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We have analyzed a model which describes a laser with an injected signal (LIS). We have used a
simplified model, keeping only the complex-field equation. By means of standard mathematical methods,
we have investigated the vicinity of a Hopf bifurcation point that it presents, and derived the normal
form of the laser response. The parameter plane is fully analyzed in terms of the periodic-solution stabili-
ty. A second branch of periodic solutions is also shown to be present in the system. Numerical simula-
tions are carried out following the parameter-plane analysis and lead to the full set of bifurcation dia-
grams that this model can present. Finally, a global and complete view of the LIS dynamics is deduced.

PACS number(s): 42.65.—k

I. INTRODUCTION

The laser with injected signal (LIS), which is used ex-
perimentally to stabilize the output intensity or for mode
selection, is also a well-known system investigated from
the quantum-optic-instability point of view. The dynam-
ics of externally injected lasers has been studied using
very different assumptions for the parameter values. A
larger number of studies based on several models, all de-
rived from the Maxwell-Bloch (MB) formulation, have
been performed to investigate the influence of different
approximations and the effect of various parameters.

Most of the authors have kept the full homogeneously
broadened atomic MB set: this represents a five-
dimensional system with seven parameters. From the
analytical point of view, the heaviness and the complexity
of the expressions do not lead the way to any general
treatment. The remaining track is either numerical simu-
lations [1-7], which induces harsh restrictions on the re-
sults and reduces the global view of the parameter depen-
dencies, or the adiabatic elimination of some variable
[8-13] and the degenerate-case analyses based on very
special parameter situations [14,15].

The numerical simulations reveal a large variety of
self-pulsing behaviors and routes to chaos including
quasiperiodicity and period doubling. Under high-gain
conditions, regular and chaotic oscillations, envelope
breathing, and spiking are shown to be present in such a
formulation [1]. Analyses of power spectra, Poincaré
maps, and Lyapunov exponents lead to detailed investiga-
tions of the bifurcation routes to chaotic attractors via
subcritical or supercritical Hopf bifurcations of limit cy-
cles, for example [2,3]. More generally, and even if one
does not control globally the parameter space, the full set
of equations has been studied in terms of identification of
attractors, chaotic regimes, dimensionality, coexistence,
and competition between different attractors. The com-
plexity of such a system supplies the viewpoint of associ-
ated attractors, multiple competing attractors, and there-
fore structured chaos as shown by Jones and Bandy [7].
A generalized instability criterion, established for both
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optical bistability and LIS, has also been attempted by
Hu Gang and Yang Guo-jian [6]: formal results have
been derived and a global view versus the parameter
space was obtained but via asymptotical studies.

The other way to study the MB equations occurs by
adiabatically eliminating some variable (often the atomic
polarization), and reducing the number of variables and
parameters. Most of the publications on that subject are
devoted to the case of CO, lasers (or class-B lasers)
[8-13]. This leads to a three-dimensional problem and
allows more global analytical studies. But in that case,
the number of parameters (six) is still large and requires
asymptotical analyses. Very special situations describing
degenerate cases have been considered. They are charac-
terized by a reduced number of parameters and then
more sophisticated analysis can be proposed. This is the
case of Politi, Oppo, and Badii [14], who have analyzed a
degenerate Hopf bifurcation resulting from a coalescence
of a Hopf bifurcation and a limit point of the steady
states. This situation occurs for a suitable parameter
range and is described by means of generic normal forms
related to a degenerate codimension-2 phenomena. A fre-
quency analysis was also performed [12]. Hu Gang and
Yang Guo-jian [15] have shown that the five-dimensional
system can be reduced to a two-dimensional set through
adiabatic eliminations on a line of the space parameter
where a codimension-3 bifurcation point is present. The
vicinity of that critical point is then analyzed. On the
same topic, the stabilizing effect of the detuning parame-
ters has been analyzed on the three-dimensional LIS
model by Braza and Erneux [13]): under some assump-
tions (small population inversion and adjusted detunings),
it is shown that a subcritical Hopf bifurcation located on
the intermediate branch, for small detunings, moves to-
wards the upper-limit point (degenerate case) as the de-
tunings are increased, and stable periodic solutions are
then possible. It is a general feature of all these investiga-
tions on reduced LIS models that significant dynamical
effects still persist in spite of a much smaller phase space.

Within the framework of reduced MB equations, some
studies on NMR ruby laser with an injected signal, a
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problem which is similar to the CO, LIS problem, have
been performed experimentally first and then theoretical-
ly. A subcritical Hopf bifurcation has been observed and
a three-dimensional model was proposed by Holzner
et al. [16]. A normal form for a simplified two-
dimensional model was derived and a general analysis
was performed in the vicinity of the Hopf point but only
for the experimental parameter values [17]. Braza and
Erneux have carried out an asymptotic analysis of the
periodic solutions of the NMR two-dimensional model as
a function of the relative magnitude of the pump and in-
jected amplitude parameters [18]. A complete branch of
periodic solutions was described and the subcritical na-
ture of the Hopf bifurcation was definitively demonstrat-
ed.

Only the field equation governs the description of
class-A lasers such as the dye lasers. In Ref. [19], Spenc-
er and Lamb provide the first-principles theoretical
description of the LIS operation and derived the two-
dimensional model, injecting a signal through a transmit-
ting window of the laser cavity. They also went over a
stability analysis. Some authors [12,13] have partially
treated this two-dimensional model (in Appendixes) for
comparison with the three-dimensional model results
they have analyzed. Otherwise, numerical simulations on
a modulated two-dimensional model have been per-
formed by Yamada and Scholtz, leading to complex be-
haviors of the laser such as intermittency [20] and even
chaos for the modulated-inversion layer system [21].

