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Transmittance for wave-packet scattering
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DiR'erent expressions for the transmittance in @rave-packet scattering in one dimension are exam-
ined. Special attention is paid to the difficulties when the initial packet p(0) has negative momentum
components. A general formula is provided for this case, and the domain of applicability of a simple
approximate expression is indicated. A model calculation illustrates the results.

PACS number(s): 03.80.+r, 34,10.+x

The question "What is the probability of overcoming a
potential barrier V(x) for a given wave packet?" arises in
many different contexts. Recently, resonant tunneling in
electronic devices and the tunneling time problem have
been important examples [1—3]. Here we are interested in
the answer from a fundamental point of view rather than
for particular applications. It might appear that such
a simple question should have a simple answer within
standard scattering theory, in terms of the initial state
and scattering theory matrices or operators. And indeed
this is the case, at least formally. However, there are
some subtleties that are easy to miss, especially when the
packet is not fully directed against the potential barrier,
i.e., when the initial momentum distribution has negative
components. There are also difFerent expressions in the
literature and therefore a need to clarify their relations
and/or validity.

The original motivation of the present paper was to
check numerically the importance of various terms in an
expression found in a previous work [4] on phase-space
scattering. This work will be referred to as I in the fol-
lowing. The formula [(1.26)+(1.28)] for the transmittance
(T &, defined as the integral over all times of the pos-
itive flux [5] at asymptotic distances on the right, was
written in terms of tetradic matrix elements of the tran-
sition superoperator 1 and the free incoming density op-
erator p'"(0). The incoming free density operator p'"
(without superscript in I) is equal [6] to the full density
operator in the infinite past, but evolves in the absence of
the potential. The full density operator p(0) is related to
the incoming density operator by p(t) = 0&+1p'"(t)0&+it,
where 0&+1 is the Moiler operator relating the free incom-
ing wave and the full wave, (while 0& l relates the free
outgoing wave with the full wave. See e.g. [7]). In a more
familiar language

&T& = dp & p]sp'"(O)St]p &
0

dp & pit "'lp&,
0

8 = 0| ~tA&+~ being the scattering operator, and p "

the outgoing free density operator to which the full den-
sity operator p tends after the collision. Since both p'"
and pc"' are free-particle states, their diagonal in mo-
mentum matrix elements p'" and p~"t are independent
of time. That (1) and our previous result in I are equal
can be demonstrated by writing the matrix elements of
2 and of S in terms of matrix elements of the transition
operator T = VAi+&. An alternative route making use
of the Liouville-von Neumann equat, ion may be found in
[8]

In a real physical situation a density operator p(0) is
created at some instant of time (taken here as time 0) by
some preparative procedure. For instance, one can create
a packet in a higher potential surface by laser excitation
from a lower one. The time t = 0 corresponds to the mo-
ment when the laser ceases pumping. The question then
to be considered is what transmittance is to be associ-
ated with p(0). It is tempting to equate p(0) with p'"(0)
and apply Eq. (1). However p'" is an ideal state that in
the infinite past tends to the full p but evolves without
the potential action. In order to make the identification
between these two operators at time t = 0 they should be
equal at all times t ( 0; in other words, the real packet p
should not be affected by the potential at t ( 0. More-
over, even if the state p(0) is located (in coordinate rep-
resentation) asymptotically far from the potential center,
this location does not automatically makes it a free state
in the scattering theory sense that would allow p(0) and
p'"(0) to be equated. In particular, if p(0) has a negative
momentum component, this implies that in the past the
packet was not free since the full p has collided in the
past with the potential. In general, when one refers to
the past, it must be understood as the past that mould oc
cur if the present (time t = 0) Hamiltonian mere the only
one to consider at all times. Summarizing, the seemingly
paradoxical conclusion is that a packet at an asymptotic
position on the left with non-negligible negative and pos-
itive momentum components is in a sense in the midst
of a collision, and is to be described by the full density
operator p(0). Specifically, it cannot be equated to the
free state p'"(0).

