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Atomic emission rates in inhomogeneous media with applications to photonic band structures
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There has been a great deal of interest in periodic dielectric materials that exhibit photonic band

structures. One of the more interesting features of such a substance is its ability to alter the emission

rate of probe atoms embedded in the periodic lattice. Large enhancements and complete inhibition of
emission rates can be obtained. It has been known for some time that the influence of a cavity on atomic
emission is essentially a classical effect. Hence, we develop a general classical treatment of radiation
rates in an inhomogenous medium. Our results agree with those of a fully quantum calculation, and are

applied to a simple scalar model of a dipole in a one-dimensional periodic lattice of the Kronig-Penney

type.

PACS number(s): 42.60.Da, 03.50.De, 41.20.Bt, 42.25.Gy

I. INTRODUCTION

It was in 1946 that Purcell [1] first predicted that non-
trivial boundary conditions on the electromagnetic field
in the vicinity of an excited atom could alter the atomic
emission rate. This hallmark effect of cavity QED has
been investigated theoretically [2] and experimentally [3]
in cavities with simple geometries such as conducting
plane mirrors, spheres, and so forth. In the wake of the
theoretical promulgation of [4] and the experimental in-

vestigation into [5], periodic dielectric lattice structures
that exhibit photonic frequency passbands, and band
gaps, concern has turned to the question of the behavior
of atomic emission rates in such materials [6].

It has been known for some time now that the e6'ect of
a cavity on emission rates of atoms is essentially classical
[7—9]. This can be seen by considering Fermi's golden
rule. Suppose we have a single two-level atom coupled to
the electomagnetic field. Further suppose that the atom
is in an initial excited state ~i ) and the field contains no
photons. The state of the system we write ~i, 0&), where

0& indicates the lack of photons of wave number k. Let
the final state of the system consist of the atom in some
final state ~f ) after the release of a photon. The final

state of the system is then ~f, lz). Fermi's golden rule

yields for the transition rate wf; the following:

where H;„,is the interaction part of the Hamiltonian that
couples the atom to the field, co& is the frequency of the
emitted photon, and p is the density of modes at that fre-
quency with wave number k. The contribution of a cavi-
ty is to alter the mode density p. But in the Wigner-
Weisskopf regime the mode density is the same classically
or quantum electr odynamically: whether or not you
quantized those modes is of no consequence as far as the
influence of the cavity is concerned. Hence, the compu-
tation of the cavity-induced emission rate can be carried

out equally well classically or quantum electrodynamical-
ly, as has been shown explicitly by Morawitz and others
[7—9]. In the case of photonic band materials, the ex-
istence of band gaps has been demonstrated by solving
numerically the classical electromagnetic-wave eigenval-
ue equation [10]. Since the emission rate, as we shall
demonstrate, depends only on the structure of these clas-
sical solutions, one may directly adapt these codes to the
computation of atomic relaxation times without having
to invoke quantum mechanics. This fact should im-
mensely simplify such calculations since the need for
working with second quantized noncommuting operators
will be obviated.

In Sec. II we will develop a general classical formalism
for the computation of the atomic emission rate of a
point dipole inside a material with inhomogeneous dielec-
tric constant e(r). Our result is found to be equal to the
solution found quantum electrodynamically by Glauber
and Lewenstein [11]. In Sec. III we apply the formalism
to the scalar case of a radiating dipole localized between
a pair of perfectly reflecting, one-dimensional mirrors —a
system that has several features in common with a simple
one-dimensional model for a photonic band structure,
discussed also in Sec. III. This latter model consists of a
one-dimensional periodic array of 5-function increases in
the dielectric constant —a form of the familiar Kronig-
Penney model from solid-state theory [12].We apply our
formalism from Sec. II to the radiation rate of a point di-
pole localized inside the lattice and derive an exact for-
mula for the emission rate. This exact analytical solution
is possible due to the scalar, one-dimensional nature of
the model, but it nevertheless exhibits emission quench-
ing at photonic band-gap frequencies and also enhance-
ment and inhibition inside the bands themselves as a
function of both the dipole's location within the lattice
and the dipole emission frequency.

We would like to stress that, although we apply our
formalism to a scalar, one-dimensional model for ease of
calculation and simplicity in interpretation, our general

46 612 1992 The American Physical Society



46 ATOMIC EMISSION RATES IN INHOMOGENEOUS MEDIA. . . 613

II. EMISSION IN AN INHOMOGKNEOUS
ISOTROPIC MEDIUM

A. Derivation of the Green's function

We are interested in Maxwell's equations in a medium
in which the dielectric constant @=e(r) is position depen-
dent, and the magnetic susceptibility p=1. These are

& asVXE=-—
c at

(2a)

V XB=—e(r) + J,
c dt c

V [e(r)E]=4np,

V B=O,

(2b)

(2c)

(2d)

in Gaussian units. Since we are interested in a current
source J that produces transverse waves that propagate,
we may take the charge density p=—0. That implies, via
the conductivity equation

V J+ =0,a =
ai

(3)

that J=J~ is transverse, i.e., V J=O. We may then
choose a transverse gauge condition in the form

theory is fully vectorial and three dimensional and is
amenable to numerical methods.

band structure of the material [10]. The az(r) obey the

gauge condition

V.[e(r)a„(r) ]
—=0 (9)

and are therefore transverse with respect to this gauge.
[Henceforth we shall call any vector V that satisfies the e
transverse gauge condition (9) or (4) "e transverse, " ab-
breviated "Ej "].

