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Self-adjoint extensions of the Hamiltonian for a charged particle in the presence
of a thread of magnetic flux
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Self-adjoint extensions of the usual Hamiltonian are studied for a charged particle moving in the x-y

plane in the presence of an infinitely thin thread of magnetic Aux along the z axis. This is done by start-

ing with a square-well potential and taking its zero-range limit. The wave function for such an extended

Hamiltonian is, although square integrable, singular at the origin. There are interesting differences be-

tween the cases with and without the magnetic Aux.

PACS number(s): 03.65.Nk, 03.65.Ge

Let us start with a standard problem discussed in
quantum-mechanics textbooks: a nonrelativistic particle
moving in a central potential in two or three dimensions.
The Schrodinger equation has regular and irregular solu-
tions. In an S state, the irregular solution is, although
singular at the origin, square integrable. We usually as-
sume that the wave function is finite and discard the ir-
regular solution, but there is no a priori reason why the
latter is not admissible. Such an irregular solution is as-
sociated with a self-adjoint extension of the usual Hamil-
tonian. Including Kato's seminal paper of 1951 [1],there
is vast literature on this subject, which can be traced
through Ref. [2]. There are physical situations in which
irregular solutions may emerge, as we will discuss later.

The purpose of this note is to examine self-adjoint ex-
tensions of the Hamiltonian for a nonrelativistic particle
moving in the x-y plane in the presence of an infinitely
thin thread of magnetic flux along the z axis. This note is
a sequel to a recent paper [3], in which a similar problem,
but in the absence of magnetic flux, was discussed. We
will see some interesting differences between the cases
with and without magnetic flux. This note also supple-
ments Ref. [4], in which a similar aspect of a relativistic
particle has been examined. In constructing the self-
adjoint extensions, we assume an attractive potential of a
finite range and take its zero-range limit. We prefer this
pedestrian approach rather than the more sophisticated
mathematical methods expounded in Refs. [1,2] because
we can study the mechanism more closely in this way.

Consider a particle of mass m and charge e, which is
free to move in the x-y plane, except that it is under the
influence of a thread of magnetic flux 4 along the z axis.
We choose the vector potential due to the magnetic flux
as

the radial part of the Hamiltonian becomes

Ko= 2'
d 1 d v+—,v=n+a,
dp r dl'

(2)

4y 4x
2R 2R for r(R . (3)

The A for r )R is the same as that of Eq. (1). In addi-
tion, we assume a potential V(r}, which, together with
the magnetic interaction, forms an attractive square-well
potential of radius R and depth D, that is

where r =(x +y )'~, n is the (integral} angular momen-
tum, and a is related to the magnetic flux 4 by
a= —e@i(2mcA). Unless otherwise stated, v should be
understood as a noninteger in the following. The Ho is
the Hamiltonian examined by Aharonov and Bohm [5].
This system is also referred to as an "anyon" in the litera-
ture [6]. The Schrodinger equation Hog(r)=E/(r) has
regular and irregular solutions, which are given by the
Bessel functions J~„~(kr) and N~„~(kr), respectively, where
k =2rnE/A . The standard boundary condition dictates
that P(r) be finite at the origin. If ~v~ &1, however,

N~, ~(kr} is square integrable (locally around the origin).
In this case Ho admits a one-parameter family of self-

adjoint extensions [7]. For such extensions of Ho, P(r) is

singular at the origin. In this sense the boundary condi-
tion is a nonstandard one. We assume that

~
v~ & 1 in the

following.
We construct self-adjoint extensions of Ho using the

following procedure. We first replace the infinitely thin
magnetic flux with a uniform flux of a finite radius R.
We do this by modifying the vector potential A as

A 4y 4x
277P 27jf

en' e 8 2V(r) — + r = D for r &R, —
Smc

(4)

When the angular part of the wave function is separated, where B =@I(mrR ). When RAO, we require that the
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wave function satisfies the standard boundary condition at
the origin [8]. Then, we let R ~0 and D~op. The wave
function obtained in this limit is subject to a nonstandard
boundary condition. The structure of the flux that we as-
sumed is ad hoc. As it turns out, however, the self-
adjoint extensions that emerge in the limit of R ~0 are
insensitive to the details of the potential within the flux.

