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Self-organized criticality in a deterministic mechanical model
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We investigate a mechanical model consisting of a one-dimensional chain of blocks connected by

springs. Each block is in contact with a lower rough surface, and the chain is pulled at one end with a
small constant velocity. This system was introduced by Burridge and Knopoff [Bull. Seismol. Soc. Am.

57, 341 {1967)]to model the dynamics of earthquakes. In a wide range of the parameter space, we ob-

serve the existence of self-organized criticality, that is, robust power-law distributions limited only by the
size of the chain. The model is completely deterministic.

PACS number(s): 05.40.+j, 64.60.Ht, 91.30.Bi, 46.30.Jv

I. INTRODUCTION

Very little is understood about the dynamics of none-
quilibrium systems with many degrees of freedom. Many
interesting phenomena have been reported with respect
to such large systems. In particular, increasing attention
has been dedicated to the phenomenon of self-organized
criticality (SOC) since it was originally described [1]. The
models which display SOC represent spatially extended
dynamical with driving and dissipation mechanisms.
After some initial transient period, these systems evolve
naturally to a statistically stationary state with no length
or time scales other than those deduced from the size of
the system and that of the elementary cell.

Many simulations on cellular automata models have
been performed [1—5] in the investigation of SOC. How-
ever, few studies have been done on SOC in systems
which have inertial elements. Carlson, Langer and co-
workers [6,7] have investigated a mechanical model pro-
posed by Burridge and Knopoff [8] to model the dynam-
ics of earthquakes. They showed that, up to a given
correlation length, the model presents a power-law distri-
bution of event sizes according to the Gutenberg-Richter
law [9] found in real earthquakes. There are big events in
the mechanical model which obey a separate distribution
and dissipate most of the eleastic energy.

The system we study here was also proposed by Bur-
ridge and Knopoff [8] to model earthquakes. It consists
of a chain of blocks connected by linear springs and
pulled at one end with a constant small velocity. The
blocks are situated on a rough surface. The only study
we are aware of on this model is the original work by
Burridge and Knopoff [8], which was an experimental in-

vestigation of the distribution of event sizes in a chain
with a small number of blocks (eight blocks). They found
a scaling relation of the Gutenberg-Richter type for the
potential energy released in the events. We call this mod-
el the "train model, " since it has some similarity with a
train, where the driving mechanism is applied only at one
end of the chain. We do this to distinguish it from the
other earthquake model also introduced by Burridge-
Knopoff and studied recently by Carlson et al. [6,7] in

which each block is connected to the driving element.
Here we show that the train model presents sequences

of events whose moment distribution obeys a power-law
distribution (Gutenberg-Richter law). Also, inspired by
two other scaling relations found in real earthquakes, we
study the distribution of events involving a given number
of blocks (fault length or area) and the relationship be-
tween the moment and the number of blocks that take
part in the event. We also found power-law relations for
these quantities. These two other power laws were also
proposed in [10] for friction models in general, consisting
of two systems driven against each other with a constant
velocity.

We find results consistent with the theory of self-
organized criticality [1]. That is, we observe robust
power-law distributions, whose extension is limited only
by the size of the system. In this way we conclude that
inertia does not necessarily destroy SOC (if this were true
SOC would be only an academic theory). There is a re-
cent study on cellular automata systems with inertial
effects to model sandpiles [3]. It was found that the iner-
tia destroys SOC in the models they considered. This is
not the case in the train model. The system studied in

[6,7] also has inertia. However, we found [11] that the
self-organized critical state occurs only in a very small re-
gion of the parameter space in the other Burridge-
Knopoff model.

The paper is organized as follows. In Sec. II we give a
description of the train model. In Sec. III we present our
numerical results on the scaling relations and Sec. IV we
dedicated to discussions.

II. MODEL DESCRIPTION

The model we study is shown schematically in Fig. l.
It consists of a chain of N blocks of mass m coupled to
each other by harmonic springs of strength k. The blocks
are in contact with a rough surface. Between the blocks
and the surface there is a velocity-dependent frictional
force given by some function F of the blocks velocity.
One end of the chain is pulled with a constant velocity U.
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FIG. 1. Mechanical model consisting of a chain of blocks on
a frictional surface. The blocks are connected by coil springs
and the chain is pulled at one end with a small constant veloci-

ty.

The equation of motion for the moving blocks is given

by
FIG. 2. Schematic representation of the friction force.

mXJ =k(X&+,—2X +Xi )) F(X—~), X~.WO (2.1)

with j =1, . . . , N, X~+,=0, and Xp=vt. Xj denotes the
displacement of the jth block measured from its equilibri-
um position. We assume a friction force of the type [6]

F(X)=F0@(X/u, ), (2.2)

where 4 is a monotonously decreasing function of X,
4(0)=1, and u, is some velocity that characterizes the
dependence on Fwith X.