The az(r) are complete in that any e transverse vector
may be expanded in terms of these normal modes. As
Glauber and Lewenstein have pointed out [11], the ap-
propriate completeness relation can be shown to be

fd k az(r')az(r) =5, (r' —r), (10)

where 5, is the e-transverse 5-function dyadic. This 5-

function reduces to the usual free-space transverse dyadic
5 function when e( r )~ 1.

We are interested in how A propagates through an in-
homogeneous medium; thus we would like to construct
an e~ propagator for A. This we may do through the aid
of the e~ 5 function and its normal-mode expansion, given
in (10).

The dyadic propagator D(r, t;r', t') obeys the homo-
geneous wave equation [13]

+ l a2
V, X V, X D(r, t;r', t')+ e(r) D(r, t; r', t') =0,

c dt

V [e(r) A]=0 (4)

for the vector potential A. This gauge automatically
satisfies Maxwell's equation (2c) if there is no charge.
Now the absence of charge density p=0 implies that the
scalar potential y is incidentally zero. Hence, E and B
are given in terms of A via

with subsidiary conditions

D(r, t;r', t')~, , =0,

—D(r, t;r', t')~, =, =c 5, (r —r'),

(12a)

(12b)

1 aAE= ——
c at

(sa)

B=VXA (5b)

that, when combined with Maxwell's equations (2), can be
manipulated to yield the wave equation for the vector po-
tential A as

VXVX A+ e(r) A= J .
c2 at2 c

(6)

Let us now consider a single harmonic for the solutions
of the homogeneous form of Eq. (6) with J=O. The
homogeneous solutions are

Ag(r, &) =ay(r)e

where

2
COg

V X V Xal, (r) — e(r)az(r) =0
c2 (8)

is the appropriate Helmholtz eigenvalue equation. We
note here that it is the solution of Eq. (8), along with the
dispersion relation relating k to co&, that is carried out-
often numerically —in order to elucidate the photon

with the same equal-time conditions (12) and boundary
conditions that are imposed on D. The Green's function
and propagator are related via the causality condition

G(r, t;r', t') =e(t t')D(r, t;r', t'), — (14)

where e is a unit Heaviside step function that turns on
when t =t'.

The transverse propagator D, like any e~ transverse
function, may be expanded in terms of the normal modes
a&(r). Using the time translation invariance, we assume
an expansion of the form

as well as meeting whatever boundary conditions are to
be imposed on A.

We distinguish between the propagator D that satisfies
the homogeneous equation (11) and the dyadic
Green's function 6 that satisfies the inhomogeneous
wave equation

1 a2
V, XV,XG(r, t;r', t')+

2
e(r) 2 G(r, t;r', t')

c2 at2

4m 5(t t')5 (r —r'), (13)—
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c}t
—D(r, t;r', t')l~=& =f d k bz(r')az(rkoz

=c 5, (r' —r) . (16)

Invoking the completeness relation (10) for the ak and
comparing like coefficients, we have

C2
bg(r') = ag(r'),

COg

in which case the normal-mode expansion of the propaga-
tor, the Green s function, and their time derivatives are,
respectively,

D(r, t;r', t)= fd k b&(r')a&(r)sin[co&(t —t')] . (15)

Since condition (12a) implies that D is an odd function of
t —t, the sine function insures automatic satisfaction of
this. The unknown coefficients b& can be determined by
using condition (12b):

We see that the Green's function obeys the wave equa-
tion and the correct boundary conditions since the ak do.

B. The power output of a localized source
in the medium

We are interested in how the inhomogeneous medium
affects the emission rate of a localized source. The idea is
as follows: A current density J that is radiating will be
immersed in its own electric field that has been emitted at
earlier times and that has been reflected from inhomo-
geneities in the medium. The Green's function may be
used to address the problem of determining this field
since G contains all information about e(r) and boundary
conditions through its dependence on the normal-mode
eigenfunctions az(r). The rate at which a current density
source J does work against a surrounding electric field E
is given by [14]

P(t)= —f dV J(r, t) E(r, t), (19)
v

D(r, t;r', t')=c f d k az(r')a&(r)
sin[tory(t

—t')]
(18a)

P(t)= f dV—J(r, t) ~ (20)

where V is a volume containing J. From Eq. (5a), relating
E= —(1/c)B A/dt, we can write

—D(r, t;r', t') =c2f d3k az(r')a„(r)cos[coz(t t')], —

(18b)

G(r, t;r', t')=c B(t t') f d k a—z(r')a„(r)

Now in the absence of any externally applied fields, the
inhomogeneous wave equation, Eq. (6), can be formally
solved for A in terms of J via the Green's function G as

A(r, t) = f dt' f d V'G(r, t;r', t') J(r', t)
C —O0 v

sin[co„(t—t')]
X (18c) f dt' f dV'D(r, t;r', t') J(r', t'),

—00 V
(21)

G(r, t—;r', t') =c B(t t') f d k a—~(r')a„(r)
at

Xcos[coz(t —t')] . (18d)

I

where we have used Eq. (14) relating G and D.
Combining Eq. (19) for the power output with the solu-

tion, Eq. (21), for A, we have

P(t) = f dt' f d Vf d V' J(r, t) —D(r, t;r', t') J(r', t')
v v Bt

(23)

=2m. f d k f dt' f dV f dV'[J(r, t) az(r)][ J(r', t') az(r')]cos[coz(t t')], — (22)
00 v v

where we have used the modal expansion (18b) for BD/Bt and we also have used the fact that D is an odd function of
t —t'. The Leibnitz formula was used to carry the d/B}t operator past the integral f ' dt'.