Most of these instability analyses have been carried out
in the plane-wave approximation and infinite active medi-
um in a ring cavity. Nevertheless, Lugiato et al. [29]
have shown that a Gaussian transverse profile field may
modify the results qualitatively and quantitatively: it in-
creases the threshold level for injection locking relative to
the plane-wave limit, and this induces a growth of the in-
stability domain with respect to the injection strength. A
bidirectional solid-state ring laser in the presence of two
weak external signals (one in each direction) has been also
modelized and experimentally investigated by Krivosh-
chekov et al. [22]. They have shown the stabilization of
the output laser intensity and the suppression of the re-
verse wave when one input field is increased. A mul-
timode laser with an injected signal has been considered
by Bandy, Narducci, and Lugiato [3] showing a competi-
tion between the incident-field frequency and the mode-
pulled frequencies of the modes that are present above
the laser threshold.

These different kinds of analyses carried out on the LIS
(and related systems) show the dispersion in the LIS dy-
namics research due to its complexity and different points
of view. This explains the large number of behaviors one
can find in the literature. However, the way the system
undergoes the different stages and attains the complexity
needs a more global description based on the parameter
space analysis.

In order to explore the LIS behavior as a function of its
parameters, and then to perform analytical calculations
as far as possible, we choose to analyze the two-
dimensional model. Our aim is to study what the remain-
ing observations are that one could expect from such a
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simplified LIS description and make a link with previous
works on higher-dimensional models. Curiously, no gen-
eral and complete treatment has been performed yet on
such a model.

This paper is organized as follows. In Sec. II we re-
mind the MB formulation of the LIS, derive our
simplified model, and describe briefly its steady states.
The linear stability analysis is presented in Sec. III. The
position of the instability point is fully discussed as a
function of the parameters. In Sec. IV the vicinity of the
Hopf point is analyzed using the normal form techniques
to build the pulsating solutions which appear beyond the
critical point. The stability of these periodic behaviors is
derived. To present a complete bifurcation diagram, we
cannot ignore a periodic branch of solutions rising at the
lasing point characterized by the absence of the external
field. Section V is devoted to some analytical calculations
on that branch in accordance with those of Refs. [12,13].
Finally, numerical simulations supporting our previous
analytical results are presented in Sec. VI. They give a
global view on the dynamics of the model in the parame-
ter space. A link will be made with previous analytical
and numerical results obtained on a three-dimensional
model.

II. THE FORMULATION

A. The model

The Maxwell-Bloch formulation for two-level atoms
with an external driving field E,, is the most common
model describing a LIS. In standard notations, the equa-
tions are

dE _

= —k[E(1=iv)=Ey ) +igP , (1a)
dP _ . .

dr y(1—iw,)P—igDE , (1b)
dD _ . * *
E——Y”(D—a)—Zzg(PE —EP*) . (1c)

The variables involved in this formulation are the com-
plex laser field E, the atomic polarization P, and the pop-
ulation inversion D; k, v, and v are the respective relax-
ation times, g is the coupling parameter between light
and matter, o, and v are the atomic and cavity frequen-
cies, and E,, is the external field [19]. The spatially-
homogeneous-field approximation and single-mode
operation are assumed for deriving the system (1). This
model includes also a homogeneous broadening for the
atomic subsystem.

When adiabatic elimination of both the atomic polar-
ization and population inversion is valid, which is the
Debye-laser’s case for example, the Maxwell-Bloch equa-
tions can be reduced to a single equation for the complex
field E [20,22]. A new time scale ¢ =« is then defined,
and in terms of a complex rescaled variable X, the model
becomes

ax
—=—iQX+
ar iNX

R
1+Xxx*

—1}X+.><l ) (2)
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where E=V'y y,/4g*Xe'®, Ew=V'y.y,/48°Ae',
and these equations express that X is given in a rotating
frame related to the external injection: then any steady
state corresponds in fact to a locked solution on the driv-
ing field. R =0g?/y, is the usual pump parameter. The
amplitude of the external field is A. We note that the
new variable and the parameters are dimensionless. In
this paper, A is a constant parameter while in the follow-
ing paper [23], we shall consider the case of a modulated
input field.

We have supposed a zero-frequency detuning between
the external field and the polarization on one hand, and
the cavity on the other hand. Then in Eq. (2), the param-
eter () appears directly as the external-field frequency,
but it can be easily replaced by (and even interpreted as)
the frequency detuning between the driving field and the
cavity. This is the case when Q7w, and Qv (0, 7).
One gets an identical evolution equation for the laser
field, where the variable X and the parameter A are now
rescaled by a constant value depending on the
atomic—external-field frequency mismatch. From the dy-
namics point of view, no drastic modification of the sys-
tem behavior can then occur.

The complex equation (2) is the simplest model describ-
ing a LIS. From a strictly mathematical point of view,
we are left with a two-dimensional system governed by
three parameters.

B. The steady states

The Cartesian form of the complex variable X is
taken as X=u +iv. The steady states (ug,vg) are the
zeros of the time derivative of the components u and
v. One easily finds ug=—[R/(1+1I5)—1]Ig/A and
vg=—QIs/A, where Ig=XgXg is the laser steady in-
tensity and obeys the following implicit equation:

2

R 27— g2

T4, Is+QIg=A*=F(I) . (3)

—1

This last equation is a particular case of the more general
steady solutions generated by the five-equation MB
set and represents the possible locked intensities. A
polar development of X leads also to the steady field
phase given by the relation tan(¢g)=—QV I/
V(A?—Q )% the steady states are phase-locked
solutions. As a few parameters are involved, a
parameter-diagram discussion on Eq. (3) is made much
easier.

In the (A,I) plane, the cubic Eq. (3) describes an S-
shaped curve when the remaining couple of parameters
(R, Q) follows the inequalities:

2 (R —1)%R +8)
27R

R =1 is the usual laser threshold. The limit of the first
inequality gives rise to the “bistable” line characterized
by the presence of an inflection point on the steady curve:
above that line, Eq. (3) has only one solution; the LIS
presents a monostable behavior with respect to the signal

Q and R>1. 4)
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strength A. Otherwise, the steady curve shows three
possible intensities for a fixed A parameter.

