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Statistical properties of resonances in two-dimensional quantum-mechanical point scattering
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Based on the close relations between statistical properties of quantum dissipative systems and scatter-
ing systems, we conjecture that for quantum chaotic scattering the distribution of the resonance poles of
the Smatrix is generic and follows the predictions of Ginibre s ensemble of random (non-Hermitian) ma-
trices. This will be demonstrated on a simple example of a single particle being scattered by (a fixed
number of) point obstacles distributed randomly in two dimensions.

PACS number(s) 03.65.—w, 05.45.+b

Surely, irregular quantum-mechanical scattering is one
of the most interesting fields of today's mathematical
physics; indeed, the question is, as far as quantum chaos
is concerned, which quantum-mechanical criteria for
chaotic behavior do exist? Many recent investigations
showed the essential role of random matrix theory for
this task; for example, the S matrix was recently shown
to be describable in the case of a classically irregular limit
by the Dyson ensemble of random matrices [1]. So it is
appropriate to ask if any universal predictions based on
random matrix theory can be made for the distribution of
the resonance poles in the complex plane, too.

In 1957, M. S. Livsic introduced [2] a dissipative
operator (later called "Livkic matrix" [3]) 8(z) as some
kind of restriction of a given quantum Hamiltonian H:
Let P be an (orthogonal) projection onto a finite-
dimensional subspace P (O ) of the given Hilbert space O.
Then 8 (z) is defined via

[8 (z) —z] ' =P (H z) 'P—
and thus becomes an operator on P (@) or, in other
words, a finite-dimensional (coinplex) matrix. Livsic
showed the resonances of 0 to be well defined as the ei-
genvalues of 8(z), i.e., the solutions of the eigenvalue
equation

8(z)+=z%', zest(, O'PP(@) .

This proceeding is very similar to the idea that 8 (z) can
be understood as the generator of a dissipative system on
P(O), whereas the rest of O behaves like the "heat bath
[4] "

The infiuence of random matrix theory upon genera-
tors of dissipative systems was investigated by Grobe and
Haake [5,6]. They analyzed the (complex) eigenvalues of
generators and were able to show the universality of
linear and cubic "level" repulsion, for classically
(predominantly) regular and chaotic motion, respectively;
i.e., the spacing S, defined as the Euclidean distance s be-
tween an eigenvalue and its next neighbor in the complex
plane, rescaled by a local density p, thus defined as
S =s&p and seen as a random variable, can be computed
into a next-neighbor distribution P(S) and into a distri-
bution function

Now linear or cubic repulsion means that

S, "regular"P(S)-, „„.„as S O.S, "chaotic"

The idea behind this formula is quite clear: Eigenvalues
that obey cubic level repulsion strongly repel each other,
so that they cannot easily be made to cross when varying
some underlying parameter; thus, they may be regarded
as correlated.

For some strongly damped dissipative systems, Grobe
and Haake even found, in the case of chaotic classical
motion, a distribution agreeing with the predictions of
Ginibre's ensemble of random matrices, and in the case
of regular classical motion a distribution corresponding
to a Poisson process in the complex plane. Ginibre
defined that ensemble of complex matrices in 1965 by
dropping the requirement of Hermiticity, which is the
crucial feature of the Dyson ensemble. Therefore, the
matrices of Ginibre's ensemble (strictly speaking, N XN
matrices) have complex eigenvalues; moreover, these ei-
genvalues have a next-neighbor distribution P(S) that
yields cubic level repulsion, while, of course, a Poisson
process leads to linear repulsion and to uncorrelated ei-
gen values.

To be more precise, generators of dissipative systems
obey some antiunitary symmetries, so they do not really
fulfill the restriction of being totally free of underlying
symmetries, as is essential for Ginibre s ensemble. There-
fore, the eigenvalues of such generators always come
along in complex-conjugate pairs, so that it was essential
for Grobe and Haake to take into account only those ei-
genvalues that were separated from the real axis by at
least some distance s.