With the introduction of the variables

r=cu t, co =klm, Ui=kXJ/Fo,

Eq. (2.1) can be written in the following form:

U = U +, —2 U + UJ, —4( UJ /v, )

(2.3)

(2.4)

@(x )= 1+2ax
if x&0;

( —co, 1] if x =0, (2.5)

which is shown schematically in Fig. 2. That is, the stat-
ic friction can take any value from —~ to 1. In this way
backward motions are not allowed. Larger values of a
means less friction and consequently larger events. Note
that the only nonlinear element in the system is the
velocity-weakening friction force.

In this model a complex behavior is naturally obtained
without any kind of embedded randomness, not even in
the initial conditions. In other words, this model is com-
p/etely deterministic. The dynamics of the system is as
follows: suppose that at the initial instant all the blocks
are at rest. As the time evolves, the first spring is
stretched by the driving rnechanisrn until the force ap-
plied to the first mass exceeds the static frictional force,

with U~+, =0, Uo=v~, v=u/Vo, v, =u, /Vo=(2a)
and VO=FO/&km. Dots now denote differentiation
with respect to ~. In a system of a single block the quan-
tity Fo/co~ is the maximum displacetnent of the pulling

spring before the block starts to move; in the absence of
dynamical friction, 2m. /cu and Vu are, respectively, the
period of oscillation of the block and the maxirnurn veloc-
ity it attains. In the new rescaled system, Vp =1 is, there-
fore, the reference velocity.

After rescaling the parameters and variables we see
that the model is completely described by two dirnension-
less parameters v and a. In our calculations we use a
friction force given by

W„=—g U
1

j=l, n

(2.6)

and using Eq. (2.4), we find the equation of motion for
8'„, which is given by

W„=—0„W„+1—P( W„/v, )+vs, (2.7)

where 0„=2/n. The solution of (2.7) in a linear approxi-
mation with P( W„/v, ) =1—2aW„ is

W„(r)= [0 exp(iI „v)—0+exp( i I „r)]-
2Q„i I „

2av vt
+0". +Q. ' (2.8)

where 0+=a+iI „, I „=(0„—a )'~ . In the solution

at which time the first mass moves. It slips a certain dis-
tance and stops. This reduces the extension in the first
spring but at the same time stretches the second spring.
The one-block events continue to occur until the spring
force on the second block exceeds the static frictional
force. Then an event involving two blocks is observed
and the spring that connects the second to the third block
is stretched. Thus, events involving three, four, and more
blocks appear during the time evolution. Finally, we see
a larger event involving all the blocks of the chain, which
rebuilds the system. A new sequence of events starts. In
general conditions, the sequence of events are not period-
ic, since the friction force amplifies instabilities [6]. Note
that in this model an event that involves the ith element
of the chain necessarily involves all the blocks with j (i.

In Fig. 3(a) we show a typical time evolution for the
train model where the initial conditions are the blocks
stuck and in their equilibrium positions. The blocks that
are moving are represented by black dots. A blow up of
Fig. 3(a) is shown in Fig. 3(b). The parameters used are
N =20, v=0. 1, and a=0.6. Events of several sizes are
observed. Initially, the events involve few blocks, then
larger events appear, which are preceded and followed by
smaller events.

Some analytical studies can be performed for the
center-of-mass motion of the blocks analogous to the
studies done in [6]. Suppose that n blocks (n & N) are in
a spatially homogeneous configuration and assume that
this group of blocks slips as a whole. Denoting the coor-
dinate of the center of mass as
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(2.8) we considered the initial conditions
W(r=0) = W(7.=0)=0. For a =0, we have the approxi-
mate solution

(2.9)

The time duration of the events and the displacement of
the center of mass are, respectively,

FIG. 3. Temporal evolution of the events in a chain of
N =20 blocks, a=0.6 and v=O. l. The ordinate refers to the
block index j and the abscissa to the rescaled time ~. A black
dot means U, )0.

lations. If 0. is small, we may see events which have a
maximum velocity smaller than the characteristic veloci-
ty. These events have negligible nonlinear effects and the
displacement of the blocks is proportional to the pulling
speed, as predicted in the linear approximation [Eq.
(2.11)j. We also observe events of intermediate sizes
where the blocks attain velocities of the order or larger
than the characteristic velocity. Finally, we see the larg-
est events, that involve all the blocks of the chain, and
where the blocks attain very large velocities. For the two
last types of events, the pulling velocity has practically no
inAuence on the scaling relations we find, since we are
considering a region of the parameter space where
v « v, . We choose a typical example of our simulations
to show in Fig. 4(a), the maximum velocity U,„attained
by the blocks versus the number of blocks n moved in the
event. In this example we have v=0. 1, +=0.6, and
N =100. We do not see a one-one relationship between
U,„and n (except for n = 1) which reflects the fact that
several solutions for U,„exist depending on the initial
positions of the blocks at the beginning of the slipping
event. In the example we see events with U,„&v„
U,„&v„and U,„»1 (when all the blocks are dis-
placed). Figure 4(a) indicates the existence of a power-
law relation for U,„versus n (which we do not investi-
gate here in detail).