We now derive a remarkably simple formula for the total energy U(T)= f dt P(t) that has been emitted by our

localized source up to time T:

U(T)= f dt P(t)

=2mfd k f . dt f dt'f dV f dV'[J(r, t).a„(r)][J(r',t') a„*(r')]cos[cok(t—t'}]
00 00 V v

l CO

=m f d k f dt f dV J(r, t) a&(r)e

where we have used

cos[coz(t —t')] =Re[exp[icoz(t —t')] j

and the integration change of variables

f dt f dt'~ ,' f dt f —dt'

to arrive at the separated form in the last line of Eq. (23).
(See Ref. [13]). This is one of our primary results. This
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formula shows exactly how energy accumulates over time
in the field as a function of variations in the boundary
conditions and also the medium —information that is
contained in the normal-mode solutions a&(r).

We are primarily interested in embedding a radiating
probe in, say, a photonic band material with periodically
varying e(r) and then seeing how the radiation rate
responds to the surrounding medium. The simplest
current density J would be for an oscillating point dipole.
Hence we take

J(r, t) =cop p cos(copt)e(t)5(r —rp) (24)

for a harmonically oscillating point dipole with frequency
coo located at ro with real dipole moment p that is turned
on by the e function at t =0. Inserting this current den-
sity into Eq. (23) for the energy U(t), we can carry out
the time integration to obtain

sin [(cop—coq)t/2]
U(t)=ncopp fd k~az(r p)P~, (25)

(cop —
co&)

copp fd k~az(rp) P~ 5(cop coq)—
t~pc 2

=p( ao ), (26)

where we have used a standard representation of the 5
function,

sin(ax)
a~ oo 7TX

and the fact that 5(bx)=5(x)/~b~; also, p—=p/lpl.
may not in general simplify this further since k depends
on co& in a nontrivial way through the dispersion relation.
It is interesting, however, to note that the power output
of a point dipole is localized in space and in frequency.
Only those modes that satisfy the condition m&=coo affect
the emission rate, and they do so only at the location of
the dipole at r =ra. As we mentioned earlier, we see now
that the effect of the medium on emission rates is a classi-
cal phenomenon. It is comforting then that our classical-
ly derived formula (26) for the power output agrees with
the fully quantum electrodynamical result for spontane-
ous emission rates of a two-level atom obtained by
Glauber and Lewenstein [11]. Hence, to compute the
effect of an inhomogeneous medium on a dipole emission
rate, one may use our formula with classically generated
normal-mode functions az, solutions of the Helmholtz
equation (8), without fear that some quantum feature is

where we have dropped a "counterrotating" term con-—i (a)0+@)~)t
taining e ' " that will yield no contribution to the k
integration in the limit t ~ 00. We can now compute the
steady-state rate of power emission by considering
P(t) = U'(t) in the limit t ~~ when all transients arising
from the sharp turn-on at t =0 have died away:

P(t) = U'(t)

sin[2(cop —cog)t]=Scop p f d k
~ a~(rp ) p I

21T cop cog

being overlooked. The formula (25) then lends itself for
numerical calculation with the present computer codes
that generate az(r) classically for various different pho-
tonic band structures.

As a simple exercise in using the power formula, Eq.
(26), we apply it to the computation of the steady-state
power radiated by a point dipole in free space. The ap-
propriate normal modes are

a&(r) = (2a) e ' e&, (27)

dQgsin 0~=—
2 3

(2&)

which, when multiplied by a factor of 2 to account for
the two possible polarization degrees of freedom, yields
the usual free-space result for the time-averaged power
[14].

In Sec. III we find the normal modes az(r) for a simple
one-dimensional, scalar model for a photonic band struc-
ture. Using these, we may track the radiation rate of a
one-dimensional point dipole probe in such a material.

III. EMISSION RATES IN A PHOTONIC
BAND STRUCTURE

We now turn to an investigation of atomic emission
rates in two simple, one-dimensional systems. First we
consider a point dipole radiating between a pair of per-
fectly conducting, one-dimensional mirrors. This exer-
cise illustrates several features that appear when we treat
the case of a dipole radiating in a photonic band struc-
ture described by a one-dimensional Kronig-Penney mod-
el.

A. Emission between parallel mirrors in one dimension

We consider a simple one-dimensional model such that
only modes a& where e& p, =1 are considered, where
P=p/~p~; i.e., only modes polarized parallel to the di-
pole moment in one dimension are included. We imagine
these modes to be confined by parallel one-dimensional
mirrors with a radiating point dipole p located between
the mirrors as shown in Fig. 1. The normal modes in this
case are

1/2
2a„(r)=a„(x)= — sin(k„x), (29)

where the discrete set of wave numbers k„aregiven by

k„= =, n=1 2 3, . . .
C

(3O)

and where d is the mirror spacing. Physically, the only
allowable modes are those such that an integral number
of half-wavelengths A,„/2=d /n fit between the mirrors.

where the dielectric constant e(r)=1, and ez is a polar-
ization vector with ez k=0 for our transverse waves. In-
serting this into Eq. (26) for the power output, we obtain

