
contains several special limits: rods (r), self-avoiding
walks (s), trees or branched polymers (t), rigid trees with
unbent branches (rt), maximally branched trees, and max-
imally bent trees, as indicated in Fig. 1. In Sec. III we
consider the crossover regimes that connect some of these
limits: self-avoiding walks to trees, rods to rigid trees,
and rods to self-avoiding walks. We discuss whether rig-

and since every bond joins two sites,

g kNg =2N .
k=1

(2)

We further classify a tree by the number of bends B in
the linear segments of the tree, defined as follows: On the
square lattice, a bend is defined to be a site where two
(and only two) bonds join at a right angle. There will
necessarily be bonds at right angles at any branch site,
the number of which is controlled by the number of ends;
in our definition we count only the topologically unneces-
sary bends. Assuming rotational in variance of the
weights, the 16 possible assignments of bonds at a vertex
can be classified into six distinct types (including the iso-
lated site, which cannot occur as part of a tree); it is
sufficient to classify trees by the number of ends N&,
bends B, threefold sites N3, and bonds N to completely
specify the number of sites of each type, because the two
graph identities (1) and (2) then fix the number of unbent
linear segments as

=N —B=N+2 ——'N ——'N —Bunbent 2 1 p 3

and fourfold sites as

N4= —,'N) —
—,'N3 . (4)

On the triangular lattice, there is a richer set of site
types, and retaining complete information is impractical.
Sites at which exactly two bonds join were classified ac-
cording to the interior angle formed (60, 120', or 180').
At sites where k=3, 4, 5, or 6 bonds meet, bends were
not distinguished. (The associated bending energies
would play a role in distinguishing the different vertex
types. Introduction of the corresponding vertex fugaci-
ties would make the parameter space much larger and
subdivide the data set into an unwieldy number of
categories. )

On the honeycomb lattice, a bend is defined as a se-
quence of three bonds in a chain which are in the cis con-
formation. (The bond centers of a honeycomb lattice
form the vertices of a kagome lattice; in terms of this
latter structure, we are considering neighbor-avoiding
walks, and the bends are defined as on the triangular lat-

id trees represent a universality class that is distinct from
unrestricted trees, concluding that they do not. We also
report less detailed explorations of other regions of the
phase diagram.

II. CLASSIFYING TREES BY VERTEX TYPE
We idealize branched polymers as self-avoiding loop-

less graphs or trees on a regular space lattice. Our goal is
to determine the critical exponents that characterize their
asymptotic behavior, to identify the various universality
classes that arise, and to estimate the crossover scaling
functions that connect them.

A tree can be classified by the number N of its bonds
and by the numbers Nk of its vertices that are shared by
k bonds —thus, N, is the number of free ends, so that a
linear chain polymer has N

&
=2, N2 =N —1, and all other

Nk=0. There are two constraints on the Nk. For any
tree graph one has

g Nk =N+1, (1)
k=1
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C(N, B,N„)x z gyk", (5)

where the first sum is over all graphs that can be embed-
ded per site in the chosen lattice with no overlaps of
bonds or vertices; in the second sum, we have introduced
the number C(N, B,N~) of such embeddings per site.
The weights x, yk, and z are fugacities for bonds, vertex
type, and bends. Without loss of generality, we may take
y2 =1. Furthermore, in the studies to be presented here,
we have also taken y& =1 for k )2. For notational sim-

plicity in what follows, we put y, =y. It is clear that y
controls NI and thus the degree of branching; however,
large z will suppress branching for yi, & z= 1 (see below).

We have counted the graphs on various two-
dimensional lattices using the Martin algorithm [9] and
for each graph have determined the eigen values
A, ;„—=RG;„and k „—:RG „of the moment-of-inertia
tensor (where each site of the tree is given unit mass).
From these we can determine the ensemble average of the
radius of gyration, namely,

(R (N))=
g R(NB, N, )z y

(6)

g C(N, B,N, )z y
B,NI

and the ensemble average of the absolute difference be-
tween the eigenvalues,

&D(N)) =(R,' „)—&R,'.,„)
g D(N, B,N, )z y

B,N)

g C(N, B,N, )z y

In fact, we have calculated the coefficients R (N, B,N, )

and D (N, B,N, ) for all N ~ 15 on the square lattice (and
these were further subclassified according to the full set
of the NI, ), N ~ 11 on the triangular lattice, and X ~ 18 on
the honeycomb lattice [8]. For certain special cases,
longer series were obtained, as noted below. These data
are consistent with the previously published series of
Gaunt et al. [10]and Privman and Redner [11(b)].