For the special case that p(0) has a negligible nega-
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tive momentum component (and is asymptotically far to
the left of the scattering center) the expression for the
transmittance reduces [4] to

& T &= dp T„p(0)».
0

(2)

where ~p'& l &= 0& l]p' &. Using (1) and the above
relation between p and p "' the transmittance may be
written as

&p' 'Ip(0)l»' ' & rip
0

The last integral may be taken as well as the definition of
the transmittance. Note that (5) is in agreement with (1)
and with our previous result in I. The important differ-
ence is that now the expression in (5) for & T & contains
the actual p(0), which is the originally given data. This
equation considers in principle diagonal and nondiagonal
elements of p(0), as well as positive and negative mo-
mentum contributions. The question then is whether the

Thus p(0) and p'"(0) can be equated. Here T„ is the
transmission coefficient for incident momentum p [not
to be confused with the transition operator T (without
subscripts), the transition matrix T„„(twomomentum

subscripts), or the transmittance &T&. According to I,
T„=1 —(2z'rn/p)2~T»~2]. As a function of p, p(0)» is
the initial momentum distribution. The above integral
has been termed [9] the "efFective transmission proba-
bility. " It is a very useful expression because there are
efficient methods [10] to calculate the coefficients T„. It
is also the formula one would assume [11] to be based
on classical intuition. Nevertheless, in the general case,
there are additional terms, depending on the coherences
p'"(0) „„,p'"(0)„ „, and on p'"(0) ~ „ (p & 0). By
using the formalism in I or (1), and if the identifica-
tion p'"(0) = p(0) were valid, the term depending on
p'"(0) „„would be

f (1 —~- ) P(o)- — 4 (3)
0

But if the whole packet p(0), located at t = 0 on the left
side of the barrier, is directed leftwards, then the only
nonvanishing term appears to be (3), which is clearly an
absurd result. The problem is that such a state was not
free in the past, as we discussed above, and therefore the
identification p(0) with p'"(0) is incorrect, in spite of the
fact that the packet is not affected by the potential at
time t = 0. As a consequence the first form of (1) is not
useful in practice, since what we actually have is p(0)
and not p'"(0). This is an important distinction, which
is worth emphasizing since, to our knowledge, it has not
been previously spelled out.

A different perspective needs to be taken and the fol-

lowing is proposed. The packet at t = 0 cannot be con-
sidered a free packet but may be related to the outgoing
free packet by means of

p'"'(t) = ni-lt p(t)ni-l

„~~„(-)pg „(-)~~„

simple formula (2) is a good approximation to (5) and
in what circumstances. Clearly, if the initial negative
momentum components of p(0) are negligible [and p(0)
is asymptotically far from the scattering center], (2) be-
comes exact. In this case p(0) = p'"(0). To examine
the validity of (2) with initial negative momentum com-
ponents we have performed a calculation with a delta
potential & z]V~x' &= Vsb(x —x')6(2:) that allows an
analytical treatment. The chosen initial state is in coor-
dinate representation,

& x[@(0)&= ~~e- ~*-*O~e'&0&*-*0»",

where the cusp at xo is the price that is paid for the
analyticity [12] of the propagated wave Q(t). For p & 0

the & z]p~ l & eigenstate takes the form

~ ~-&l&lu/&
[pi

—l & eizP/a
hl/2 c+ ip

where c = mVO/5, and (if zo & 0)

& p&-~~y(0) &

2iphgo. /ti

(ip —c)

e '*'"/" 5 o; ~ ~xp(a-i@0/h)
X +

(p —»)'+ (»)' p' —(po+ +u)' '

The exact transmittance is then given by (5) with p(0) =
~g(0) && Q(0) [. One may also evaluate the approximate
expression (2) explicitly. The stationary transmission co-
efficient and p(0)„„are, respectively,

