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We present a continuation method for experimentally tracking unstable periodic orbits by slowly vary-

ing an available system parameter in a dynamical system. The method does not depend on an explicit

model, but on the signal analysis of a measured time series. Unstable periodic orbits can be tracked

through various bifurcations. We apply this to a Du5ng-like circuit and compare the results to an ap-

proximate model of the circuit.

PACS number(s): 05.45.+b

INTRODUCTION

When a model exists for a dynamical system, theoreti-
cal tools are available which allow the location of steady-
state, periodic, and aperiodic phenomena. Furthermore,
numerical methods have been developed which allow
both stable and unstable phenomena to be located [1]and
followed as a function of parameters, creating various
theoretical bifurcation diagrams. Here the theorist has
access to various continuation or homotopy techniques
which enable him to follow the unstable trajectories
[2-4]

In a parallel manner, recent progress in the theory of
nonlinear dynamical systems has begun to provide the ex-
perirnentalist with a collection of new tools which have
generated new areas of exploration from the measure-
ment of a single time series. For example, if the experi-
ment exhibits deterministic chaos, the relevant dynamics
may be constructed from a single time series by using any
one of a number of embedding techniques [5—7]. In addi-
tion, once the attractor is constructed, unstable periodic
orbits contained in the attractor may be located using
techniques such as those found in [8].

One new method, in particular, has emerged as a po-
tentially useful experimental tool. This is the Ott-
Grebogi-Yorke (OGY) [9] technique for stabilizing the
unstable orbits in a chaotic attractor. Using this it is pos-
sible to keep the system on an unstable orbit contained in
a chaotic attractor by making small changes in some ac-
cessible parameter.

We show here that we can combine the OGY tech-
nique with the ideas of continuation [10] in parameters to
now allow experimentalists to follow unstable orbits over
large ranges of parameters and through bifurcations.
This provides experimental access to dynamical objects
which are usually avoided by the system because of their
instability. Hence, experimental mapping of bifurcation
diagrams becomes a possibility for unstable as well as
stable trajectories even in nonchaotic regimes. We test
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this approach on a Duffing-like circuit.
An extension of this is that one can now consider the

problem where the parameter is changing as a function of
time. The location of the fixed point of the orbit, there-
fore, will also change as a function of time. If the
parameter-dynamics time scale is sufficiently slow com-
pared to the state dynamics, then one may implement the
technique we present to keep the system stabilized on the
unstable orbit.

CONTINUATION METHOD

This method is applicable to Bows which are reduced
to maps by taking a Poincare section. For simplicity, let
us assume that we want to track a period-1 saddle, i.e.,
we describe the algorithm for tracking gF(p) as p varies,
where )F(p) =F((F,p) for a given map F, which is not ex-

plicitly known. Full details of the algorithm may be
found in [10].

The method we are using requires approximate values
of the unstable orbit and corresponding eigenvectors and
eigenvalues for some initial value of the parameter p.
Subsequent values, as we increase (or decrease) p, are
determined by a predictor-corrector method. The predic-
tion step can be done in various ways, depending on the
amount of computer power in the experiment (see [10]).
Here a simple increase in the parameter and taking the
corresponding value of the unstable orbit as the predicted
value is enough for prediction. The correction step is
then able to bring the orbit back close to the correct
value.

To control the system, we use OGY's algorithm; i.e.,
we choose p so that the next iterate will fall on the local
stable manifold of the orbit. This amounts to modifying
p, by

&p=«k. 4) f. —
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where gF is the predicted point, g„ is the current iterate,

f„ is an eigenvector along the unstable direction, and C is
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given by

~u 1C=
A,„—1 g.f„ (2)

To determine if gF is close to the true fixed point we

determine 5p several times, say 100, and then examine the
mean of these fluctuations in the parameter p. If the pre-
dicted value would be the exact value of the orbit, this
mean would be close to zero (to within experimental
noise).

The error in the fixed point is given approximately by

C. (3)

EXPERIMENTAL TEST

The Duffing circuit has been described elsewhere [11].
This system may be modeled by the following equations:

=a[A cos(cot)+C —0.2y —G(x)],
dt

dx
dt

=ay,

(4)

We minimize this error by varying the estimate of the
fixed point (F at this new parameter value which mini-
mizes (5p ). The above procedure locates a new point on
the curve of fixed points, which is used for further predic-
tion, as the procedure is repeated.

The entire process can be automated giving experimen-
talists a continuation technique for following unstable or-
bits in mapping out bifurcation diagrams. Below we
show this technique applied to a nonlinear circuit.

The circuit was kept on the unstable period-1 orbit by
using a control circuit very similar to the one described in

[13]. The control signal from the control circuit was used
to amplitude modulate the output of a sinusoidal function
generator. When the control circuit was set to control
about the exact fixed point, which was at x =0.493 V
when A =7.4 V, the average control signal was zero. If
the circuit was set to control about some value near but
not the same as the fixed point, the average of the control
signal was not zero.