A particularly important quantity in earthquake mod-
els is the moment associated with an event. The moment
M is a measure of the size of the event, and it is defined as

M =+5U, ,
J

(3.1)

where the sum is over the blocks displaced during the
event. We investigate the moment M as a function of n.
Again, as we show in Fig. 4(b), we find no one-one rela-
tionship between these two quantities (except for n = 1},
as in thecaseof U „.

From Fig. 4(b) it is clear that a power-law scaling
seems to exist between M and n. In fact, this becomes
even more evident if we calculate the average moment M
of the events involving n blocks. We find that the rela-
tion

5~=2~/0„ (2. 10) M(n) =Mon (3.2)

and

58'„=2~v/0„. (2.11)

III. SCALING RELATIONS

Our numerical simulations show the existence of events
of several sizes in the train model which obey scaling re-

From Eqs. (2.9)—(2.11) we see that the maximum velocity
attained by the blocks is greater than the pulling velocity
and that their average velocity is 58'„/5~=nv/2, which
is larger than the pulling velocity for n )2. The linear
approximation underestimates the motion of the blocks;
for nonvanishing a the numerical calculations give larger
values for the displacement of the blocks, as well as for
the maximum velocity they attain.

holds for a wide range of event sizes. In Fig. 4(c) we

display the results for two typical cases with +=0.6 and
N =100 with v=0. 1 (solid line) and v=0. 01 (dashed
line}. For this example, A, =2.0. We see that the sizes of
the smallest events are affected by the pulling velocity
and therefore they have separate scalings for the two
different pulling speeds. The events with U, ~v, (in

this example this corresponds to n ) 10) have negligible
inhuence from v and for the two different pulling speeds
they show the same scaling. So there is a crossover from
the region where the event sizes scale with v to a region
where they are independent of the pulling velocity. The
events with n =N attain very large velocities ( U,„»1)
and do not fall in the power law governed by Eq. (3.2).

Now we study the statistical distributions associated
with the slipping events of the train model. Generally,
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we start the system with all the blocks at their equilibri-
um position and at rest. Before we start to compile
statistics we let the system evolve until the first event in-
volving all the blocks occurs. That is, we neglect a tran-
sient period to allow the system to reach a statistical sta-
tionary state. We compute the distributions for about
100 loading cycles (that is, 100 events involving all the
blocks).

First, we calculate the frequency of events p(M & M')
that have moment greater than M'. For a wide range of

{a}

10'

parameters, we find a power-law distribution of the
Gutenberg-Richter type,

p(M & M') = AM' (3.3)

Figure 5(a) shows the results for p(M &M') for the two
typical examples specified above. For v=0. 1 (solid line),
the simulation involves 20000 events and for v=0.01
(dashed line), it involves 150000 events. This corre-
sponds, respectively, to 120 and 100 loading cycles. For
both cases there are clear power-law distributions for
several decades with 8 =0.60. As v decreases, the small-
est events deviate from the scaling obeyed by the events
of intermediate sizes, for the reasons discussed in the pre-
vious paragraphs. Surprisingly, we see that the events
that involve all the blocks seem to have the same 8 ex-
ponent as the events of intermediate size (with n (N).

This model obeys the sum rule [10]
Umax —f Mp(M)dM =v,e

N
(3.4)

10-' ~ ~ I

1O'

~ ~ ~ I

1O' 2x10'

where 6 and 8 are the smallest and largest moments of
the system, respectively. The sum rule is a conservation
law which says that the blocks move with an average ve-
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FIG. 4. Power-law scalings associated with (a) maximum ve-

locity attained by the blocks (b) moment, and (c) average mo-
ment as a function of the number of blocks displaced in the
event. The simulations are for a chain of N=100 blocks,
a=0.6 and v=0. 1. In (c) the dashed line corresponds to
v=0.01. U,„and M for n =1 are not shown. The respective
values are U,„=0.2040 and M =0.3680.

FIG. 5. Power-law distributions associated with (a) frequency
of events p(M & M') with moment greater than M' and (b) fre-
quency of events p(n) that involve n blocks. The simulations
are for a chain of N = 100 blocks, a =0.6 and v=0. 1 (solid) and
v=0.01 (dashed). The events involving only one and two blocks
are not included in the statistics shown in (a).
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locity equal to the pulling speed. In [10] we have shown
that if p is given by Eq. (3.3) then, in order to have con-
vergence on the left-hand side of (3.4) in the limit b, ~0,
one must have B ~ 1. This result should be valid for real
earthquakes, as indeed is the case, and for friction models
in general where there are two surfaces sliding against
each other. Thus, our results are in agreement with the
theory developed in [10].