4 2
Pfree3D dII

~

. ~2
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power p (a, g) as

pmirr 1D(
mirr 1D(

p free 1D(

( ) g sin (K„x)5„„,
cc)d

sin a„g5„„,
&n

(36)

I

I

, Xo

FIG. 1. Here we show an oscillating point dipole of dipole
moment p and frequency cop located at a point xp E(O, d) be-
tween a pair of one-dimensional, perfectly conducting mirrors
of separation d. Only electromagnetic radiation that is resonant
with the cavity at one of the discrete frequencies
co„=k„c=2mc/A, „willbe allowed, where an integral number of
half-wavelengths fit between the mirrors, i.e., n( „/(A, /2)=d for

=1,2, 3, . . . . This simple model has elements of photonic
band structure. Infinitely narrow "bands" occur for cavity-
resonnant frequencies co=co„,and photonic "ban gaps" corre-
spond to the nonresonant frequencies corno„. The dipo e wi

radiate only if its oscillation frequency ~p=co„,i.e., when the
dipole frequency lies in a band. Inside the band the dipole radi-
ates according to Eq. (36) which is plotted in Fig. 2.

where we have defined the unitless parameters a=Ed
cad /c,

a„:—ro„d/c =n~, n =1,2, 3, . . .

and

0—:x/d .

We have also dropped the subscripts naught on the d&-

pole frequency coo—+co and position xo~x. Again, only
resonant frequencies ra=ra'„=n'irc/d are selected by the

(31)

The discrete-mode, one-dimensional analog for the
power-ower-output formula (26) can be written

3 2

p""' ( )= g la„(x,)l 5„„COp P 2

c2

where the Kroniker 5 function contributes only if the di-

pole oscillation frequency rao=norrc/d is one of the
Insertin the mirrordiscrete resonant frequencies co„. Inse

'

g
normal-mode functions (29) into this power expression
(31), we obtain

2 2

pmirr 1D( )
—~

coo P
dc

(32)

4 2

p""" (ao)= dkl a(kx)ol 5(roo rok)
2 ~Op 2

2 2
(33)

with the one-dimensional plane wave modes
1/2

ak(xo)= 1

277

—ikxe (34)

which, when inserted into (33), yields

4 2
vr ~aP

p free 1D(
c' (35)

We now normalize the output between mirro, q.rs E . (32),
to the free-space output, Eq. (35), to obtain the unitless

where K„—:~„/c.
In order to normalize this in a convenient fashion, we

calculate the one-dimensional "free-space" power given
by the continuum-mode expression

y 0

FIG. 2. Here we plot the free-space-normalized power out-
ut for a point dipole between mirrors (Fig. 1), namely,pu or

p =p (Ed, x/d) from Eq. (36). Here E =co/c, where co is thehe di-
ole oscillation frequency, and x F(O, d) is the dipole location,

where d is the mirror separation, as shown in Fig. 1. The power

p has been normalized such that the plane p = 1 corresponds to
the one-dimensional free-space rate, We see that the
dipole radiates only when tuned to the resonant photonic
"band" frequencies, co=co„,(Ed =nm) which occur when an in-

tegral number of half-wavelengths fit between the mirrors. Fre-
quencies coWco„correspond to 'band gaps" in which the dipo e
does not radiate. Inside the bands the radiation rate is con-
trolled by the norm square of the normal-mode wave function
a /, (x) given y q.b E . (29). The radiation rate is always propor-
tional to la ~, (xi l', a feature of the general theory [see Eq. (26)j.
Hence, the minima and maxima of the power p rise and fall in

the x direction with functional dependence siin k x) of the nor-
mal modes, Eq. (29). Quantum electrodynamically, la ~, ix)l
gives the intensity of the vacuum field between the mirrors
which drives the spontaneous emission rate of an actual atom.
Hence, in classical theory (or QED) the dipole (or two-level
atom) radiates maximally at the antinodes and minimally at the
nodes of the normal-mode function la z, lx) l-—whether or not
this mode is quantized.



46 ATOMIC EMISSION RATES IN INHOMOGENEOUS MEDIA. . . 617

5 function, and hence only when the dipole is tuned to
these frequencies will it radiate. (The index n varies
discretely with changing dipole frequency, and n' indi-

cates a resonance of the cavity. ) We plot this function
p(a, g} as a function of the unitless frequency and posi-
tion parameters, a and g, respectively, in Fig. 2. We see
that there are infinitely narrow "bands" of dipole fre-
quencies co=co„where the dipole will radiate. Outside
these bands, the cavity sustains no normal modes of the
correct frequency —these are the "band gaps" —and the
dipole does not radiate. So already we can visualize even
a simple one-dimensional system consisting of a parallel
mirror cavity, in some sense, as a photonic band struc-
ture. In the dipole position variable g, we see what is
evident from the general power formula (26}, namely,
that the radiation rate is proportional to the norm-
squared normal-mode wave function whose frequency
corresponds to that of the dipole, i.e., p ~ ~a &, (x)

~
. Ra-

diation rates are hence maximal at the modal antinodes
and minimal at the nodes. This is a general feature of
atomic emission rates in any medium and is suggestive of
what we would expect quantum electrodynamically
where the a),(r) are quantized vacuum modes that drive
the spontaneous emission rate. In Sec. III B we consider
a one-dimensional Kronig-Penney model and compare
and contrast the results to those found here for the pair
of one-dimensional mirrors.