Once the location of the unstable period-1 fixed point
was found for some drive amplitude A, this value was
used as a zero-order estimate for the location of the fixed
point at some other value of A. Since the actual fixed-
point location was not the same as this estimate, the aver-
age of the control signal was not zero. The control point
for the circuit was then adjusted to find the actual loca-
tion of the fixed point by zeroing the average control sig-
nal. For the drive amplitude A =7.4 V, for example, the
unstable period-1 fixed point was at x =0.493 V. The
drive amplitude was then changed to 7.1 V, while the
control point was left at 0.493 V. The average of the con-
trol signal was then about —50 mV. When the control
point was adjusted to 0.523 V, the average control signal
was zero, indicating that for A =7. 1 V, the unstable
period-1 fixed point was at x =0.523 V.

In this fashion the location of the unstable period-1
fixed point was tracked from the chaotic regime down
through the period-doubling cascade to the period-
doubling point, where the period-1 orbit was stable. The
locations of the unstable period-1 fixed point, the stable
period-1 fixed point and the stable period-2 fixed point
are plotted as functions of the drive amplitude A in Fig.
1. The black circles show stable fixed points while the
open circles show unstable fixed points. The small black

0 [abs(x) & 1.2]
G(x) = x —1.2sgn(x) [1.2 & abs(x) &2.6]

2x —3.8 sgn(x ) [2.6 & abs(x) ],

(6)

2
I'

where A is the amplitude of the cosine drive and C is a
constant offset that may be added to the drive. The time
factor a is 1X10 s '. The function G(x) is a piecewise
linear approximation to x which was used to make the
circuit easier to characterize. For this study, the drive
frequency ~ was 726 Hz, the offset C was 0.3 V while the
drive amplitude A was varied.

From this circuit we generated a first return map in the
chaotic regime by digitizing the value of the x signal from
the circuit as the drive signal crossed zero in the positive
direction. We then made a plot of x at the (n + 1)th zero
crossing vs x at the nth zero crossing. We made this map
with the drive amplitude A =7.4 V. The techniques de-
scribed in [12] were then used to find the unstable
period-1 fixed point from the return map and to deter-
mine the parameter control variation necessary to keep
the chaotic system on the unstable period-1 orbit by mak-
ing small changes in the amplitude of the driving signal.
In practice, these methods were robust enough that one
could actually find periodic orbits by simply scanning
through possible fixed-point values and control-
parameter-variation factors.
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FIG. 1. Bifurcation diagram for a periodically driven Duffing
circuit. 3 is the amplitude of the drive and xf is the location of
a fixed point found by digitizing the value of the signal corre-
sponding to the x variable when the drive signal crossed zero.
The dark circles represent stable fixed points while the open cir-
cles represent an unstable fixed point tracked by the method de-
scribed in the text. The broken lines indicate the presence of
chaos.
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FIG. 3. Mean value of the correction signal (5p) as the
drive amplitude is changed while the control point is fixed at
0.509 V, which is the location of the unstable fixed point when
A =6.6 V.

FIG. 2. A bifurcation diagram of xf as a function of A. Un-
stable periodic orbits are shown as open circles. All other orbits
are either periodic or chaotic attractors. The frequency co is

0.4575, a = 1.0, and C =0.3.

dots at the highest drive voltages correspond to chaos in
the uncontrolled Duffing circuit.

A bifurcation diagram similar to the Fig. 1 may be
made from Eqs. (4)—(6). The system is periodically
driven, and a discrete representation of the dynamics is
constructed by sampling the solution (xf,yf ) every time
the drive crosses zero with positive slope. For each drive
amplitude A, xf is plotted in Fig. 2. Unstable period-1
and -2 points are depicted as open circles, while all other
points are attractors, both periodic and chaotic. (The un-

stable branch of period-2 orbits emanating from the
period-1 branch is not shown here, since the bifurcation
branch is almost vertical, making it very difficult to com-
pute accurately. )

From a comparison of the two bifurcation diagrams,
one may see that the techniques described here allow the
accurate tracking of unstable periodic orbits in an experi-
ment. This circuit is not an unrealistic physical system
that was carefully contrived just to demonstrate this
method; rather, the circuit uses many inexpensive (and
noisy) operational amplifiers, and the control circuit is

simply built with inexpensive and low precision parts.
Finally, the crucial aspect of the correction step is that

the error fluctuations Eq. (3) be a monotonic function of
the fixed-point estimate g'~ so that adjustment of gF is
guaranteed to minimize (5p ) at the proper gF estimate.
Figure 3 shows an experimental plot of the average error
as a function of gF at the bifurcation parameter value of
A =0.588 showing just that monotonic relation.

CONCLUSIONS

The important feature of our method consists in the
fact that we do not need to know explicitly the equations
of the system, which makes it especially useful to experi-
mentalists and applicable to a wide variety of problems.
The method also depends only on the application of a
small-amplitude method of controlling unstable fixed
points. By using other control methods, the tracking
technique can be extended to higher-period orbits [13],as
well as aperiodic signals [14].

Our technique now gives the experimentalists in
dynamical systems an exploratory tool where regions of
phase space previously not attainable are now within
reach. In a previous study, it was shown how an unstable
period-1 orbit kept pseudoperiodically driven period-
doubled circuits in phase with each other [11]. This
method could be used to locate the unstable period-1 or-
bit in this experiment, making it easier to study the
effects of pseudoperiodic driving. It will be shown else-
where how this method can be applied to such problems
as accurate bifurcation location, branch switching be-
tween attractors, and the location of attractors having
small basins of attraction.

Note added. After this work was completed, the au-
thors became aware of a paper [15] by Z. Gills et al. ap-
plying the same technique to a laser experiment.
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