The general model contains several others as particular
limits; see Fig. 1, which depicts the (y, z) plane. For
y ~0, the number of free ends is reduced to X, =2, re-
sulting in the restriction to self-avoiding random walks
(for z~1) and rigid rods (for z~0). The limit z =1,

tice. ) Bends are again not counted at threefold-
coordinated vertices, because there is only one type of
trivalent vertex, the number of which in a tree is fixed by
the number of ends. Thus, in effect these energies have
been absorbed into the end fugacities.

The statistical weight of a graph is allowed to depend
on the number of bonds, bends, and the population of
vertex types; specifically, we define the grand partition
function for trees by

Q(x,y„,z) = yx
"zs g y„"

III. ASYMPTOTIC SCALING BEHAVIOR

For any bounded y and z, the average cluster size
grows with x and diverges at some x, (y, z). Associated
with this critical point are the exponents y and v defined
via

Q(x, y, z)-(x, x )
—r

(RG(N))-N '
(8)

(9)

which are expected to take universal lattice-independent
values characteristic of the different cases illustrated in

Fig. l. In addition, ( D (N) ) is expected to have the same

characteristic exponent as (RG(N)) but a different am-

plitude; thus the ratio

(RG;„) (RG(N) ) —(D(N) )

(RG,„) (RG(N) ) + (D (N) )
(10)

should, as N~ ~, approach a quantity characterizing
the shape of large clusters. Depending on the values of y
and z, the limiting functions X(y, z) should also display
universal aspects [2,3]. The exponents y and v can be
easily determined for rigid rods, and they are exactly
known for self-avoiding walks [16]. Branched polymers
are believed [13]to belong to the lattice-animal universal-

ity class, which has been extensively studied [14]. These
exponents, as we11 as those that we have estimated for
rigid trees and maximally branched trees, are collected in

Table I.

y =1 is the ensemble of unrestricted self-avoiding trees,
which for consistency with previous work [10,12—15] we
may refer to as branched polymers.

For y = 1, z ~0 the remaining graphs are "rigid trees, "
which can branch but not bend. This class of graphical
embeddings seems not to have been considered previous-
ly. Although such rigid trees look somewhat different
from branched polymers, one might reasonably guess
that they are in the same universality class; we shall give
evidence that this is correct. The limit y~~ gives
"maximally branched trees" for which every site is either
an end or a multivalent vertex, ' on the square lattice, the
only such graphs are combs, i.e., simply straight rods
decorated by the attachment of as many bonds as possi-
ble, but on the triangular and honeycomb lattices, the
backbone is a neighbor-avoiding branched polymer with
no bends (see Fig. 1).

In the limit z~ ~, there are "maximally bent" trees,
which on the square lattice are in fact a subclass of the
self-avoiding walks, because bending can only occur at
two-valent segments, and then maximizing the number of
these must decrease the number of multivalent sites. This
behavior is something of an artificiality since by setting
y& =1 for all k ~ 3, the "bending energy" that might nat-
urally be associated with the branching points has been
entirely discounted: An alternative two-variable sub-
space of the fu11 models which will not exhibit this some-
what anomalous behavior could be obtained, e.g., by set-
ting y& =1+z '. On the triangular and honeycomb lat-
tices, the maximally bent walks are rigid, linear periodic
structures, with no entropy (see Fig. 1).
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TABLE I. Estimates and known values of exponents and
critical fugacities for universality classes.

xc

C(N 3) (RG(3)) —(RG(2))
C(N, 2) R 2 " +&.

(15)

Rods
SAW'

Branched polymers
Square
Triangular
Honeycomb

Rigid trees
Square
Triangular
Honeycomb

0. 19445+1
0. 1189+1
0.2983+1

0.2618+4
0. 180+7
0.3295+2

1
43
32

0

0.0+0.05
0.01+0.05
0.3)+0.4

0.05+0. 10

1
3
4

0.640+0.005

0.63q+0.02
0.635+0.02
0.625+0.02
0.635+0.01,

where

(RG(N, ) ) =R (N, Ni ) IC(N, N, ) (16)

and C(N, Ni } is now the number of graphs having N
bonds and N, ends, while R(N, N, ) is the sum of the

squares of the radii of gyration of these graphs.
The scaling functions, normalized as indicated, are ex-

pected to be universal. That for the partition function,
namely, Z(u), will be singular at some u„and near this

singularity,

'Values of x, for SAW's are much studied. For some recent es-
timates for the triangular and square lattices, see Ref. [10(e)].
For the honeycomb lattice, the exact result is believed to be
x, = 1/(2+v'2}'~'. See Ref. [16) where the exponent values
also are derived.