B. Emission rate in a one-dimensional

photonic band structure

a'(nd +0+ ) —a'(nd+0 )+gdE a (nd +0)=0, (39b)

and

a,"(x)+K at(x) =0, 0 & x & d (40a)

a&&(x)+K a„(x)=0, —d &x &0.

Hence, we write

(40b)

g (x)= pe&)r&+pe (41a)

For convenience, from here on we have taken @0=1,Eq.
(37). Now in region II we will also have a superposition
of left- and right-going waves, but the solution here must
be related to that in I by Bloch's theorem, as a result of
the periodicity of the lattice. Hence [12],

(x) e ikd( g—etc(x+d)+ye —iK(x+d)) (41b)

where k is the wave number of the overall solution ak(x),
still to be found. By demanding that a& and a» obey the
boundary conditions, Eq. (39), at x =0, we obtain the fol-
lowing matrix equation for the unknown coefficients A
and B:

where E —=cole. [An alternative derivation of these
boundary conditions, Eq. (39), is given in the Appendix. ]

Let us consider in Fig. 3 the two regions I—= (O, d) and
II—:( —d, O). In region I we make the sensible ansatz that
ak(x) is a superposition of left- and right-going waves of
frequency co:—Ec, a reasonable assumption, since

We consider a one-dimensional medium in which there
are periodic 5-function increases in the dielectric "con-
stant" of period d, as illustrated in Fig. 3. We write the
dielectric constant as

e(x) =eo+gd g 5(x —nd), (37)

A 04 ~
——0,

where

(42)

where g is a unitless constant that measures the 5-
function strength. This model is also applicable to a
three-dimensional, scalar, photonic band structure pro-
posed by John and Wang [15]. We now must use Eq. (37)
for E(x) to find the one-dimensional normal modes ak(x)
for this periodic structure. In one dimension the
Helmholtz equation (8) for a„(r)reduces to

2
COk

a "(x)+ e(x)a (x)=0 .
C2

Continuity of the electric field requires that

(38)

x 2d

a(nd+0+} —a(nd+0 )=0, n =0,+1,+2, . . . .

(39a)

Due to the 5 singularity, the usual requirement of con-
tinuity of the magnetic field, or, equivalently, the con-
tinuity of a'(x) does not hold. However, the correct con-
dition can be written in terms of a'(x) by integrating the
Helmholtz equation (38) directly over a small region
~x —nd~ & e at the location nd of each 5 function to ob-
tain the second boundary condition [12],namely,

FIG. 3. Here we show a one-dimensional Kronig-Penney
model for a photonic band structure that consists of an array of
5-function increases in the dielectric constant e(x), Eq. (37). We
locate a point dipole of frequency coo at a position

xone(O,

d) =I
in the first period of the lattice. (From periodicity, the radiation
rate in other periods will be the same. ) The normal-mode wave
functions ak(x), Eq. (4la), in the lattice period region I are de-
rived by applying Blochs' theorem and appropriate boundary
conditions at the 5 functions, in particular between regions I
and II.
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1 —e r +
1 e

K (Kci)

+
1 —e 'r —iga —1+e 'r —ig a

(43)

4

Here, we have defined the following unitless parameters:
a=Kd =cod/c, P=kd, y*—:Pka. The homogeneo s
algebraic equation (42) has a nontrivial solution if and
only if the determinant det~4

~

=0. In this case there are
an infinite number of solutions corresponding to the one-
dimensional kernel of the transformation matrix Q. The
condition det~ @

~

—=0 reduces to the dispersion relation

2-

-2-

/ 6
Kd

cosp=cosa ——asina=—f (a),g (44)
-4-

which relates the wave number k to the frequency ~ from
p=kd and a =cod/c. We plot the right-hand side of Eq.
(44), defined to be the function f (a), in Fig. 4 for g =2.
Since the cosine function always has a range ~cosp~ ~1,
we see that Eq. (44) has a solution only if

~ fs(a) ~

& 1. We

plot the step functions &e(1—
~ fs(a) ~ ) also in Fig. 4 as

solid dark lines and we see that the passbands are the re-

gions enclosed by solid rectangles. The functions +1 are
plotted as dashed lines and show up at the band gaps that
appear when

~f (a~ ) & 1. We have found that the re-

quirement for the existence of a solution of the matrix
equation (42) is the satisfaction of the dispersion relation
(44). When the dispersion relation is not satisfied, we are
in a band gap, and Eq. (44) has only the trivial solution
A =B=—0; therefore, we have no normal-mode solution.
Hence, since from Eq. (26) the atomic radiation rate is

proportional to ~ak (x ) ~
at the frequency of the dipole, we

can see that at frequencies in the band gap the probe di-

pole cannot radiate. To see this explicitly, let us continue
to solving Eq. (42) explicitly for the coefficients A and B.
Recalling that detail&~

—=0 implies an infinite number of
solutions (the kernel of the matrix transformation has di-

mension 1), we are free to choose one of A or B to be any
nonzero constant. We may constrain this choice by im-

posing the overall normalization of the wave function as

Idx ak' (x)ak(x) =5(k' —k) .