ITII. LINEAR STABILITY ANALYSIS

In order to test the stability of the steady state (ug,vg),
we inject in Eq. (2) a perturbed solution of the form
u=ug+8ue* and v=uvg5+86ve™, where du <<ug and
dv <<vg. At first order in (6u,6v), one gets a linear
problem with the following characteristic equation:

R dF
A2 |————1|+——=0. 5
(1+1,)? dl o
The two roots of (5) are
RZIZ 172
=R 11 S__q? (©)
T (1+I) (1+1I5)*

Since no explicit form for I is available, direct analytical
calculations cannot be carried out. However, one can get
more information on the system behavior by treating par-
tial results.

Depending on the values of the parameters, A can be
real or complex. A negative (positive) sign of its real part
defines the stability (instability) of the steady state I¢. As
a bifurcation parameter is varied, a sign change of the
real part of a complex A denotes the presence of a Hopf
bifurcation and small amplitude oscillations of the inten-
sity may settle in the system. While a real negative value
of A becoming real positive denotes a steady bifurcation,
the system moves from a steady state to another if stable,
or to some other attractor present in the phase space.
[Note that with these elements and for optical bistability
(R <0), an instability can never occur in such a system.]
Back to the LIS, we can deduce the following:

(i) From Eq. (5) the negative-slope part of the S-shaped
steady curve (or intermediate branch) is always unstable.
The roots A can never be complex on that branch: when
it exists, the Hopf bifurcation is always on the upper or
lower branch.

(ii) From Eq. (6) all steady intensities less than VR —1
are unstable.

(iii) The system presents a Hopf bifurcation when

Q*> (VR —1)%. 7

The limit of this last inequality gives the “Hopf line.”

An exact calculation gives the position of the Hopf
point on the S-shaped curve: it corresponds to an inter-
section between

1/2711/3

A2 Q¢ A*
= _ __+___
Tn 2 T |27,
.)42 06 .)44 1727173
2 |27t ®

and Eq. (3). The Hopf intensity is also characterized by
the more useful relation

I,=VR —1. )
In the plane (A,I) and then for a fixed value of R, the
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Hopf point on the S-shaped steady curve occurs for a
finite value of A given by the expression

Ay =[IxT5+Q*]'2 . (10)

At the critical point Xy =uy +ivy, the frequency Qy has
the following form:
2 =272 =02— (VR 2_1121 2 2
H
where the Cartesian coordinates of the complex electric
field are

One can note that the Hopf frequency is smaller than the
external signal frequency: this represents globally a pul-
ling frequency effect between A =0 and A . In this pa-
per, HB stands for Hopf bifurcation.

Using the driving-field strength as a bifurcation param-
eter one can combine Egs. (4) and (7) and define in the pa-
rameter space (R,Q?) three regions with different bifur-
cation diagrams. These regions are represented in Figs.
1(a) (for R <4) and 1(b) (for R >4) and Fig. 2 displays the
diagrams occurring in each region. The three regions are

FIG. 1. Analysis of the parameter space (R,Q?). The dashed
lines represent the equation: Q?=(VR —1)® or the “Hopf
line.” The solid line stands for Q>=(R —1)X(R +8)/(27R) or
the “bistable line.” Region I (III) presents bistability without
(with) a HB. Region IIla (IIIb) has a HB on the lower (upper)
branch. Region II shows monostability with a HB (a) R <4, (b)
R>4.
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FIG. 2. All possible bifurcation diagram of system (2), de-
pending on the parameter values. The dashed lines stand for
unstable steady states while the solid line represents stable
steady behaviors. The circles in region I represent the steady bi-
furcations at the turning points. The HB is represented by a
two-pronged shape pitchfork and can destabilize the steady
solutions stably or not (II1a or IIIb).

delimited by the “bistable” and ‘“Hopf lines.” These two
curves present an intersection point (R =1,2=0) and a
tangency point (R =4,Q=1): the “Hopf” line is always
below the “bistable” line for R > 1. According to these
properties, the system can present the following bifurca-
tion diagrams.

(i) Region I appears for small detunings Q. No Hopf
bifurcation can occur for these parameter values and the
steady curve is always S shaped: the bifurcation points
are steady and correspond to the turning points of the
steady curve. Only the upper branch is stable since I
must be larger than VR —1. As an example, one can
consider the particular case of =0 and R >1 (and the
lower boundary of region I) for which the destabilization
occurs for I,;=R —1 (the upper turning point). This
is the usual lasing solution and corresponds to A =0.
The lower critical intensity is for I.,=—R/2—1
+(R/2)V'1+8/R. This value is always smaller than
VR —1. We can note that this last intensity value
(which has no HB sense in this region) is embedded in the
unstable intensity domain.

These results for =0, valid in the two-dimensional
situation only, can be compared with those of Ref. [13]
derived for the three-dimensional model and where nu-
merical simulations show the presence of a HB point on
the unstable intermediate branch. Globally, when we add
the population inversion, and then a third parameter ()
to R and A, the description in the parameter plane
displays an increase of the Hopf existence domain involv-
ing the =0 line: the surface whose projection in the
(R,Q?) plane is the Hopf line must reasonably curve it-
self towards low values of Q and the Hopf existence
domain can then hold the Q=0 line.

In the two-dimensional model the presence of the
VR —1 intensity value on the intermediate branch
occurs not only for Q=0 but also for all of region I. On
the other boundary of region I given by Eq. (7), one can
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find two bifurcation points: I,,=V'R —1 is the upper
(lower) commutation point when R >4(R <4). The
second critical intensity occurs for

_ViiVE 8VR

2 2 R+2—2VR
and its position on the S-shaped curve is just at the
second turning point.

(ii) In region II of the parameter space characterized
by large values of (), the steady curve is monostable and
the destabilization of I always occurs via a Hopf bifur-
cation. Particularly, on the bistable line, the HB occurs
above the inflection point for R >4 and is present in some
sense on the “upper” branch (or what will give the upper
branch), while it appears below the inflection point for
R <4 and thus on the “lower” branch (the intermediate
branch is forbidden).