The critical behavior of Q, X, and (RG(N)) at inter-
mediate values of y and z combines several of the critical
regimes. Our work strongly suggests that the asymptotic
behavior, sufficiently close to criticality, is determined by
the branched-polymer exponents whenever 0 &y & ~,
0&z & ~, so that for large N all trees resemble branched
polymers in their shape and fractal dimension. This
dominance at fixed y and z is indicated by the arrows on
Fig. 1. The approach to this limit and the form of the
critical surface x, (y, z) is described by crossover scaling
functions. We shall analyze several special cases.

A. Crossover of self-avoiding walks to trees

For z =1 and small y, we expect on very general
grounds the critical behavior to obey the crossover scal-
ing forms [2,3]

Q(x,y, z = 1)= Ct 'Z( Ayt '),
Z(0)=1, Z'(0)=1, (11)

(RG(y, z =1,N) ) =R ON 'Y(ByN '),
Y(0)= 1, Y'(0) = —1, (12)

and, for the shape parameter,

X=S(ByN '),
where

(13}

t =(x, —x )Ix, (14)

is the critical variable for y =0. The exponents y, and v,
pertain to SAW's; in two dimensions they take [16] the
values y, = —",, and v, = —,', while P, is a universal exponent
characterizing the crossover from SAW's to branched po-
lymers. The amplitudes A, 8, C, and Ro are nonuniver-
sal metrical constants that can be determined by the nor-
malizations specified in (11) and (12). The amplitude B
was chosen by setting the boundary value Y'(0) = —1 on
the crossover scaling function, implying

Z(u)=
z.

(1—u/u, )
'

(17)

$,=1.79+0.05 . (19)

One particularly useful form of analysis is to generate a
new series whose nth term is the ratio of the number of
graphs having three ends and n bonds to the number of

where y, is the branched polymer or tree exponent. In

similar fashion, for large arguments v =ByN ', the scal-
ing function for the size must satisfy

2( v vt ) /4I
Y(u)= Y„/u ' ' ' as u~oo,

so that for large N the radius of gyration is always
characterized by its tree exponent v, . For both large and
small arguments the shape scaling function S ( u ) should
approach (generally differing) universal values [3].

In testing the appropriateness of the crossover-scaling
forms (11)—(18},the first issue is the value of the cross-
over exponent P, . Family [15] has previously studied the
crossover from SAW's to branched polymers on the
square lattice using a rather crude real-space
renormalization-group approximation; his calculations
yielded P,= 1.1.

On the other hand, Gaunt et al. [10] have studied the
closely related problem of the statistics of lattice trees
with fixed topologies. In addition to generating numeri-
cal data, Gaunt et al. established various rigorous
theorems which serve to imply $, ~2. Unfortunately,
they did not recognize the correct scaling form (11). [See
Ref. 10(a), p. 232, where an inadequate scaling hypothesis
is presented. ] Nevertheless, using their data, they con-
cluded, in effect, that P, =2.

If one accepts (11),however, the derivative

Q, (x)=B[y Q(x,y, z =1)]/By ~

should diverge as t ' ' at x, ; this generating function
counts just the set of three-branched trees (or three-stars)
with all possible branch lengths. Similarly, the four-
branched trees determine the coefficient of y in Q, which

should diverge as t ' '. We have generated the corre-
sponding series for all three lattices, and studied these us-

ing a variety of established series-analysis techniques in-
cluding differential approximants [17]. This had led to
the conclusion
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FIG. 2. Estimation of the crossover exponent P„ from self-
avoiding walks to trees (or branched polymers). The + symbols
are determined by the singularities of the differential approxi-
mants to the generating function Q, (x)/Q(x) for the square lat-
tice, whose critical point should be at x/x, =1. Similar results
are obtained for the triangular and honeycomb lattices.

graphs having two ends and n bonds. This is now a series
in x/x, with a divergence at x/x, =1 characterized by
the exponent P, . The differential approximant analysis of
this series is shown in Fig. 2. It is clear from the analysis,
however, that rather strong corrections to the leading
asymptotic behavior are present.

In striking analytic work, Duplantier [18] has dis-
cussed the asymptotic statistics of planar networks of
fixed topologies and given general rules yielding the cor-
responding growth exponents y. His work implies the re-
sult

$,=(2d —x, —x3)v= —,", =1.71875,

where the parameters xk are exponents defined by Du-
plantier for k-valent network vertices. The difference be-
tween this exact result and our estimate (19) is not, we be-
lieve, significant, although it is larger than we would
wish. It seems likely that our estimate is subject to
finite-size (N ((~ ) corrections which, it would seem,
converge rather more slowly than our analysis reveals.