Such a choice yields

FIG. 4. Conditions for the existence of a normal-mode solu-

tion ak{xj in the lattice of Fig. 3 imply a dispersion relation re-

lating the overall wave number k with the modal frequency co,

Eq. (44). The right-hand side of this relation, fg(Kd), is plotted
here as a function of Kd =cod/c. The dark solid rectangles are
generated by the step functions e(1—

~fg(Kd) ~) and enclose the
photonic band frequencies. We also plot as dashed lines f=21
which demonstrate band gaps when the curve fg obeys

4 2

J dp~ap(gc) 5(ac —a),
C

(46)

where a=a(p) via the dispersion relation (44). Since the
integration is with respect to p but the 5 function acts on
a=a(p), we find it convenient to change variables by im-

plicitly differentiating the dispersion relation (44) to ob-
tain the mode density expression

put of a point dipole localized in region I and then note
that our result may be extended to all of x E (

—ac, ac ) by
periodicity.

Taking Eq. (33) for the one-dimensional power output,
using g=x/d, gc=xc/d, and a=Kd =cod/c, and

ao=Kc d =ci)od /c, we can write

A= (1—e

[8n(sin y+/2+sin y /2)]'
(45a)

dp= sina+ —(sina+a cosa)g
2

da
sinp

(47)

(1—e r )

[8~(sin y /2+sin y /2)]'
(45b)

where y
+—=p+a, in which case a, and a„aresolutions in

regions I and II, Fig. 3, given by Eq. (41).
Without loss of generality, we focus on the power out-

where we now view p=p(a). We now may construct

~a&(gc)~ from Eq. (41a) for a&(x) using the definitions

(45) for the coefficients A and B. This is put into the
power formula (46) and the integration carried out using

the change of variable, Eq. (47). If we now divide by the
one-dimensional free-space power, Eq. (35), we obtain the

normalized power output in the photonic band structure
as

g
1 cos2ag —2cosPcos[2a(je ——')]+cos[2a(g' —1)]

' sina+ —(sina+acosa)
p(a, g)= 1 ——

sin [(P+a)/2]+sin [(P—a)/2)] sinp
(48)
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g=arccos cosa ——a sina
2

(49)

We have dropped the subscripts on the dipole parameters
ac~a (coc~co) and gc~g (xcx}since no other values
of frequency and position now appear. The step function
e(1—

~fs(a) ~ ) explicitly ensures the enforcement of zero
power output in the band gaps, as noted earlier. We plot
the power as a two-dimensional surface in Fig. 5 as a
function of a=ICd =cod /c, the dipole frequency parame-
ter, and g=x/d E (0, 1), the dipole location parameter in

region I of Fig. 3. In Fig. 5(a}we restrict the range of

cz=Ed G(0,4) —=(0,0. 127'.)

in order to show the details of the bands that begin at
cz=0 and n [From. the dispersion relation, Eq. (44), we
see that the bands always begin at a =Ed = n n,
n =0, 1,2, . . .] The zeroth-order band is in the approxi-
mate range aE(0,0.42m ), as can be seen also in the plot
of the dispersion relation, Fig. 4. The dipole radiates
close to the free-space value, the plane p =1, until a

where p=kd is taken as a function of a=cod/c from the
dispersion relation, Eq. (44), as

p= p(cz) =arccos[ fs(cz) ]

reaches the trailing edge of the zeroth-order band. At the
band edge the mode density increases somewhat —a
phenomenon known from solid-state theory —and so the
dipole radiation rate [which is proportional to the mode
density by the classical analog of Fermi's golden rule, Eq.
(1}]increases also. The power shuts off as we enter the
band gap only to turn on at a=+ when we enter the
first-order band that extends in frequency from a =m to
about a= l. 17m.. Once again, we see an atomic emission
rate increase near the trailing band edge. In order to un-
derstand the behavior of p (a, g} as a function of g=x/d,
we consider Fig. 5(b} where we extend the range of a to
a =8=—2.55~ in order to include the narro~ second-order
band beginning at a =2~ and ending at 2.10m. We notice
the strong similarities between Fig. 5(b) and Fig. 2 for the
radiation rate of a dipole between a pair of parallel mir-
rors of separation d. Notice that between mirrors the
"bands" of measure zero are located at a=Ed =nn,
while this condition implies only the beginning of a true
band in the photonic band material. Bands occur in the
mirrors at the resonance frequencies c0„=2nc/A,„,when
A,„/2=n/d, or an even number of half-wavelengths fit
between the mirrors of spacing d. In comparison, in the
photonic band material the bands begin when
c0„=2nc/A„,where , an even number of half-wavelengths
fit between each pair of 5 functions of spacing d. As in