(iii) In between regions I and II, a third region takes
place, noted as region III, for which a Hopf bifurcation
occurs in a situation of a bistable steady behavior and still
never on the intermediate branch. Two cases are possible
depending on the location of the instability on the stable
branches. Qualitative arguments indicate that this is re-
lated to whether R is smaller or larger than 4 as we will
discuss now.

When () increases, the steady intensity decreases on
the intensity axis: dIg/d () is negative and inversely pro-
portional to dF /dIg. Thus the upper and lower branches
come closer to the A axis. In the same way the steady
solutions shift towards large values of A, and the S-
shape disappears progressively. Depending on the rela-
tive amplitude of the falling down motion of the steady
branches and the position of Iy, one can conclude wheth-
er the Hopf point is climbing up or coming down on the
upper or lower branch as we explain now. Since the
upper branch has a large falling motion (dF /dI, is large)
and the Hopf intensity value is constant for a fixed R, one
can deduce that the Hopf point has an ascendant behav-
ior on that branch: this means that its distance to the
upper turning point increases. This is the case for R >4
(or region IIIb).

When R <4, the HB is present on the lower branch of
the S-shaped curve. Our analysis concludes to a decreas-
ing motion of the instability point on that branch when Q
increases (region IIla). These results do not contradict
with conclusions obtained by continuity arguments be-
tween the upper and lower boundaries of region III. As
suggested by Spencer and Lamb in Ref. [1] and demon-
strated in this section, the presence of a Hopf bifurcation
on the lower branch of the S-shaped steady curve occurs
on a very narrow domain in the parameter space.

The two possibilities on whether the Hopf bifurcation
is supercritical or subcritical are kept in Fig. 2 for regions
IT and IIIb. The stability of the periodic oscillations ap-
pearing beyond the Hopf critical point will be analyzed in
the next section.

IV. CONSTRUCTION OF THE SMALL-AMPLITUDE
PERIODIC SOLUTIONS

172

ICZ= _l

As the Hopf point is well defined, we focus on the solu-
tions which may settle in the vicinity of that critical
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point. We shall try now an analytical and more precise
description of them.

The standard perturbative method we use is developed
in Ref. [24]. It consists of a study of the immediate
neighborhood of the critical point and by constructing
the analytic expression of the periodic solution of Eq. (2).
We use again A as a bifurcation parameter, and consider
the following expansion around the Hopf point:

A=Ay+ea, with e<<1. (13)

This defines a small parameter €.

Since fast oscillations of our system are expected, a
slow time scale 7 (with respect to the rapid motion
characterized by ?) is also introduced, defined by

r=¢€t (14)
such that d,=9,+€%9,. The complex variable X is ex-
panded as

X(t,7)=Xy+eX,(t,7)+€X,(t,7)+0(€) (15)

and reinjected in Eq. (2). The lowest order leads to the
stationary condition at the Hopf point. At order € one
gets a linear problem, with two equations for u; and v,,
which can be written in vectorial form as

9,X,=LX,, (16)

where the 2®2-matrix L is given in Appendix A, and

whose solutions are given by

u,(t,7)
U](t,T)

A(T)
B(T1)

M ycc. (17)

X, (t,7)=

The coefficients 4 and B follow a slow time variation
which has to be determined afterwards. They are related
by

Q
~I.HZ_I”Z
Vg — Uy

u
B(r)=—"
Vg

A(T)=QA(T) (18)

and verify the so-called solvability condition

9,A=(a+iB)A+(y+id)A|A|*. (19)

We do not present the tedious but straightforward calcu-
lations leading to the previous generic equation but for
more details we give in Appendix A the broad outline of
this mathematical method. Finally this solvability condi-
tion concerns the slow variation of the complex ampli-
tude 4 of the periodic solution. In our case, the parame-
ters of Eq. (19) have the following form:

4uya, 1 I4(1—-1y)
+' = + 5 20
A= 1 Tv 1, 20,001, (202)
41 wi—1
r= d i (20b)

R —uk? A+IgR
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5§=— L _j_ 0?
2_ 22
3()H (UH uH) 12 -4
I
2_,2_ _“H 2 _ 2
X 6UH Uy 1+IH (ZIUH uH) 3+ cuperHB s
Ii 2 2
——— (1o +3uf) | . (20c) & T
(1+1y)
A straightforward study of Eq. (19) is realized. In polar T .
coordinates 4 =pe’®, the steady statesare | S~ __———7 e
0 === F } T 1
ps=0 and ps=—a/y 21) 1 2 3 4 s . 6
Wh{ch‘need pos.mve values. The ﬁm't ¢ small-amplitude FIG. 3. Supercritical or subcritical HB: The dashed lines
periodic solution A; occurs with a frequency

w,=B+8p?. This value is proportional to a, and corre-
sponds to a €* correction to the Hopf frequency. There-
fore X, oscillates with a frequency

0=Qu+€w0,=Qy+€ . (22)

B8
Y

A linear stability analysis of the steady solutions of Eq.
(19) leads to a stability exchange between the zero- and
finite-amplitude solution for @ =0, the zero solution being
stable for a <0. In our case, the small-amplitude oscilla-
tions beyond the Hopf point are stable (equivalently the
Hopf bifurcation is supercritical) when a>0 and y <O.
Since the expression of uy is negative, one can find the
condition @, <0 and v} has to be less than 1. This last
inequality can also be written as

(VR —1)?
2VR -3

All these results are summarized in Fig. 3 where we
represent in the parameter space (R,Q?) the domains of
existence and stability of the small-amplitude oscillations.
We note the following: In the monostable region II, the
Hopf bifurcation can be either supercritical or subcriti-
cal. In region III, the pulsating solutions are always
stable when they appear on the lower branch (IIla) and
for R >4 (IIIb) the Hopf bifurcation is always subcritical.
This explains the dashed or solid Hopf lines of Fig. 2 and
their directions.

One can express the two conditions for a supercritical
Hopf bifurcation as A <A g with Ay >V2Q(VR —1).
In the bifurcation diagram (A,I), the most eloquent in-
equality is A <A g (or a, <0) while in the (R,I) plane
the most useful relation is v} <(1). From the frequency
viewpoint, we can deduce from a study of Eq. (22) and
the sign of w,, the evolution of the frequency of pulsating
solutions in the surrounding of the bifurcation point and
show that in general the w, value is negative as A de-
creases from A .