To study the validity of the scaling forms for (RG )
and X, we have adopted, first, our estimate (19) and
second, the presumably exact value (20). Both values
give a reasonable collapse of the data when the limited
range of our data is considered. Figure 3 shows the col-
lapse using P, = ~»'. Figure 4 presents the corresponding
analysis for the shape parameter: Note that we have
chosen to plot

0.9-

0.8

0.7-

0.6

~,~ &op =&( —.)/e.
(RG)/Rc

[(N+1)'" —n.]

sq. tri. hon.
np= 0.4 0.15
N =13o 9+

14 o 10X
15 ~ 11&&

Trees
. . . .

'.
. .'Ii ':.

01 1 B NP
10

1

16 *
17 ~

18

W alks to

0.01

FIG. 3. Estimation of the scaling function for the radius of
gyration for crossover from self-avoiding walks to trees (or
branched polymers). The plots represent data for the three larg-
est available values of N on the three planar lattices, as a func-

tion of the normalized scaled variable ByN ', using the theoreti-
cal value P, = —'„'. The plots for other values of N overlap these

for small and intermediate y. The dashed line indicates the es-
timated asymptotic slope for large y, which corresponds to the
exponent combination 2( v, —v, ) /$, =0.107. This implies

v, =0.658, which is reasonably consistent with expectations (see
Table I).

0.30

~ (N
—no)~v

0.25— sq. tri. hon.
np= 0.15 O.Z 0

Walks to Trees

0.20

At small y, branching is suppressed, and X takes on the
value 0. 15~, characteristic of SAW's [3]. For large N and

y =1, there should be a second plateau at a value 0.252,
characteristic of trees or branched polymers: See Fig. 12,
below, and associated discussion. The dashed curve in

Fig. 4 for u =ByN ') 0.6 indicates the anticipated
asymptotic form. However, the data fail to even hint at
such behavior! To understand this, note that for the larg-
est trees available, N=11 to 18, the scaled variable u

R =0.1065+0.0005, B =0.0254+0.0005 (sq),

Rc =0.0989+0.0005, B =0.0264+0.0010 (tri),

R =0.1246+0.0007 8 =0.0229+0.0006 (hc) . (21)

[(N —n )/(ON+no)] 'X(y, 1;N)

rather than X(y, 1;N) itself; here, no is a small offset or
"n shift" taking the values no=0. 2 (triangular), 0.15
(square), and 0 (honeycomb) [3,4]. The nonuniversal pa-
rameters corresponding to these fits are

0.15 I I I ~ ~

0.01 0. 1

~ I

1
ByN&'

10

FIG. 4. Crossover scaling function from self-avoiding walks

to trees (or branched polymers) for the shape ratio X. As in Fig.
3, the plots represent the dependence of the shape factor on the

scaled variable yN ' for the three largest available values of N,

with P,.= —".The dashed curve indicates the anticipated asymp-

totic behavior for large scaled variables (see text).
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takes values in the range 1.6 to 3.3 when y =1, as ap-
propriate for unconstrained trees. For u ) 3, values of
y & 1 are thus emphasized so that the maximally
branched trees (remaining as y~ ~) are weighted in-
creasingly heavily. While we believe that maximally
branched trees almost certainly still belong to the univer-
sality class of trees, their shapes for finite N are evidently
less elongated, and hence they approach asymptotic be-
havior more slowly.

B. Crossover from rods to rigid trees

For z =0 and small y, we study the branching of rigid
rods into rigid trees. The crossover scaling functions
have the form

Q(x,y, z=O)=C„t 'X(A,yt "),
X(0)= 1, X'(0)= 1 (22)

(RG(y, z =O, N ) ) =R Q+ 'W(B,yN '},

W(0}= 1, W'(0) = —1 (23}

and, for the shape parameter,

X=S(B,yN '), (24)

but now we have the results

y„=1, v, = 1, P, =2 . (25)

These may be demonstrated fairly explicitly by considera-
tion of the expansion of Q(x,y, z=O) in powers of y, in

which the coeScient of y is the generating function for
rigid trees of m branches. For the square lattice one finds

this has the form

3 4 5 7

Q(x,y)=2 y +4 y3+ y4+18
1 —x 1 —x 1 —x 1 —x

L

y4+12 y5+76 y5
1 —x 1 —x

+32
1 x

7
11—

1+x

2 '7
X+2 ~ ~ ~

1 —x
(26)