Because of the close correspondence between these ei-
genvalues and the resonance poles of scattering systems,
one might expect a similar statistics for these. In order to
investigate this, John et al. constructed scattering sys-
tems out of eight point obstacles randomly placed in
space, and calculated numerica11y the resonances and
their next-neighbor distributions [7]. The crucial advan-
tage of this kind of system is its rather easy mathematical
handling combined with its obviously total lack of any
underlying symmetries. John et al. found a very good
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congruity between the resulting distribution and the
Ginibre distribution (for 2X2 matrices). In the present
paper we describe results obtained for scattering systems
constructed from point obstacles randomly placed in the
two-dimensional plane, regaining the same advantages as
before in the case of three-dimensional scattering.

The basic idea of point potentials (placed at the posi-
tions y;, i EI) is to gain a Hamiltonian formally written
as

H= —b+ g a;5(x —y;) .
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A mathematical proper description of such Hamiltonians
can be found in [8]. The scattering process is described
there completely analytically; the scattering amplitude
results from the formula

/(co, ~')=factor X g [I,. 'exp(~'kz'; .)],
i j E:I

& J
——(~',y; &

—(~,y, & .

Here co and co' are the unit vectors in the incoming and
outgoing directions, respectively, "factor" depends on the
energy E =k and on the space dimension b (=2 here;
=3 in [7]), but is independent of co, co', and the y;. I"

denotes an N XN matrix (an I XI matrix, strictly speak-
ing, since N is the number of point scatterers) with ele-
ments

1 k
a,. + y+1n, i =j2' 2G

——Ho'(k~y; —y ~), i'
for dimension 5 =2, where Ho ' denotes the Hankel func-
tion of first kind and order zero, and
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FIG. 2. Next-neighbor distribution for N=5. Thick line,
calculated resonance-spacing distribution; thin line, prediction
of Ginibre s ensemble; dashed line, Poisson process in the plane.

y=0. 5772156649. . . is Euler's constant. The reso-
nance poles can now be found by solving the equation

Det[I (k)]=0 .

The resonances were computed numerically from this
equation on an MS-DOS personal computer for different
point numbers N. For example, for N =4, we computed
the resonances for 20 scattering systems and found 2500
poles, shown in Fig. 1, from which the importance of re-
scaling S =s&p when calculating the next-neighbor dis-
tribution is obvious. The distribution P(S) was calculat-
ed for each scattering system separately and then put to-
gether to one distribution function S(S). The local densi-
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FIG. 1. Positions of the resonance poles of 20 scattering sys-
tems, each built of X =4 point scatterers.

FIG. 3. Next-neighbor distribution for N=6. Thick line,
calculated resonance-spacing distribution; thin line, prediction
of Ginibre's ensemble; dashed line, Poisson process in the plane.
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p(k) = n+1
n —

I 4, [4,(k) ]—4, (k) I
2

4 1

(Here we chose n =5. )

Afterwards we depicted the resulting distribution func-
tion J(S) together with that which one gets out of the
Poisson process

P (S)= 'nS e—xp ——SP 4

ty p needed for rescaling was calculated as a function of
the resonance poles, p=p(k), by choosing a number n of
next neighbors; when denoting the n next neighbors of a
given k =So(k) by A&(k), . . . , A„(k), we define

and out of Ginibre's ensemble of 2 X 2 matrices,

PG(S)=2( —,', m. ) S exp( —9, mS ) .

One observes a rather good agreement with the predic-
tion of Ginibre s ensemble in Figs. 2 and 3, and especially
a clear "level" repulsion for small spacings S, where the
agreement becomes better for larger N, i.e., for greater
numbers of the scattering points.

In summary, we demonstrated that the described sys-
tern displays a generic next-neighbor distribution of the
resonance poles, which coincides with the predictions of
Ginibres ensemble. Surely, it is still worth analyzing
whether cubic pole repulsion can also be found in other
scattering systems.
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