The calculations we have presented can be reproduced
using R as a bifurcation parameter. One has to keep Egs.
(14) and (15), replace Eq. (13) by an expansion for R of
the form R =Ry +€’R,, and follow the previous method.
We get the same generic equation as Eq. (19), but the pa-
rameters a and 3 of Eq. (20) are modified as follows:

(23)

represent the function Q>=(VR —1)? or the existence of the
HB, and the solid line represents Q’=(V'R —1)*/(2V'R —3),
its stability (stable above).

RZ
Wi —up)(1+1Iy)?

X IH+2u,2,+i———Q— . (24)
H

o +ip =

The conclusions are qualitatively the same. The Hopf bi-
furcation is supercritical for R, >0 and v} < 1. Note
that the S-shaped steady intensity curve of the (A,I)
plane has a quite different shape in the (R,I) plane, and
then when R is the bifurcation parameter.

V. THE SECOND BRANCH OF PERIODIC
SOLUTIONS

The system (2) presents a second (and non-Hopf)
branch of periodic solutions. This branch has been first
described through its frequency view point by Oppo
et al. [12] for the two- and three-dimensional LIS model
using a Lindstedt-Poincaré expansion. In this section we
develop a new calculation to characterize more precisely
this limit cycle. When A =0, one has to find the usual
laser state whose intensity is /=R —1 and frequency Q.
For that reason, we follow this branch of solutions in the
surrounding of A =ae (e<<1). We take a, R, and Q of
order unity, and expand X as

X(D)=xq+ex,(1)+ex,(t)+0(e) . (25)

After replacing X in Eq. (2), we get the first two orders

de R
— L= —iQx,+ —1 |x,, (26a)
dt I+xox§
dx
—1——iﬂxl+ R —1|x,+a
dt 1+xxt
xox T +x,x§
xR TR TXXo (26b)
I+xox5 1+x0x§

We present in Appendix B the direct integration of the
system of Egs. (26). The solution X (¢) of Eq. (2) can be
then expressed at the two first orders as
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X()=VR —Te ®+gee | —1 [k cos(Qt)+Q sin(Qf)]—iLcos(Qt) | +0(e?) . 27)
k*+0? Q

This form displays a time-dependent amplitude and phase
corrections to the laser solution. Another way to express
Eq. (27) is the following:

_— k .k | cos(Qt) _;
=v'R — it A A iQr
X(1) R —1e +aeQ 1 zQ PENY e
—ige———+0(e?) . (28)
k°+Q

It exhibits an order-€ constant shift on the v axis with
respect to the Cartesian coordinates x =u +iv. Numeri-
cal simulations show also the presence of large limit cy-
cles whose main feature is a center shift. This phenome-
na being persistent even for large values of the injection,
it suggests a new analytic approach introducing this
effect. We then seek a large-amplitude limit cycle exist-
ing even for large external injection. The presence of the
center shift of the solutions can be injected in the follow-
ing way:

X(1)= [“(‘)]= [Z(‘)’ +p(r)eto) (29)

v(t)

We suppose u, and v, are constant, and for limit cycles
the dominant orders of p(¢) can be supposed time in-
dependent. We inject Eq. (29) in Eq. (2) and after some
modifications get the following equations:

cos[Y(t) J[{ A+ Quy—uy} +sin[¢(8)]{ —Quy—ve} —p

+K(t){pt+ugcos[¥(t)]+vgsin[¥(£)]} =0, (30a)
cos[Y(8)]{ —Quy—vy} +sin[¢(2){ —A — Quytugy}
—Qp+K(t){vocos[¥(2)] —uysin[¥(2)]}
=pldy(t)/dt], (30b)

where
K(®)=R /(1+ud+vi+p’
+2p{ugcos[ (1) ]+vosin[¥(D)]}) .

No assumption concerning the other parameters has been
emitted yet. However, one has to consider a small pa-
rameter, or more precisely a small parameter ratio, to
simplify the K (¢) expression. We have tested several pos-
sibilities. The most conclusive situation is characterized
by the following assumption: since we are interested in
large-amplitude limit cycles, this supposes either large R
or larger injections. In all cases, large values for p are ex-
pected and the couple (uy,vy) can be supposed much
smaller than the p value. This situation is characterized
by 1+p*>> u, (or v,) or even p?>>u, (or vy) if p?>>1.
We are left with a situation which is similar to the one
previously described for small injection, but more general
in the sense that no smallness constraint on the external
field amplitude is imposed. In fact, the equations impose

f

A to be of order (u, or vg), and since this couple of pa-
rameters can have reasonable values (but small with
respect to p), this releases the small A assumption. We
have found that a couple (u,v,) may exist if

pP~R—1+0(ud,v3, or ugy,) . (31)

To be coherent with the large-p assumption we need large
values for R. We can also derive the following expres-
sions:

k
==
Uo PERIPS) (32a)
0
=—A—5 (32b)
vo K2 +Q?2

The shift on the v axis is identical to the one of Eq. (28)
while a shift appears on the u axis. The phase at the
dominant orders is also given by the expression

A k
t)=—Qt— —_—
v QVR —1 k2+Q?
X[—k cos(Q2t)+Qsin(Qe)] . (33)

These results look slightly different than the previous an-
alyzed case. This is due to the different asymptotic limits
we have considered: small A and reasonable values for
Q and R, or large values for A and R and still reasonable
Q. The conclusions one can deduce from these calcula-
tions are the following.

(i) For small injections, the center shift appears first on
the v axis (while the injection acts normally on the u
axis). As the injections are increased, the shift progres-
sively leaves the v axis.

(i) As we have imposed a constant amplitude to the
limit cycle and the center shift, the phase has adjusted it-
self in a slightly different manner. We note that the
phases in Egs. (B6) and (33) do not have the same mean-
ing and cannot be directly compared.