Each rigid segment contributes a factor x /(1 —x ),
representing a sequence of bonds of arbitrary length; a
tree with k ends contains as many as 2k —3 rigid seg-
ments, if there are no four-valent sites present. Then,
each additional end is associated with a factor y /(1 —x ),
which corresponds to P, =2. A more rigorous argument
would have to take into account fully the effects of self-
avoidance, which contributes some nonsingular factors
(as in the next-to-last term displayed), and of the four-
valent sites, which give rise to less singular terms in the

I

expansion (e.g., the third and fifth terms).
Figures 5 and 6 illustrate the collapse of data for the

size and shape scaling functions assuming the values (25)
for the exponents. Figure 5 also shows a set of curves de-
rived by extrapolation according to the expression
displayed: These represent improved estimates of the
true, limiting scaling function W(y). Within the limita-
tions of the values of N for which we have data, the same
scaling function appears to describe the data for all three
lattices with the parameter values

0.6

0.4

0.2—
Rods to Rigid Trees

0.1
0.01

I I I I ' '''''I I I I

I

(RG)/RQ,

[(N+ 1)z'"—1]

4. '~~!~i,)&»..
1—[NQN —(N —2)QN z] ~&ft2

~ i fg 4~

iI I)a.I, g)

slope= &(v~—v,)/P, Il

0 1 1 B Ny 10 100
rg

0.3

p (N
—np)»~

0.2 sq. tri. hon.
no= 0.6 0 0.35

~Ia
~
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FICx. 5. Crossover scaling plots for rods to rigid trees: the ra-
dius of gyration. The symbols have the same significance as in
Figs. 3 and 4. Note the extrapolated data sets. The dashed line
indicates a power law with exponent 2(vN —v, }/$„=0.38, im-

plying v„t =0.62 and the expectation, discussed below,
v„,=v, =0.64.
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0.01 0.1 B,yN&' 100

FIG. 6. Crossover scaling plot for rods to rigid trees: shape
ratio X. The interpretation is the same as for Fig. 4.
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C. Crossover from rods to self-avoiding walks

For small z and y =0, we might expect the critical be-
havior to have the general form

Q(x,y =O, z) = C, t 'V(Ezt ~),
0.6—

0.4-

&Ro)

[(N+1)

V(0) =1, V'(0) =1, (28)

&RG(y =O, z, N)) =RoN 'U(DzN&),

v„= 1, /=1, (29)

where t=l —z is the variable which measures the ap-
proach to rigid rod criticality (since x, = 1); the appropri-
ate crossover exponent is P; and D, E, C„and Ro, are
nonuniversal constants [the last two already appearing in
(22) and (23)].

This problem has been considered previously, in partic-
ular by Lee and Nakanishi and by Privman and Redner
[11]. It appears that /=1 for all lattices and dimensions
d ) 1 (and this applies for closed loops also [11]). Howev-
er Privman and Redner [11(b)]concluded that the scaling
function U(u) is diferent for the square and triangular
lattices, so that universal behavior seemed to be limited.
Such a breakdown of universality was, indeed, later estab-
lished analytically by Privman and Frisch [11(c)]for pro-
gressive or directed self-avoiding walks. However, the
self-avoiding or flexible limit is trivial (in a
renormalization-group sense) for such walks, while it is
nontrivial for standard self-avoiding walks 1(d &4. See
also Halley et al. [11(d)] and Moon and Nakanishi [11(e)]
for further discussion of some of these issues.

In our study of this problem we have generated data
for random walks on the triangular lattice up to 15 steps,
subclassifying the walks according to the number of 60'
and 120' turns made, thus allowing for an arbitrary
weighting of the two kinds of bends. (Privman and
Redner used walks up to length N =22 (sq) and 16 (tri),
but imposed z6o=z, zo. ) We have also used a Monte Car-
lo algorithm (described below) to sample SAW's of 25,
50, and 100 steps on the triangular lattice. (Note also
Monte Carlo work for the square lattice by Nakanishi
and coworkers [11(a)].)

%e find, as did Privman and Redner, that the data for
(RG ) on the diff'erent lattices cannot be well represented
by a single scaling function of the form of (29) (see Fig. 7).
One notes, however, that this representation is not suc-
cessful in collapsing the data even for a single lattice type
once the scaled variable DzN exceeds 10. On the other
hand, it must be stressed strongly that for any fixed z in
the range, say, 0.3 to 1.3, the SAW-type asymptotic be-
havior with &RG) -N ~ is well obeyed even for N as
small as 10 to 14 (although the amplitudes necessarily de-
pend on z).