30

20

30

20

P

FIG. 5. Here we plot the dipole power output p =p(Kd, x/d) as a function of the dipole frequency co=Kc and dipole position
x 6 (O, d) in region I, Fig. 3. Again, power is normalized so that the plane p =1 is the (one-dimensional) free-space power. In (a) we
restrict the frequency domain to Kd 6(0,4)=—(0, 1.27~) to highlight the passband that runs from Kd =0 to Kd -=0.42~. In the elec-
tronic Kronig-Penney model there is no band at zero frequency [12]. However, in this photonic case a band occurs at co=0, indicat-
ing that a constant electric field or very-long-wavelength waves do not feel the effect of the lattice. We see that at the trailing band
edge at Kd —=0.42m. , edge efFects arising from a sharp increase in mode density enhance the power output slightly over the free-space
plane p =1. This effect is due to the fact that the mode density increases near the band edge and that, from the classical version of
Fermi s golden rule, Eq. (1), the radiation rate is proportional to this density. In (b) we extend Kd E(0,8)=—2.55~ to see the effects of
the next band beginning at Kd =2m. . Bands begin when Kd =no., which are precisely the resonant frequencies or "bands" in the
parallel mirror model, Fig. 2, if the mirror spacing and the lattice period are both equal to d. This means that in our photonic band
structure, Fig. 3, a band always begins when an integral number of half-wavelengths fit between the 5 functions. We ca11 band fre-
quencies co frequencies which are "resonant" with the lattice. However, the bands are not infinitely narrow as in the mirror model,
allowing here some leeway in the range of resonant frequencies. The behavior ofp(Kd, x/d) as a function of x is very similar to that
of the mirror model, Fig. 2, for the bands beginning at Kd =n m. for n =1,2, . . .. As we can see in both (a) and (b), for the band begin-
ning at Kd =no. there is an enhancement and a suppression of the radiation rates tracking the maxima and minima of the square of
the normal-mode wave function a„/,(x), just as in the mirror model. However, now in addition we see a strong enhancement at the
trailing band edge, due to the sharp increase in mode density, Eq. (47}, there. So an emission enhancement by a factor of about 30
over the free-space rate is seen to be possible due to this edge effect.
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the parallel mirror case, it is easy to see that the power
radiated is proportional to the square of the normal-mode
wave function, i.e., p(a, g) ~ ~a (g)~ . In quantum elec-
trodynamical terms, there are no vacuum fluctuations in
the band gaps to stimulate emission, and so none occurs.
In the frequency passbands the vacuum fluctuations must
be normal-mode solutions of the periodic wave equation.
The fluctuations have maximum amplitude at the an-
tinodes and minimum amplitude at the nodes of the
normal-mode solution a&(x). The spontaneous emission
rate tracks these minima and maxima, as can be seen in
Fig. 5(b).

IV. SUMMARY AND CONCLUSIONS

In Sec. I we derived a general classical theory for radi-
ation rates of a classical source in an inhomogeneous
medium, as embodied in Eq. (23). We then specialized
this result to an oscillating point dipole for the current
source and showed how the emission rate depended upon
the boundary conditions through the normal-mode func-
tions az(r), as seen in Eq. (26). We noticed that Eq. (26)
also agrees with a fully quantum electrodynamical calcu-
lation of Glauber and Lewenstein [11].We then used this
result to recover the free-space power output of a point
dipole as a check. In Sec. II we applied our method to
the one-dimensional, scalar problem of the radiation rate
of a point dipole between a pair of one-dimensional mir-
rors of separation d, Eq. (36), and then to a dipole inside
a periodic lattice of 5 function increases of period d in the
dielectric constant. Photonic band structure is studied in
the latter case as it affects the radiation rate, Eq. (48), and
then compared to a similar result derived for the parallel
mirror case. In particular, we have emission quenching
in the band gaps, and enhancement and suppression of
the radiation rate in the bands as a function of the dipole
frequency and the location of the dipole in the lattice.
Sharp enhancements of the power output over the free-
space value are seen for dipole frequencies near the band
edges.

Reference to the wave number k in our final result for
the power output of a localized source, Eq. (26), appears
not directly, but rather implicitly, as a subscript for the
normal-mode function az(r) and the modal frequency co&.

Hence, in the final analysis it is not k itself that needs to
be determined but rather these two k-dependent proper-
ties of the normal-mode structure of the medium. We ex-
plicitly state that these two quantities are found as a re-
sult of solving the Helmholtz eigenvalue equation, Eq.
(8). In a general inhomogeneous medium the solution to
this eigenvalue problem will be perhaps analytically in-
tractable, but nevertheless it can always be solved in prin-
ciple, and in practice it can be solved using a powerful
enough computer using computational methods currently
developed to study the band structure in different dielec-
tric crystals [10]. The results of such a calculation can
then be directly inserted into the formula for the power
output of a localized source, Eq. (26). Therefore, any
direct calculation of the wave vector k has been
effectively circumvented.

We mould like to reemphasize that our formulation for
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APPENDIX

For those who are queasy about using 5 functions
directly in the dielectric for a Kronig-Penney model, we
show here that the same boundary conditions and disper-
sion relation in Sec. III can be derived as a limiting case
from a periodic array of one-dimensional slabs of nonzero
width and of alternating indices of refraction n

&
and n2,

as illustrated in Fig. 6. If we label the three regions I, II,
and III in Fig. 6 to be defined as

I—:[x~x E(b/2, a +b/2)],
»= [xlx c( ~/ b/2 b/—2)]— —

III—:[x~x E( b/2, b/2)—],

(Ala)

(Alb)