Tp=
(p +c)

giving

f Tp p(0)» dp
0

p2 5/
(p2 + cz) [(p po)2 + (hA)2]2

This integral can be done by decomposition into partial
fractions after a lengthy but relatively straightforward
calculation. However, the result is not particularly en-
lightening and is not reported here. For our purposes it
is enough to point out that for this model (10) is recov-
ered from (5) when the center of the packet at t = 0,
xo, is sufficiently far from the potential. More precisely,
neglecting the exponentially decaying term in (8), one ob-
tains Eq. (10) by using the exact expression (5). Clearly
for xo & 0 and sufficiently large, no negative momen-
tum components of p(0) contribute to the transmittance,
even the interference terms having decayed suKciently
(with distance) so that they give no contribution. Ac-
tually the validity of (2) when the packet is initially far
from the potential is a general, model-independent re-
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suit. To show this, & pi &~p(0)]p& & & in (5) is decom-
posed into three terms having zero, one, and two ma-
trix elements of the transition operator Ti l = VOi
by using the Lippmann-Schwinger equation A~ [p &=
~p & +(E„—i0 —Hp) Ti i[p &. Inserting resolutions
of the identity in coordinate representation in the sec-
ond and third terms, assuming that the potential is far

from the packet initial location, considering that T de-
cays essentially as V does in coordinate space, and us-

ing the coordinate space representation of the resolvents,
the one-dimensional optical theorem [4] and the relation

T„„=T„'„, one obtains (2). The described steps are
now illustrated more explicitly for the second, single-T,
term:

dp d d '&p~p(0)]*&& IE .
0

I*'&& 'IT' 'I» &
p E„—i0 — p

j~g~P(eE —x') /5
dp dx dx'& pip(0)Ix & & x'iTi-&ip &

p ph

dp p(o) pp
™

ImT„'„' = — dp
I

~' p(0)~~ I&~~l' — dp p(0)~~ (1 —&p) (»)
0

The approximation is due to the approximate form for
the Green's function in position representation, associ-
ated with the restriction that x « x', since p(0) is far
away from the scattering center (at negative positions).
In the final form, the first integral exactly cancels the
third (two-T) term while the last integral plus the first
(no-T) term gives the desired result (2).

For making further connections among difFerent trans-
mittance expressions it is useful to write (1) or (5) in
phase-space language. Within this framework the inte-
gral of the positive fiux at a large positive position y takes
the form

OO OO

& T &= dt dp —W" (y, p, t),
p m

where W~"~ is the phase-space representative of p~"i

W'"'(x, p, t)

1
~is(x —yt/m)

2'
x & (p+ sh/2)i l~p(0)~(p —sh/2)i l & ds.

Substituting (13) into (12) one immediately recovers (5)
by integration of the resulting 6 function. An additional
formula for & T & as a double integral in coordinate
space, involving the wave function at asymptotic positive
times, was derived from (12) by Turner and Snider. [8]

Another common definition for the transmittance is the
probability to find the particle at x & y » 0 at a time r
large enough so as to make this probability independent
of time. Thus p(t) has become equal to p'"'(t) for t & 7..
This may be written in diferent ways:

&T&= zp w» —— p 2; xpw

OO OO

dt dp —W'"'(y, p, t),
P OO m

(14)

where the last equality follows from integrating the quan-
tum continuity equation twice, once over position and
once over time, with the understanding that W'"'(x, p, t)
vanishes at x = oo; and moreover, at t = 0, W'"'(y, p, 0)
vanishes (or is negligibly small), since none of the packet
has yet reached position y. Finally the upper time inte-
gration limit has been shifted to oo. These expressions
are useful when the numerical propagation of the wave
packet is feasible. Connection with the previous defini-
tion (12) and Eq. (5) is made by noticing that, due to the
rapidly oscillating exponential factor in (13), the lower in-
tegration limits for t and p in (14) may be changed to —oo
and 0, respectively. We have numerically checked the full
agreement between (14) and (5) for the 6 potential.

DifFerent exact and approximate transmittance formu-
laes have been deduced, reviewed, and related. Prepared
initial states may have a combination of negative and
positive momenta. A laser-induced transition between
different bands in a semiconductor device will create such
states. In this case some of the transmittance expressions
cannot be directly used because, even though the state is
far from the collision region, it is not a free state, due to
its interaction in the past with the potential. The correct
procedure and formalism have been indicated and exem-
plified with a model. The precise limits of validity of the
simple formula (2) have been indicated.
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