In fact, this dichotomy indicates that the "bare fugaci-
ty" z is not the optimal quantity with which to construct
the scaled variable to be used as the argument of the scal-
ing function in (29). Rather, as discussed and illustrated
in Ref. [4], the fugacity z should be replaced by a non
linear scaling geld [19] which we can represent to
sufficient accuracy as a function of z only, say, w (z), that
behaves like z when z ~0. (Such a nonlinear scaling field

0.2-

0.1

trz. honsq.
Ilp= 1

D = 2

I

Rods to Walks

0 1

4 1/2 N=25

50

M g ~100
slope= 2(& —& )

10 100
Dz(N+no)

0.1

FIG. 7. Crossover scaling plot for (RG) for rods to self-

avoiding walks. The plots (as constructed from the longest
available exact data with z6p =z»p =z) should generate the scal-
ing functions for square, triangular, and honeycomb lattices;
also shown are approximate data for the triangular lattice for
larger values of N, obtained from Monte Carlo simulations.
The data collapse for scaled variable DzN ~ 10 is not good. The
dashed line indicates the N ' behavior required to give v, = —'

for SAW's.

2z
w(z) = (square)1+2z

Z120 + 3Z60

1+2Z60+ 2Z120
(triangular)

(30)

(31)

—ZI

(honeycomb )1+0.6z
(32)

as candidates for improved scaling fields. For the square
and triangular lattices, the choice is just the value of
& 1 —cos8) in terms of z for the corresponding free walk;
for the honeycomb lattice, the coeScient 0.6 was chosen
empirically as giving the best collapse and match to the
other lattice types for low z, although the free random
walk would replace 0.6 by —,

' (and generate different con-

tributions of order z, etc.) [22].
In order to test the proposed forms (30)—(32), the

scaled combination in the scaling function in (29j is re-

placed by w(z)N~ with /=1. Figure 8 shows that these
assignments for the nonlinear scaling fields are rather
successful: Note that the data for the different lattices
now agree within good precision for different values of N
over the whole range O~z ~ 1 [23]. We also found that
different choices for weighting bends on the triangular

has been found to be important also in other contexts
[20,21].) Now, in the scaling theory for free random
walks with only nearest-neighbor interactions, the rigidi-
ty modulus or bending fugacity enters only through its
influence on the mean cosine,

& cos8) =
& s s, +, ) /a ',

between successive steps (with ~s ~

o- a): See, e.g. , Refs. [4,
6, 11(a), 11(e)]. Accordingly, we consider here the corre-
sponding nonlinear variables
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FIG. 8. Crossover function for rods to self-avoiding walks,
using the proposed nonlinear scaling variable w(z) in place of z.
The main plot superimposes values for the square, triangular,
and honeycomb lattices using the same data as in Fig. 7 (al-

though for clarity only one out of every three points has been
shown). The Monte Carlo data for the triangular lattice (isolat-
ed triangles) for N =25, 50, 100 now define fairly precisely an

asymptote of expected slope (dashed line), in contrast to Fig. 7.
The honeycomb series data for N = 16-18 appear to have con-
verged quite closely to the same asymptote. The inset shows
triangular-lattice data magnified by a factor of 3.7; a distinct
trend with increasing N towards the expected asymptote is evi-

dent. The square-lattice data behave similarly. Convergence in

this region could be improved by adjusting the nonlinear fields

slightly.

lattice (e.g. , weighting all bends equally versus giving
double weight to 60' bends) led to essentially the same es-
timate for the scaling function.

Thus we conclude that there is in fact a uniuersal scal-
ing description of the size crossover of rods to SAW's
[24], although to reveal this for N ~ 15, the appropriate
nonlinear scaling variable is essential. Note, however,
that for N &)15, it would suffice to use simply zN in all
cases, since w(z)Iz~D, a constant, as z~0.

The appropriateness of the nonlinear variable w(z) is
further supported by Fig. 9, which shows the correspond-
ing scaling analysis of the shape ratio, which is well
represented by

2N+no
X(y=O, z;N)= S[w(z)(N —np)] . (33)

N —n+
0

The expected leveling out of the scaling function for large
arguments at the value X,=0.154 is evidently suggested
by the plot although the available data are not well con-
verged in this region.

We have also studied the higher moments of the mass
distribution functions, and find that these too can be put
into universal scaling form using the nonlinear scaling
variables defined by (30)—(32); indeed, plots for (RG )
and (RG) analogous to Fig. 8 display precisely similar
data collapse and trends with increasing N [24].