(A lc)

where we have defined d—:a +b as the lattice period, the
Helmholtz equation in the two types of slabs has one of
the two forms:

a "(x)+ na(x)=0—, x H(b/2, a +b/2)+nd
c

(A2a)

a "(x)+ na(x)=—0, x E( b/2, b/2)+nd-
c 2 (A2b)

where n =0, +1,+2, . . . . Without loss of generality, we

may choose solutions of Eq. (Al) in regions I and III as

a &(x ) = Ae '" +Be (A3a)

determining the effect of an inhomogeneous dielectric
medium on atomic radiation rates is a completely general
three-dimensional and fully vectorial theory. Once this
has been established, one can then ask if there are any
simplified analytical models that give a qualitative physi-
cal insight into the mechanism for spontaneous emission
suppression and enhancement in a photonic band struc-
ture. Such a model, an old standby in the context of
solid-state theory, is that of Kronig and Penney. In addi-
tion, there is in fact a three-dimensional scalar Kronig-
Penney model Hamiltonian for electromagnetic waves in
an isotropic, inhomogeneous dielectric photonic band
structure. This model has been promoted by John and
Wang [15],and for it our one-dimensional results go over
directly into a three-dimensional treatment. More realis-
tic models cannot be solved analytically due to the in-
tractable nature of the eigenvalue equation. In such situ-
ations numerical treatments of atomic emission rates are
called for that are beyond the scope of this paper, but
that we hope will be attempted by those who are well

equipped with such computer techniques and facilities.
Finally, we note that a scalar wave version of our theory
is directly applicable to the production of sound in media
with an inhomogeneous bulk modulus that exhibits "son-
ic" band structure [16].
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-a-b/2
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1

n
2

b/2

n
1

n
2

a+b/2

n
1

trix has identically zero determinant. This condition
leads to the dispersion relation

cos(kd) =cos(Kn ra )cos(Kn2b)

n&+n
sin(Kn, a

)sin(Enweb)

2n)n2

(n, +n~)
cos[K(an, +bn2}]4n, n2

I
I
I
I
I
I

I
I
I

I

I

d=a+b

(n r
n—2)

cos[E (an r
—bn2)],4n &n2

(A5)

FIG. 6. In the Appendix we derive our 5-function model in-
dicated in Fig. 1 from a nonsingular, one-dimensional model of
periodically alternating slabs of indices of refraction n

&
and n 2.

We see in this figure that regions I and II are the same as re-
gions I and II in the 5-function model in the limit that the slabs
of width b of index n2, as in region III, vanish as b~0+. We
match the E and B fields, or, equivalently, aI, (x) and ak(x) for
continuity at x =+b/2 and then take the limits b~0, a~d,
nl ~1, n2~ ~, bn2~0, and bn2~gd, where g is a unitless
strength constant for the 6 functions, and obtain the same
boundary conditions and dispersion relation found in the 5-
function model. Hence, the 5-function model used in Sec. III
follows cogently in this limit from the more physical model of
alternating slabs shown here.

a ir r (x ) =Ce '""+De (A3b)

where we have defined p =ton r /c =En r and
v=ton2 jc—=Knz. From Bloch's theorem [12], the form
of arr(x) in region II can be generated from a, (x) in re-
gion I by

arr(x) =e '""a,(x +d)

cos(kd) =cos(Kd) ,'gKd sin—(K—d), (A6)

which is the same as the dispersion relation (44) derived
previously for our 5-function lattice. To clinch our argu-
ment, we now need to show that the boundary conditions
(A4) reduce to the 5-function boundary conditions (39)
under the above limits. To this end, we consider the lim-
its

lim [a»i(b/2) —a,»( b/2)]=0-
b ~0+ (A7a)

which is that found in the three-dimensional, scalar
Kronig-Penney model of a photonic band material em-
ployed by John and Wang [15]. In order to take this
model over into the limiting case of our periodic array of
5 functions, we consider the following limiting case:

b ~0+
y bn 2 ~gd =const

Q —d —b~d,
bn2~0+, n

&
~1 .

We shall now show that this limit recovers the 5-function
dielectric model used in Sec. III. The dispersion relation
(A5) in the above limit becomes

—kd( g ip(n+d)+ye —ip(n+d)} (A3c)

ar(b/2) —arrr(b/2}=0

a,» ( —b /2 )—a r, ( —b /2 ) =0

ar(b/2) arrr(b/2} 0

a,'»( —b/2) —a,', ( —b/2) =0 .

(A4a)

(A4b)

(A4c)

(A4d)

Inserting the normal-mode solutions (A3} into these
boundary conditions (A4) yields a 4X4 matrix equation
for the four coefficients 3, 8, C, and D. This system has
a nontrivial solution if and only if the transformation ma-

where k is the wave number of the overall solution ak(x).
Now, the boundary conditions at the slab interfaces, still

supposing a magnetic permeability of p= 1, are that the
tangential components of E and B are continuous. (In
our one-dimensional model the normal components are
zero. ) Since E= —() A/t3t and B=V X A, the two
boundary conditions on E and B can be reexpressed as
the demand that the normal modes ak (x ) and their
derivatives ak(x) are continuous across the interfaces.
Hence,

am(0+ }—am(o }=ar»(o)=C+D ~

and the second condition (A7b) then gives

aur(0 ) —a,'»(0 )+gdK aur(0)=0

(A8a)

(A8b)

If we now take the limit b~O+, bn2 gd, etc., in the
four boundary conditions (A4) and then use the just-
derived singularity conditions (A8) on a rrr (0) and
a',»(0*) to eliminate these same quantities from the equa-
tions, we obtain (upon invoking periodicity) precisely the
previously used 5-function condition, Eq. (39). Hence, we
have shown that our 5-function model of Sec. III follows
in a cogent manner as a limiting case of the more physi-
cal model of periodically alternating dielectric slabs.

ai»(b/2)]= —gdK (C+D), (A7b)
b ~0+

bn2 gd2

where C and D are the wave-function coeScients for
arri(x) given in Eq. (A3b). The first condition (A7a) im-
plies that
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