This phenomena is well known from the phase viewpoint
[25,26]. The laser solution has a drift frequency due to
the presence of one degree of freedom [27]. Then the
periodic branch of solutions starting from the laser solu-
tion is characterized by an unbounded phase [13]. When
the injection is added, the phase-locked steady solutions
of the system are locked to the external frequency. As
the injection is increased, the “laser” periodic branch de-
velops itself and moves towards the locked solutions re-
gion. Its phase becomes progressively bounded (the
phase drift is destroyed, the degree of freedom is lost),
and this is realized via a center shift of the periodic solu-
tions as we have shown in this calculation. The system
chooses by itself an irreducible representation. The way
this branch of periodic solutions develops needs a more
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complete bifurcation diagram we shall present in the fol-
lowing numerical study.

VI. COMPLETE BIFURCATION DIAGRAMS

In this section we have computed the complete bifurca-
tion diagrams for the output intensity. We have treated
all the possible behaviors the two-dimensional system
may exhibit when the input strength is varied. The previ-
ous analytical calculations have been helpful to scan care-
fully the (R,Q) space. Moreover, as the system is only
two dimensional, no ‘“complicated” behavior, such as
chaos or quasiperiodicity, is expected. In our case and
since we have two kinds of periodic branches, one has to
follow their evolution when the bifurcation parameter is
varied. We have used AUTO [28] a computer software
package that follows automatically the branches of
periodic solutions using a continuation method. AUTO
also determines the stability of the periodic solutions and
locates a secondary bifurcation point if any. In all the bi-
furcation diagrams we present the dashed lines stand for
unstable states while the solid line represents stable be-
haviors, the dark (white) circles are the L, norm of a
stable (unstable) periodic solutions (complex output field),
and the position of the HB is marked by a dark square.
We shall present some numerical observations following
the three regions already described in Sec. III.

(1) Region I is characterized by a missing Hopf bifurca-
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FIG. 4. Region I. (a) Typical bifurcation diagram for region
I. The dark circles stand for the L, norm of the stable periodic
solutions. (b) Related period of the pulsating branch.

tion. We also know that the critical points are the upper
and lower turning points, and the upper branch is always
stable. In Fig. 4(a) we give the system behavior as a func-
tion of the input amplitude. The periodic branch, we call
the “normal” lasing branch, has been computed starting
from the lasing state for A =0. The period of the solu-
tion is then 27 /9, and it increases along the branch very
slowly first and then dramatically when the periodic solu-
tion approaches the steady-state branch near its upper
turning point. The period of the pulsating solutions
versus the input parameter is shown in Fig. 4(b). Note
that the AUTO calculations are limited in the vicinity of
the critical point (the turning point in this case): one has
to take in account the computer precision. We have fol-
lowed the periodic branch to 108 of the input-field value
at the turning point and the period was evaluated to the
10" 7th order in dimensionless units. This reasonably al-
lows us to conclude that the periodic branch and the
steady curve merge at the upper turning point in an
homoclinic orbit. The simulation we present has been
realized for R =2.0 and 2=0.2.

No qualitative difference occurs when one of these two
parameters is varied in region I. The junction between
the periodic and steady lines always occurs on the upper
commutation point. This description supports the system
behavior for Q=0: the upper turning point and the las-
ing state for A =0 coalesce in a homocline orbit (of
period 27 /Q).
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cal HB. The square represents the Hopf bifurcation point and
the dark circles represent the stable periodic branch. (b) Varia-
tion of the period versus the bifurcation parameter.
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(2) Region II presents two kinds of bifurcation dia-
grams since the monostable steady curve can undergo ei-
ther a subcritical or a supercritical Hopf bifurcation.
The two cases are, respectively, displayed in Figs. 5 and
6. Above the Hopf bifurcation point, the steady solution
is always stable. In case of supercritical Hopf bifurca-
tion, the stable periodic branch appearing beyond the
Hopf point (for A <A ) directly merges in the normal
branch [Fig. 5(a) for R=3.0, 2=0.8], its period in-
creases to a maximum value then decreases to the lasing
period 27 /Q [Fig. 5(b)]. Whereas in the subcritical case,
the Hopf branch starts unstable in the “wrong” direction
(or A >Ay), stabilizes at a “turning point,” and then
moves stably in the right direction (decreasing A) to-
wards the normal lasing branch [Fig. 6(a) for R =5.0,
1=2.0]. This trajectory makes possible a bistable behav-
ior between steady and periodic stable solutions. In Fig.
6(b) one can follow the evolution of the period and note
the only case for which the period decreases directly from
the Hopf value to the external value.

(3) Region III is a quite narrow region in the parameter
space, especially for reasonable values of R. The previous
analytical results greatly serve the purpose of the numeri-
cal experiments: this is clearly expressed by the parame-
ter values used to derive the diagrams. We uncover three
types of bifurcation diagrams for this domain, one more
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FIG. 6. Region II. (a) Bifurcation diagram with a subcritical
HB. The open circles stand for the unstable periodic branch.
(b) The period of the pulsating branch is given versus the bifur-
cation parameter.
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than the two kinds we expected. They are shown in Figs.
7-9.

In region IIIb the system undergoes a subcritical Hopf
bifurcation on the upper branch of the S-shaped steady
curve. Figures 7(a) (R =14.0, 2=3.0) and its enlarge-
ment 7(b) do not contradict our previous conclusions.
The trajectory of the periodic branch from the Hopf
point to the lasing state (at A =0) occurs in a very similar
way in Fig. 6.