The radial part of the Schrodinger equation reads

f 2

2m
pg

dr r dr r
DP —=EP for r & R,

f 2

2m
+—P=EP for r)R . (6)

dr r dr r

Since n and v appear only in the form of n and v in Eqs.
(5) and (6), we will only consider non-negative values of n
and v. In relating results to a, however, we have to
remember v=n +a and incorporate appropriate signs of
v and n The .wave function P(r) for the bound (ground)
state is given in terms of Bessel functions

J„(kpr), r &R
K„(xr), r)R,

r dP R dJ(kpR)F(kpR)=-
dr „z p J„(kpR) dR

and also G (zR ) by

(8)

where kp =2m(D+E)/li and z = 2mE—IA . We
have not included the irregular solution N„(kpr) for
r &R for the reason stated following Eq. (4). The eigen-
value F can be determined from the continuity of
(rig)(dgldr) at r =R. Let us define F(kpR) by

where I (v) is the gamma function. In the special case of
v= —,

' ("semion"), G («R) is exactly given by

G(IVER}=——' —«.R .
2 (12)

Note that G(«R)~ —v when «R ~0. The limit of kpR
has to be tuned such that Eq. (10) is satisfied for a given
value of «. Since G («R) is finite, the limit of kpR has to
be finite. This situation is in a sharp contrast to that of
n =v=0 [3]. In the latter case, if we take a finite value
for the limit of koR, the binding energy becomes infinite
(K +M ). I—f v=O and zR ~0, then G(«R) —+ I/1n(«R).
In order for the bound state not to collapse (i.e., «.

remains finite) the depth D of the potential has to be re-
gulated. This is done by choosing the limit of koR as
kpR -[(2mD/fi )]' R ~[—2/ln(«R)]' . When v)0,
however, the repulsive v /r term of Hp prevents the
bound state from collapsing.

Once the 5-function potential (specified with «.) is im-
plemented, the scatting problem can be done. The
scattering wave function for r & R can be written as

boundary condition (without the 5-function potential) [3].
This can be understood as follows. In two dimensions
with v=O, any globally attractive potential supports a
bound state, no matter how weak the potential [9]. For
the square-well potential, therefore, «=0 (zero binding
energy) implies D =0. When vXO, however, «=0 does
not imply D =0. In order to have a bound state at
threshold in this case, there has to be an attractive poten-
tial that counteracts the repulsive term proportional to
v /r.

If ~R &&1, we obtain
' 2v

2I (1—v) «RG(«R) = —v- + 0 ~ ~

r(v) 2

dK„(«R)G(«R)=—
dr „-z+p K («R) dR

The matching condition for P(r) at r =R is

(9)
p(r) =cosy'„(kr) —sinri+„(kr), (13)

where k =2mEIR and ri„ is the "phase shift. " We
define Q(kR) by

F(kpR)=G(«R) . (10) Q(kR)=-r dP
dr r=R+p

(14)

We now let R ~0 and D~00, but keep ~ fixed at a
finite value, which we can choose at will. Then aR ~0,
and the limit of kpR = [(2mD/A' )]'~ R is determined by
the matching condition (10). In the limit of R ~0, the
square-well potential becomes a 5-function potential,
which is characterized by parameter ~. Let us emphasize
that Eq. (2) defines Hp only "formally. " When it is com-
plemented by the 5-function potential (specified with «),
the Ho is completely defined. When R ~0, the part of
the wave function (for r &R} that is given by J„(kpr)
disappears, and P(r) is represented by K„(«r) in the en-
tire region of r )0. Recall that K„(ter)—+DO as r~O'
This is how a wave function subject to a nonstandard
boundary condition emerges. Note also that although
the irregular solution is square integrable, it leads to an
infinite probability density at the origin. This is a
reflection of the underlying singular interaction.

When v=O, the choice of a=O leads to the standard

where p is the p(r) of Eq. (13). We equate this Q(kR)
with F(kpR), where kp=2m (D+E)IR
=(2mD/fi ) +k . Finally, we let R ~0. In this limit,
D —+DO and kp~2mDIA . The F(kpR) for scattering
becomes indistinguishable from that for the bound state
and hence Q(kR) can be equated with G(«R), which was
defined for the bound state. Recall that G («R )~ —v as
~R~0. In this way, we are led to

tang„= —sin( vn )( k I«. )
' . (15)

Note that F(kpR) plays only an intermediary role; the
details of F(kpR) are unimportant. This aspect reminds
us of the boundary condition model of the nucleon-
nucleon interaction [10]. The above phase shift can be
compared with tanrlp=m/[21n(k/a)] for v=n =0; see
Eq. (18) or Ref. [3]. There is a gap between ri~p aild 7jp.
The usual partial-wave phase shift 5„ for n =v —a can be
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obtained by adding q„ to the standard Aharonov-Bohm
phase shift [11,7]. The 5„ for nAv —a is not affected.