We also investigate the frequency of the events involv-
ing n blocks and observe a region with a power-law rela-
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FIG. 7. p(n) for N=25 (dotted), N=50 (dashed), N=100
(solid), and N =200 (dotted-dashed) with a =0.6 and v=0. 1.
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FIG. 6. Dependence on a of the scaling exponents for the
events of intermediate sizes for (a) k, (b) B, and (c) co in a chain a
of N = 100 blocks and v =0.1.

for the events with n (N, as Fig. 5(b) shows. In this ex-
ample, co =2.2. Again, the statistics of the smallest
events are affected by v. Now the events with n =N obey
a separate distribution.

We have studied the train model in a wide variety of
parameter values with system sizes up to N =200 to in-
vestigate the dependence of the scaling exponents A. , B,
and co with v, a, and N (here we do not concentrate much
attention on the coefficients of the power laws). As we
have shown, v affects only the scaling of the microscopic
events. The scaling exponents A, , B, and co as a function
of a for the events of intermediate sizes are shown in

Figs. 6(a), 6(b), and 6(c), respectively, for a chain of
N =100 blocks and pulling velocity v=0. 1. The estimat-
ed errors for the scaling exponents are approximately
+5% of the corresponding ordinate values. The three ex-

ponents are smoothly decreasing functions of a. As a be-
comes larger all the exponents seem to reach a plateau.

We have seen no variation of the scaling exponents k,
B, and co with the size of the chain, if the chain is not too
small. We also have found that the coeScients A, M0,
and 8' do not depend on N. As an example, Fig. 7
shows p( n ) for four different system sizes
(N =25, 50, 100,200) with a=0.6 and v=0. 1.

We have also investigated the train model for smaller
values of a. We have found that in the region o, ~0.4
there is a transition to a different regime, where the

power laws are of limited extent. The behavior of the
model in this parameter region is currently under investi-

gation.

IV. DISCUSSIONS

Perhaps the train model is too simple to be called an
"earthquake model. " However, we would like to present
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some comparisons between the results found in real
earthquakes and in the train model. The three power
laws we have studied in the previous sections are also ob-
served in real faults. The distribution governed by Eq.
(3.3) (the Gutenberg-Richter law) has been studied exten-
sively in nature. The latest studies show that B=—', for
earthquakes with magnitude smaller than 7.5 [12] (the
magnitude of an event is proportional to the logarithm of
the moment). For larger magnitudes, a different ex-
ponent seems to exist [12]. There are fewer studies for
the two other scaling laws in real earthquakes [Eqs. (3.2)
and (3.5)]. In this case, n would represent the size (area)
of the fault. Kanamori and Anderson [13] found that for
large earthquakes in several regions of the Earth, A= —,'.
In a recent study, Scholz and Cowie [14] reported values
for co. They found for two region in Japan co=2. 1.

We note several differences between the train model
and the Burridge-Knopoff model studied by Carlson and
coworkers [6,7]. In first place, they observe a complex
dynamics only if there is randomness in the initial posi-
tions of the blocks. This is not necessary in the system
studied here. There is a correlation length in the model
they investigated which limits the extent of the power
laws. Only with a fine tuning of the parameters is it pos-
sible to obtain power-law distributions with large correla-
tion lengths [11]. The events that belong to the scaling
region are very numerous; however, they contribute less
than 1% for the forward motion of the fault and more
than 99% of them have maximum velocity smaller than
the pulling velocity [11]. In the train model the power
laws are limited only by the size of the chain. The events
involving all the blocks, which do not always belong to
the scaling regime, have a contribution for the sum rule
which is less strong. For a chain of 100 blocks and

v=0. 1, the motion due to the events with n &N for
+=0.6 is about 16%, whereas for a=4 it decreases to
approximately 10%%uo.

The other two power laws we found in the train model,
and which are also found in real earthquakes, are not ob-
served in the model investigated in [6,7] if the parameters
are not fine tuned.

One may ask which system, the train model or the
model studied by Carlson et al. , is more realistic to de-
scribe the dynamics of earthquakes? Do they model
different types of faults? Our response is that we do not
know. Our point of view is that both systems are ex-
tremely simple and several important features of the se-
ismic dynamics are neglected, as, for example, the com-
plicated geometry and interactions of faults of any real
region. We believe that these systems should be taken
only as toy models in the investigation of the stick slip
processes of real earthquakes.

In summary, we have shown that the deterministic
mechanical model introduced by Burridge and Knopoff,
where the driving mechanism is only at one point of the
chain, shows robust power-law distributions according to
the self-organized criticality theory. The only correlation
length in the model is the size of the chain, if the dissipa-
tion is not too large (a ~ 0.4).
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