When R is less than 4, the Hopf bifurcation always ap-
pears supercritically on the lower branch (region IIIa)
and Figs. 8(a) (R=2.0, 2=0.425) and 9(a) (R =3.0,
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0 =0.735) describe these situations. The main difference
between the two cases is that the Hopf periodic branch
may join directly the lasing solution, “avoiding” the S-
shape steady branch and more precisely the intermediate
branch [Fig. 8(a)]. In that case one gets either bistability
between two steady states or between a steady and a
periodic solution. In Fig. 8(b) we display the period be-
havior which looks very similar to the one represented in
Fig. 6(b). Nevertheless the maximum value reached by
the period in the present case shows the effect of the
homocline orbit proximity. The other possibility is that
the Hopf branch cannot “avoid” that saddle-node steady
branch and the two periodic branches of the problem are
separated as displayed in Fig. 9(a): both of them finish
their trajectory as homocline orbits, the normal branch
on the upper steady turning point following the scheme
which prevails in region I, while the Hopf branch sepa-
rately bangs against the intermediate branch of steady
states. This supports the interpretation of two different
branches of periodic solutions, with two different origins
introduced for the first time by Oppo et al. [12] through
a frequency description on a three-dimensional model.
These two branches can also merge following the obser-
vation of Ref. [13] on the absence of bifurcation at the
junction point, and explained by the singular phase be-
havior of the two periodic solutions families.
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diagram for a “smooth” periodic branch; (b) evolution of the in-
tensity period.
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For a comparison between the two- and three-
dimensional models, we observe that the junction be-
tween the two periodic branches is a characteristic of the
two-dimensional model (and approaching models: three
dimensional but with small 7 and very small detunings)
while the bistability between the two branches needs a
full three-dimensional model to occur. The presence of
the homocline orbit seems to be common to all the mod-
els, even if in Ref. [12] they observe a decreasing frequen-
cy of the lasing branch but do not follow that branch far
enough to conclude.

One can also deduce the continuous passage through
region IIla from the diagram of Fig. 4(a), governing
below the lower boundary of that region and where we
have only the “laser” branch, to the diagram of Fig. 5(a),
valid above the upper boundary of region IIIa and where
the Hopf branch is present and merges in the laser
branch. As the input frequency increases, the Hopf ap-
pears on the lower branch and very near to the lower
turning point such that the situation described on Fig.
9(a) prevails. Then the Hopf bifurcation goes down along
the lower branch, and the S shape of the steady curve
dies down: these two combined effects give rise to the be-
havior displayed in Fig. 8(a). We suppose that the homo-
cline orbit climbs up on the intermediate branch as we
move towards region II. To reach this last region (II) and
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FIG. 9. Region IIIa. The second type of evolution of the sys-
tem when the supercritical HB is present on the lower branch.
(a) The presence of the homocline orbits break the periodic
branch in two parts, (b) period of the pulsating branches.
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the bifurcation diagram of Fig. 5(a), and as Q increases
one has just to notice that the intermediate branch pro-
gressively disappears. Figure 9(b) displays the separated
periods of the two pulsating branches with the vertical
asymptotic trajectory, signature of the homocline orbit
presence. The same arguments may justify the continuity
in the behavior description from region I to II through
region IIIb.

Except the case described in Fig. 6 and the cases of a
homocline orbit presence (region I and exceptionally
IIIa), the period of the oscillating solutions shows in gen-
eral an increase around the Hopf critical point and then a
decrease towards the external signal period. In terms of
frequencies, this represents a decrease followed by an in-
crease towards the external frequency. These two kinds
of behavior can be deduced from Eq. (31). Then the
pushing frequency effect, which exists on the ‘“normal”
lasing branch (and then for small injections) and is de-
scribed in Ref. [12] in the case of a three-dimensional
model, is also present in this simplified model, but only
on the Hopf periodic branch and close to the bifurcation
point.

VII. CONCLUSIONS

We have used normal-form techniques to analyze the
dynamics of the LIS. We have found a destabilization of
the steady states via a Hopf bifurcation and demonstrated
that the Hopf bifurcation can be localized on the upper
or lower branch, but never on the intermediate branch.
We have shown that it can be supercritical or subcritical
and defined the parameter space accordingly. We have
obtained the complete set of bifurcation diagrams the sys-
tem may present and for any parametric situation. Our
mathematical analysis complements previous investiga-
tions [12,13]. A continuous evolution in the parameter
space connects the two-dimensional description to those
of Refs. [13] and [12]. The reduction of the LIS model to
the field equation only makes the system present a slight-
ly different behavior: for example, no Hopf bifurcation
on the intermediate branch, no bistability between the
two periodic branches as computed in Ref. [12], and no
frequency pushing of the periodic branches starting on
the laser solution. However, all this information is un-
derlying in the one-dimensional model: in region I,
where no Hopf is present, the “critical” value (VR —1)
is always located on the intermediate branch; the two
periodic branches are not bistable but they are still
present in the system and they merge; finally, the frequen-
cy pushing occurs in some situations on the Hopf period-
ic branch close to the Hopf bifurcation point. The homo-
cline orbit is also present in the one-dimensional system:
this can be expected since we have the simultaneous pres-
ence of a saddle node and a limit cycle. Thus even
though greatly simplified, which reduces the generality of
the analysis to the so-called class-A lasers, the model we
have analyzed shows some complicated behaviors. It
offers also the advantage of fully developed analytical cal-
culations.

Some of the complicated behaviors previously seen on
the LIS, such as quasiperiodicity and chaotic attractors,
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however, disappear in such a two-dimensional descrip-
tion. One can expect to restore them by adding a modu-
lation [20,21]. Since we know the behavior of the auto-
nomous LIS for all parametric situations, the following
paper [23] will be devoted to the dynamics of the modu-
lated LIS.
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APPENDIX A: CONSTRUCTION OF
THE PERIODIC HOPF SOLUTIONS

In this appendix we give the main steps to solve Eq. (2)
close to the Hopf point and by using the expansion (15).
At the order zero, the perturbative method gives the
definition of the Hopf point

Iqug+Quy=—Ay,
QuH_IHUHZO N

while at first order in the linear problem of Eq. (16), the
2®2 matrix L has the following elements:

L,,=Iy—2u}, L,=Iz—2},
(A2)
Luv__'Q_ZUHUH, Lvu=—ﬂ—2quH .

This linear problem has two eigenvalues (+i{)y) and re-
lated eigenvectors. X, is a linear combination of these
eigenvectors as used in Eq. (17).