So far we have considered a particle that is free apart
from the interaction with the thread of magnetic flux.
Next let us consider a model that contains an additional
harmonic-oscillator potential. Such a model has been
used as a means of calculating the second virial coefficient
of an anyon gas [12]. The Hamiltonian is

Unlike Eqs. (19) and (20), the U of Eq. (21) is not a poly-
nomial, but it leads to P(r}, which converges as r~ co

such that it is square integrable [15].
The examples discussed above may give a false impres-

sion that the choice of the values for E is quite restricted.
As shown below, however, self-adjoint extensions of the
Hamiltonian can accommodate any value of E other than
those of Eqs. (19}—(21). For the P(r) of Eq. (18), we ob-
tain

H =H +—'mco r
2 (16)

fi

2m
d 1 d v+—+ —,'mco P=EP
dr2 r dr

We try to obtain self-adjoint extensions of this H again by
using a square-well potential. We assume the same
Schrodinger equation (5) for r (R. For r )R, we replace
Eq. (6) with

rdP i q RdU= —v —
A, R +-

P dr r=a+0 U dR

When R ~0, the above can be reduced to

r dP 21 {1—v)I [1 (E/fi—co)]

({) dr „ ii+o I {v)I [1—v —(E/fico)]

(22)

(23)

for r )R, (17)

which can be reduced to Kummer's equation [13]. Hence
the wave function for r & R is given by

—v —(g r2P(r)=(7r) "e ' " 'U — 1 —v—,1 —v, A, r
2 fico

(18)

where A, =mco/A' and Uis the Kummer function.
When v~O, the above ctp(r) is reduced to Eq. (20) of

Ref. [3]. If we put v=O and E = (2N + 1)irico, where N is
a non-negative integer, the above Kummer function turns
out to be a Laguerre polynomial

I [1 (E/%co)]— ic

I [1 v (E/h—co) ]— 2A.
(24)

which determines E for a speci6ed a, or ~ for any given
value of E. If v=O, Eq. (24) is an identity that is not par-
ticularly interesting. If vAO, however, Eq. (24) is a non-
trivial equation, no matter how small v is.

Let us mention two cases in which the relation between
ic and E is very simple. First, Eq. (24) is satisfied by

If the self-adjoint extension of Ho has already been fixed
in terms of parameter a before the harmonic-oscillator
potential is added, the right-hand side of Eq. (23} can be
equated with G (icR ) of Eq. (11). Then, by letting R ~0,
we obtain

2v

U={—1) N!L~ i(A, r ) E =(N+1 v)fico, ic=—O . (25)

U=2 Hic(ir) for v= —,
' and E =(N+ ,')fico, —(20)

where Hic is the Hermite polynomial of order N [14].
There is a subtle point to be noted here regarding the
possible values for N. The U of Eq. (20) with any non-
negative integer N furnishes P{r},which satisfies Eq. (17).
However, as eigenstates of the Hamiltonian H, we have
to choose either even 1V's or odd N's, but not both. If we
require the standard boundary condition, only odd 1V's

are allowed. If we take a nonstandard boundary condi-
tion such that even N's are allowed and P(r) becomes
singular at the origin, we have to reject odd N's. Note
that the two different (standard and nonstandard) bound-
ary conditions are associated with two different Hamil-
tonians.

There is yet another case in which the U is reduced to
a simple form

A2 2
U =&ire " erfc(A, r) for v= z' and E = —

—,'irico . (21)

for v= 0 and E = (2N + 1)A'co . (19)

This is nothing but the case of the usual two-dimensional
harmonic oscillator (with angular momentum n =0).
The P(r) of this case of course conforms to the standard
boundary condition.

Another simple case is

This E is a generalization of the E of Eq. (20). It turns
out that the U in this case is a polynomial of degree N; in
particular, U = 1 if N =0. It is interesting that this ener-

gy spectrum coincides with that of Wigner's generalized
harmonic oscillator [16]. The second case is

v= —' E = 'fico ic=&—irA— , (26)

which corresponds to Eq. (21). The energies of the excit-
ed states of this case are not equally spaced.

For E other than those of Eqs. (19), (20), and (25), U is
an infinite series, but P(r) converges as r ~~ sufficiently
fast. The wave function that emerges in the limit of
R ~0 is subject to a nonstandard boundary condition at
the origin. Let us emphasize that there is no a priori
reason why the special values of E examined above
should be preferred instead of other possible values.

Finally let us discuss possible physical implications of
the self-adjoint extensions. The aspect that the value of ~
and hence the bound-state energy can be chosen arbitrari-
ly may give the impression that the extensions are a mere
mathematical artifact. This is not necessarily so. Con-
sider the (ordinary) hydrogen atom. We know that the
standard solutions of the Schrodinger equation are in
good agreement with experiment. Next consider a ha-
dronic hydrogen atom such as those of m p, E p, or pp.
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It is known that the S-state levels are shifted from the
pure Coulombic levels. This is due to the hadronic in-
teraction at short distances (r (1 fm). This short-range
interaction can be simulated by a square-well potential
[17]. Then the resulting S-state wave functions (subject
to the standard boundary condition) behave differently
for r(l fm as compared with the corresponding wave
functions in the absence of the short-range interaction. If
one takes the zero-range limit of the square-well poten-
tial, the wave function in the limit obtains an irregular
component. In the sense that 1 fm is almost zero as com-

pared with the relevant Bohr radius, the wave functions
obtained in the zero-range limit would not be very
different from the real wave functions. A similar situa-
tion will arise if the magnetic flux has a structure at very
short distances.
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