The Monte Carlo algorithm used to generate long
SAW's proceeds as follows. A SAW is represented by the
sequence of displacements (along lattice vectors) that

FIG. 9. Crossover scaling plot for the shape ratio X(0,z;N)
for rods to SAW's. The small offsets n p, with values as in Fig. 7,
have been introduced to improve the data collapse for finite N.

takes the walker from site to site. A proposed new SAW
is constructed by changing one of these displacements
(choosing both the element to be changed and its new
value with the aid of a random number generator); this
alters the identities of all sites beyond the change. If the
proposed SAW is self-avoiding, it is accepted as the new
SAW with a probability that depends on the number of
bends in the two walks according to the usual Metropolis
[25] algorithm. If the proposed SAW fails either of these
tests, the old SAW becomes the new one. We found that
for y =1 the acceptance ratio is slightly greater than
50%%uo. In this way we sampled walks of 25, 50, and 100
steps on the triangular lattice, for the cases z =0.05, 0.1,
0.2, 0.5, and 1.

D. Rigid trees and branched polymers

A leading question to be resolved is whether bending is
a relevant variable for branched polymers or free trees—
that is, whether rigid trees belong to a different universal-
ity class than do branched polymers. Differential approx-
imant analysis of the series generated by the rigid trees
[i.e., the series expansion of Q(x,y = l, z =0) as defined in

(5)] gives very similar exponents, namely,
—0.03&y„(0.08 against y, =0 and v„=0.63 against

v, =0.64 (see Fig. 10 and Table I).
As a further test, a second set of series were generated,

the coefficients of which are the number of trees of N
bonds with exactly one bend; this is the series representa-
tion of [BQ(x,y = l, z )/Bz ], p. These series should
diverge at x, (y= 1,z=O) with the exponent y„+g„,
where g„ is the exponent governing the crossover from
rigid trees to branched polymers via the combination
zN ". If the two cluster types belong to the same univer-
sality class, but with x, depending on z, the crossover
should be trivial and an e+ectiue crossover exponent
$„=1 should appear (arising from the shift in x, ). The
analysis for the largest available N values for the square
lattice is shown in Fig. 11. Taking note of the values of
x, suggested by Fig. 10, the square-lattice data indicate
y„+$„=0.92+0.08. For the triangular lattice and the
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FIG. 10. Differential approximant analysis of the rigid tree
series C{y =1,z =0;N) on the square lattice using N =15.
Each symbol represents one candidate for x, and y„,. The accu-
mulation near x, =0.2618 suggests y„=0.

honeycomb lattice, we estimate y„+g„,=1.05+0.08 and
0.90+0.06. These results are somewhat imprecise but
are quite consistent with $„=1. We conclude that there
is most probably no singular crossover from rigid trees to
free trees or branched polymers.

The estimated shape ratios for rigid trees and branched
polymers are also rather similar; Fig. 12 shows the
analysis. For both branched polymers and rigid trees
(considered independently), the data suggest a universal
value X=0.252+0.01.

Finally, an intuitive —but quite nonrigorous-
argument suggests that (RG(X)) must always be larger
for rigid trees than for branched polymers: One simply
observes that folding something generally makes it small-
er. In fact, this is true for the trees we have constructed,
as shown in Fig. 13. This would, in turn, imply that v„
cannot be less than v, . Since these exponents are just the
asymptotic slopes of the plots in the figure, it also ex-
plains why ratio analysis of the series for the two cases
tends to suggest a reversed exponent inequality: Evident-
ly, the sizes of the rigid trees approach those for free trees
or branched polymers from above.

0.24—

I

0.03
I, . . . I

0.06 0.09
I. . . , I

0.12 0.15
1/(N+1)

0.18

FIG. 12. Shape ratios for branched polymers and rigid trees
on the honeycomb {), square {0),and triangular {+)lattices.
The apparent approach of these plots to a value close to
2=0.25 suggests they belong to the same universality class.
The dashed curves indicate a possible extrapolation to a com-
mon limit.

E. Other values of bend and end fugacities

As noted in Fig. 1, even infinite y (maximally branched
trees) does not completely suppress bending on the tri-
angular and honeycomb lattices; in fact, the subtrees
defined by the interior sites of the lattice configurations
represent neighbor-avoiding branched polymers, which
can reasonably be expected to lie in the same universality
class as branched polymers. Infinite z (maximally bent)
trees, on the other hand, do not branch. As noted in Sec.
II, this is to a certain extent an artifact of the way we
have chosen to define bends. Even then, this serves mere-

ly to put these clusters into another of the universality

classes that we have already studied —the square lattice
gives a variety of SAW's, while on honeycomb and tri-
angular lattices, one obtains rigid rods. As we have seen,
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FIG. 11. Analysis of rigid trees with one bend on the square
lattice. The plot displays differential approximant estimates for
gr and x, based on the ratio of [r)Q(x, z) /r)z ],—c to Q(x, O).