The €’ order leads to the fast-time evolution of u , and

v, through the equation
9, X,=LX,+F,(t,7), (A3)

where the forcing term expression F,(t,7) versus the
problem parameters has the following components:

Fy,=a,+uiug {—3+ 14_:_‘;21 +oluy, [—1+ 1‘:1_);2,”
+2uvvy 1+ dui ,
1+1y,
i sul a2 (A4)
F),=ujyy{—1+ T ; +vaH ‘—34— 141, ]
+2uvuyi—1+ i ]
1+1y

This term contains constant contributions (due to a, for
example) and exp{iQyt},exp{2iQyt} contributions pro-
vided from the products of the first-order solutions u,
and v;. The slow-time evolution is also present in the
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A(7) and B(7) expressions which are still to be deter-
mined. The general solution of Eq. (A3) can be taken in
the form:
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where we note the presence of the harmonic contribution
at the € order. Injecting Eq. (A5) in Eq. (A4), we get
again a linear system for the complex a;,B; coefficients.
We do not give their complete form because of their
heaviness. We just note that B,(7)=Qa,(7), a,(7), and

u,(t,7) B,() are functions of 4%(7), while a;(7) and B3(7) con-
X,(t,7)= |, ,(t,7) tain the time-independent term (@, ) and are proportional
to A(1)A*(7).
(7) n] The € order gives t-time evolution of u; and v;, and a
= |37 a7 e'm" ! slow-time derivative 9, appears. The vectorial equation
By | T |By) - aPP
3 2 can be expressed as
al(T) I'QHI a,X3+a,X1=LX3+E3(t,T) > (A6)
+ () |€ +c.c. , (AS) . . )
Bi(r where the forcing term F; has the following expressions:
J
41y ujvy 1R2ugyvy 2u}
F = 2 —_ 1 + —_ + 2
S U 1+1; 0+, [TV T 1+1y
2 4 2
+u§ _1+ SuH . 8uH v?4uHUH 2UH
1+Ip  (1+1y) 1+1y 1+1y
du}, vy
+u1u2(2uH){—3+ 141, +vlvz(2uH)‘—l+l+IH
du} du},
+uv,(2vy) -1+ 141, +v,u,(2uy) -1+ 141, |’
41 Zvh 12 203 A7
ugv Uy v
£3U=u%vl -1+ ' HH +v%u1 BH - d
1+1Iy (1+1y)? 1+1y 1+1,
8v 3 8v 4uyv 2up
+odl—1p A H it 4
1+Iy  (1+1y)? 1+1y 1+1Iy
dup v}
+uu,(2vy) i —1+ 151, +v,0,(2vy) 13+ 171,
4}, 4v}
+uv,(2uy) i —1+ 151, +v,uy(2uy){—1+ 1+,
[
This term now presents secular terms (in exp{iQjt}) 3,%=M%X , (A10)
which lead to an infinite contribution (with respect to the
fast-time scale) for the X, solution. To get rid of them, where M has the following matrix elements:
we need a solvability condition. We write Eq. (A6) as o
M,, =IH_2u121’ M, =]H_2U121 ’
otX;=LX;—3 X, +F;(t,7)=LX;+C,,(t,7) (A8) (A11)
.. .. sz_Q—ZUHUH, Muu=Q_2uHUH .
and the solvability condition takes the form
" o The solution X of the adjoint problem is
Jat{CciRa+Cire}=0. (A9)
ey(t,T) C iQyt
The integral occurs from O to 27/Q. The notation C\}, = 02(!,7‘) = [D((:; e Htcec., (A12)
stands for the

inhomogeneous contributions and
represents only the exp{iQyt} components of the F; and
—0J,X, terms. Note, however, that the inhomogeneous
term can be fully considered since the other contributions
vanish exactly. The Cartesian components «; and ¢, are
those of the adjoint linear problem eigenvectors

where C=—Q*D and Q is given in Eq. (18). Expanding
Eq. (A9), one gets directly the normal form of Eq. (19)
giving the slow-time evolution of the periodic-solution’s
complex amplitude appearing in the Hopf bifurcation
surroundings.
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APPENDIX B: PERIODIC BRANCH
OF SOLUTIONS

In this appendix we present the direct integration of
the equation system (26). The lowest order of the expan-
sion (25) can be easily obtained since Eq. (26a) is fully in-
tegrable. In polar coordinates x,=pge’®, one gets
= — Ot + ¢, and p, verifies the relation

(R—1—p3R?=Kpeexp{—(R—1)t} , (B1)

where K and ¢, are constants depending on the initial
conditions. In the long-time limit, t— 0, py—0 for
R <1, and p,—V'R —1 for R >1: this last limit is the
well-known lasing solution. In terms of x, one can say
that in the loneg-time limit and for R>1,
xo—VR —1le THMTP) and we can drop the initial phase
without loss of generality. If this asymptotic value of x
is valid, the e-order equation also provides an integrable

case that can be simplified if we lay down u =x,e'®,

%=—§(u+u*)+aem‘, (B2)

where k=2(R —1)/R. Integrating this last equation,
and going back to the previous variable x,, we derive for
the € order of our expansion
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x,=e 1M cze"’“+——a—2-{k cos(Qt )+ Qsin(Q¢)}
k*+Q

+i cl—%cos(ﬂt) : (B3)

The c, term takes the form —ak /(k*+Q?) and does not
contribute for an infinite time, while the ¢, has to be zero
valued to avoid secular influence on € order. We then
get Eq. (27) of the paper. One can also write this last
equation following the amplitude and phase expansions:

X(O=[VR —1+ep,(n]e M7 (B4)
where

pl(t)=ﬁ{kcos(ﬂt)-H)sin(Qt)} (B5)
and

1/}1(t)=ﬂ—\/;—_l‘cos(ﬂt) . (B6)

These are the eth-order solutions of the Lindstedt-
Poincaré expansion. The benefit of such an expansion is
that it gives the e’-order phase or more precisely the fre-
quency shift
2
a Q
= B7
P27 TR kv ®B7)
which means that the laser frequency takes the value
Q, = —Q—€%w,. This expression signs a pulling to the
external frequency as shown in Ref. [12].
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