FIG. 13. Logarithmic plot of the radius of gyration (RG(1V) )
for rigid trees and for trees {or branched polymers) on the

square lattice. The line of slope 1.17 suggests a possible esti-

mate of 2v„, =2v, =- l. 17; however, both plots are still curved for

N = 10 to 15; it is believed that the asymptotic slopes will corre-

spond to 2v„=2v, = 1.28.
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for finite y and z these are unstable relative to branched
polymers. Thus, there is no fundamentally new phenom-
enology exhibited in the phase diagram.

As a check on this for general (finite) values of the
fugacities, we have studied the radius of gyration and
shape ratio for some other values of y and z. As antici-
pated, the N dependence of the radius of gyration is well
described by

(RG(y, z, N) ) =f(y, z)(RG(1, 1,N) ), (34)

where for y, z & 0, f (y, z) is a smoothly varying scale fac-
tor. The shape ratio proves somewhat more sensitive to
the values of y and z for finite N, but does not contradict
the assertion that X(y,z;N~ ao ) =0.25 for all 0(y,
z & 00, as expected for unrestricted trees or branched po-
lymers.

IV. CONCLUSIONS

In summary, we have studied self-avoiding trees on
the triangular, square, and honeycomb lattices subject to
a branching fugacity y, which counts monovalent ends,
and a bending fugacity z, which counts bends on the tree
branches. Of the various special types of configurations
appearing, only rods (r: y=z=0), self-avoiding walks
(SAW's, s: y =0, z )0), and unrestricted trees or
branched polymers (t: y )0) appear as distinct universal-
ity classes. In particular, rigid trees (rt) seem to belong to
the branched-polymer universality class: Both appear to
have the same asymptotic value of the shape parameter,
namely,

X —= ( RG ~;„)/( RG,„)=0.252, (35)

whereas self-avoiding walks have X=0.15&. (Rods, of
course, have X=O.)

We have studied the crossover scaling behavior of the
radius of gyration, (RG ), and the shape ratio, X(y, z), in
various regimes of the phase diagram shown in Fig. 1,
specifically: (a) from SAW's to trees [see Eqs. (11)—(14)],
where the newly identified crossover exponent P,= —,"„
which follows from Duplantier's general analysis [18] is
confirmed (despite conflicting suggestions in the literature
[10]); (b) from rods to rigid trees, where the exact cross-
over exponent (t, =2 can be deduced analytically [see Eqs.
(22)—(26)]; (c) from rods to SAW's [see Eqs. (28) and

(29)), where our exact lattice enumerations have been
supplemented by Monte Carlo simulations for N =25, 50,
and 100. On introducing, via Eqs. (30)—(32), appropri-
ate nonlinear scaling fields [4] embodying the bending
fugacity z, the crossover in (RG) is observed to be
universal over the three lattices (even though this con-
clusion has been questioned recently [11,24]); (d) rigid
trees and unrestricted trees, where an e+ectiue crossover
exponent g„=1 corresponds merely to a shift in the criti-
cal point x, (y, z) with, it is concluded, no change in
universality class. The various crossover scaling func-
tions for (RG ) and the shape ratio X, of direct relevance
to the interpretation of behavior seen in simulations of
highly deflating vesicles [1,5] can be read off numerically
from Figs. 3 —6, 8, and 9. [In these scaling plots the only
fitting parameters are small offsets or shifts in the values
of N (or N ) which serve to make some allowances for the
leading corrections to asymptotic scaling. ]

One outstanding problem not specifically studied here
is the determination of the combined crossover scaling
functions in terms of both the scaled variables yN and
zN [or w (z)N)] with exponents P, =2 and ttt: $,= 1. —This
would describe crossover from rods to rigid trees and
from rods to SAW's as well as the "direct" crossover
from rods to general trees or branched polymers; howev-
er, it should also embody, as a special limiting case, the
crossover from SAW's to branched polymers as con-
trolled by the Duplantier exponent P,= —,",. The data we

have amassed [8] would probably suffice for this task, but
more sophisticated two-variable methods of analysis
(such as partial differential approximants [26]) will prob-
ably prove essential for handling the multicriticality en-
tailed.
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